Features
* Incorporates the ARM920T™ ARM® Thumb® Processor
— 200 MIPS at 180 MHz, Memory Management Unit
- 16-KByte Data Cache, 16-KByte Instruction Cache, Write Buffer
— In-circuit Emulator including Debug Communication Channel
- Mid-level Implementation Embedded Trace Macrocell™ (256-ball BGA Package
only)
* Low Power: On VDDCORE 24.4 mA in Normal Mode, 520 pA in Standby Mode
¢ Additional Embedded Memories
— 16K Bytes of SRAM and 128K Bytes of ROM
¢ External Bus Interface (EBI)
— Supports SDRAM, Static Memory, Burst Flash, Glueless Connection to
CompactFlash® and NAND Flash/SmartMedia®
¢ System Peripherals for Enhanced Performance:
— Enhanced Clock Generator and Power Management Controller
— Two On-chip Oscillators with Two PLLs
— Very Slow Clock Operating Mode and Software Power Optimization Capabilities
— Four Programmable External Clock Signals
— System Timer Including Periodic Interrupt, Watchdog and Second Counter
— Real-time Clock with Alarm Interrupt
— Debug Unit, Two-wire UART and Support for Debug Communication Channel
— Advanced Interrupt Controller with 8-level Priority, Individually Maskable Vectored
Interrupt Sources, Spurious Interrupt Protected
— Seven External Interrupt Sources and One Fast Interrupt Source
— Four 32-bit PIO Controllers with Up to 122 Programmable I/O Lines, Input Change
Interrupt and Open-drain Capability on Each Line
— 20-channel Peripheral DMA Controller (PDC)
¢ Ethernet MAC 10/100 Base-T
— Media Independent Interface (MIl) or Reduced Media Independent Interface (RMII)
— Integrated 28-byte FIFOs and Dedicated DMA Channels for Receive and Transmit
¢ USB 2.0 Full Speed (12 Mbits per second) Host Double Port
— Dual On-chip Transceivers (Single Port Only on 208-lead PQFP Package)
- Integrated FIFOs and Dedicated DMA Channels
¢ USB 2.0 Full Speed (12 Mbits per second) Device Port
— On-chip Transceiver, 2-Kbyte Configurable Integrated FIFOs
¢ Multimedia Card Interface (MCI)
— Automatic Protocol Control and Fast Automatic Data Transfers
— MMC and SD Memory Card-compliant, Supports Up to Two SD Memory Cards
* Three Synchronous Serial Controllers (SSC)
— Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
— IS Analog Interface Support, Time Division Multiplex Support
— High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
* Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
— Support for ISO7816 T0/T1 Smart Card
— Hardware Handshaking
— RS485 Support, IrDA® Up To 115 Kbps
— Full Modem Control Lines on USART1
* Master/Slave Serial Peripheral Interface (SPI)
— 8- to 16-bit Programmable Data Length, 4 External Peripheral Chip Selects

ATMEL

Y ()

ARM920T-based
Microcontroller

AT91RM9200

Rev. 1768I-ATARM-09-Jul-09

http://www.atmel.com

ATMEL

¢ Two 3-channel, 16-bit Timer/Counters (TC)
— Three External Clock Inputs, Two Multi-purpose 1/0 Pins per Channel
— Double PWM Generation, Capture/Waveform Mode, Up/Down Capability

* Two-wire Interface (TWI)

— Master Mode Support, All 2-wire Atmel EEPROMs Supported

* Power Supplies
- 1.65V to 1.95V for VDDCORE, VDDOSC and VDDPLL

— 3.0V to 3.6V for VDDIOP (Peripheral 1/0s) and for VDDIOM (Memory 1/Os)
¢ Available in a 208-pin Green PQFP or 256-ball RoHS-compliant BGA Package

1.

2

Description

IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins

The AT91RM9200 is a complete system-on-chip built around the ARM920T ARM Thumb pro-
cessor. It incorporates a rich set of system and application peripherals and standard interfaces
in order to provide a single-chip solution for a wide range of compute-intensive applications that
require maximum functionality at minimum power consumption at lowest cost.

The AT91RM9200 incorporates a high-speed on-chip SRAM workspace, and a low-latency
External Bus Interface (EBI) for seamless connection to whatever configuration of off-chip mem-
ories and memory-mapped peripherals is required by the application. The EBI incorporates
controllers for synchronous DRAM (SDRAM), Burst Flash and Static memories and features
specific circuitry facilitating the interface for NAND Flash/SmartMedia and Compact Flash.

The Advanced Interrupt Controller (AIC) enhances the interrupt handling performance of the
ARM920T processor by providing multiple vectored, prioritized interrupt sources and reducing
the time taken to transfer to an interrupt handler.

The Peripheral DMA Controller (PDC) provides DMA channels for all the serial peripherals,
enabling them to transfer data to or from on- and off-chip memories without processor interven-
tion. This reduces the processor overhead when dealing with transfers of continuous data
streams.The AT91RM9200 benefits from a new generation of PDC which includes dual pointers
that simplify significantly buffer chaining.

The set of Parallel 1/0 (PIO) controllers multiplex the peripheral input/output lines with general-
purpose data I/Os for maximum flexibility in device configuration. An input change interrupt,
open drain capability and programmable pull-up resistor is included on each line.

The Power Management Controller (PMC) keeps system power consumption to a minimum by
selectively enabling/disabling the processor and various peripherals under software control. It
uses an enhanced clock generator to provide a selection of clock signals including a slow clock
(32 kHz) to optimize power consumption and performance at all times.

The AT91RM9200 integrates a wide range of standard interfaces including USB 2.0 Full Speed
Host and Device and Ethernet 10/100 Base-T Media Access Controller (MAC), which provides
connection to a extensive range of external peripheral devices and a widely used networking
layer. In addition, it provides an extensive set of peripherals that operate in accordance with sev-
eral industry standards, such as those used in audio, telecom, Flash Card, infrared and Smart
Card applications.

To complete the offer, the AT91RM9200 benefits from the integration of a wide range of debug
features including JTAG-ICE, a dedicated UART debug channel (DBGU) and an embedded real
time trace. This enables the development and debug of all applications, especially those with
real-time constraints.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

2. Block Diagram

Figure 2-1.

TSTO-TSTH
NRST
JTAGSEL
DI

TDO

™S

TCK
NTRST

FIQ
IRQO-IRQ6
PCKO-PCK3
PLLRCB
PLLRCA
XIN

XouT

XIN32
XOUT32

DRXD
DTXD

DDM
DDP

MCCK

MCCDA
MCDAO-MCDA3
MCCDB
MCDBO0-MCDB3

RXDO

1768I-ATARM-09-Jul-09

Bold arrows (———3) indicate master-to-slave dependency.

AT91RM9200 Block Diagram

>»| Reset
and
> <!>
P Test ARM920T Core Dl
> <>
o~ ICE ETM le)
> > > & |led—>
> ume |« - T
<
< ~ Scan > Instruction Cache MMU Data Cache > <>
& > 16K bytes 16K bytes
> =]
> >
> <
= Vi =
< >
< >
<«T> > A >
2 AC | Fast SRAM |t ddress >
< > 16K bytes Decoder EBI >
>
<!> >
<> < e lash >
N Abort NAND Flash >
> PLLB [Status SmartMedia >
Fast ROM >
> LA = 128K bytes | €] >
. Misalignment >
PMC ~ >
> Detector
osc | >
< >
< Peripheral | Bus >
Bridge Arbiter SDRAM >
>
System [« Controller E
Timer Peripheral) 2 UVl E<4
oA = 3
Controller Memory Burst E 5 E
> Controller Flash > ST 2
>
_ 0sC > RTC < > Controller ; e 2 ;
< < o[>
> <>
<
Y ~ _ < Static <« <>
7 7| DBGU A Memory < bl <
< < > <>
< < PDC Controller > <!>
o > < >
o <> <>
o <> <>
<> <
PR PIOA/PIOB/PIOC/PIOD — N
2V, - Controller - <>
DMA | FIFO 5 |lel>
z €T
8
FIFO > USB Host 2
5 |— » B
<> 3 - F e
<> 2 USB Device ~3
©
= DMA | FIFO M
< <!>
Y > <>
<!> < > <>
<> <> < <>
<> <> < <>
<> <> MCI < - <>
<!> <> Ethernet MAC 10/100 < <1>
« rad « rad A 3> < -
<> <> > > <>
N <> PDC > <>
<> <l >
<> <>
<> > > <>
<> <—> APB
<> <> <> <
<> <> USARTO < <> <T1>
<> < = <>
<> > PDC > SSCco - <>
<> <>
<> > <> <>
<> > <> <>
1> [«—> PDC 7 1
<> <> > <>
3 [3 3
<> > USART1 < N P <
<T>» o > = SSC1] oled>
<> o [€ >3 7 <l
PN I P E<
<> > <> <>
<> > PDC PDC <> <>
<> <>
<> > > <> <>
<> <> > <> <>
<> <> _ K <l 5
<> <> USART2 SSC2 = <>
< <>
<> — <> |<{>
<> > PDC PDC <> <>
3 <3 < <>
<1 <> Timer Counter > > K<
<> |« USART3 < S 3
<
<> =) > a3 1S5
<> > PDC > TCO < [« <>
< > <>
>l le—s TC1 < <l >E <
<5 S < > <>
5 < TC2 < > [€<1>
3 < < < > €T
< rd < SPI
<> <> < <
<> <> < <>
<> <> Timer Counter < <T1>
<> <> PDC < <>
TC3 < > <>
< 3 < 3 > < > < >
<> <> < > <>
TWI < TC4 < > <>
<> <> < (< <
<> <> < > <>
Cs < > |«

ATMEL

TSYNC
TCLK
TPSO - TPS2

TPKO - TPK15

BMS

DO0-D15

AO/NBSO
A1/NBS2/NWR2
A2-A15/A18-A22
A16/BAO

A17/BA1
NCS0/BFCS
NCS1/SDCS

NCS2

NCS3/SMCS
NRD/NOE/CFOE
NWRO/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
S

BFRDY/SMOE
BFCK

BFAVD
BFBAA/SMWE
BFOE

BFWE
A23-A24
A25/CFRNW
NWAIT
NCS4/CFCS
NCS5/CFCE1
NCS6/CFCE2

NCS7
D16-D31

HDMA
HDPA

HDMB
HDPB

ETXCK-ERXCK-EREFCK
ETXEN-ETXER
ECRS-ECOL
ERXER-ERXDV
ERX0-ERX3

ETX0-ETX3

RF2

TCLKO
TCLK1
TCLK2
TIOAO
TIOBO
TIOA1

TIOB1

TIOA2
TIOB2

TCLK3
TCLK4
TCLK5
TIOA3
TIOB3
TIOA4
TIOB4
TIOA5
TIOBS

3. Signal Description

ATMEL

Table 3-1. Signal Description by Peripheral
Active
Pin Name Function Type Level | Comments
Power

VDDIOM Memory 1/O Lines Power Supply Power 3.0V to 3.6V
VDDIOP Peripheral I/O Lines Power Supply Power 3.0V to 3.6V
VDDPLL Oscillator and PLL Power Supply Power 1.65V to 1.95V
VDDCORE Core Chip Power Supply Power 1.65V to 1.95V
VDDOSC Oscillator Power Supply Power 1.65V to 1.95V
GND Ground Ground
GNDPLL PLL Ground Ground
GNDOSC Oscillator Ground Ground

Clocks, Oscillators and PLLs
XIN Main Crystal Input Input
XOUT Main Crystal Output Output
XIN32 32KHz Crystal Input Input
XOuUT32 32KHz Crystal Output Output
PLLRCA PLL A Filter Input
PLLRCB PLL B Filter Input
PCKO - PCK3 Programmable Clock Output Output

ICE and JTAG
TCK Test Clock Input Schmitt trigger
TDI Test Data In Input Internal Pull-up, Schmitt trigger
TDO Test Data Out Output Tri-state
TMS Test Mode Select Input Internal Pull-up, Schmitt trigger
NTRST Test Reset Signal Input Low Internal Pull-up, Schmitt trigger
JTAGSEL JTAG Selection Input Schmitt trigger
ETM™
TSYNC Trace Synchronization Signal Output
TCLK Trace Clock Output
TPSO - TPS2 Trace ARM Pipeline Status Output
TPKO - TPK15 Trace Packet Port Output
Reset/Test
NRST Microcontroller Reset Input Low No on-chip pull-up, Schmitt trigger
TSTO - TSTA Test Mode Select Input gﬂp“:‘r:t’ii:’egc'mi{f’:r?gogr;“ra'
4 AT9T1RM9200 m——

1768I-ATARM-09-Jul-09

Table 3-1. Signal Description by Peripheral
Active
Pin Name Function Type Level | Comments
Memory Controller
BMS Boot Mode Select Input
Debug Unit

DRXD Debug Receive Data Input Debug Receive Data
DTXD Debug Transmit Data Output Debug Transmit Data

AIC
IRQO - IRQ6 External Interrupt Inputs Input
FIQ Fast Interrupt Input Input

PIO
PAO - PA31 Parallel 10 Controller A /10 Pulled-up input at reset
PBO - PB29 Parallel 10 Controller B /0 Pulled-up input at reset
PCO - PC31 Parallel 10 Controller C I/0 Pulled-up input at reset
PDO - PD27 Parallel 10 Controller D /10 Pulled-up input at reset

EBI
DO - D31 Data Bus 1/0 Pulled-up input at reset
A0 - A25 Address Bus Output 0 at reset

sSMC
NCSO0 - NCS7 Chip Select Lines Output Low 1 at reset
NWRO - NWR3 Write Signal Output Low 1 at reset
NOE Output Enable Output Low 1 at reset
NRD Read Signal Output Low 1 at reset
NUB Upper Byte Select Output Low 1 at reset
NLB Lower Byte Select Output Low 1 at reset
NWE Write Enable Output Low 1 at reset
NWAIT Wait Signal Input Low
NBSO - NBS3 Byte Mask Signal Output Low 1 at reset

EBI for CompactFlash Support

CFCE1 - CFCE2 CompactFlash Chip Enable Output Low
CFOE CompactFlash Output Enable Output Low
CFWE CompactFlash Write Enable Output Low
CFIOR CompactFlash 10 Read Output Low
CFIlow CompactFlash 10 Write Output Low
CFRNW CompactFlash Read Not Write Output
CFCS CompactFlash Chip Select Output Low

1768I-ATARM-09-Jul-09

ATMEL

ATMEL

Table 3-1. Signal Description by Peripheral
Active
Pin Name Function Type Level | Comments
EBI for NAND Flash/SmartMedia Support
SMCS NAND Flash/SmartMedia Chip Select Output Low
SMOE NAND Flash/SmartMedia Output Enable Output Low
SMWE NAND Flash/SmartMedia Write Enable Output Low
SDRAM Controller
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Output Low
BAO - BA1 Bank Select Output
SDWE SDRAM Write Enable Output Low
RAS - CAS Row and Column Signal Output Low
SDA10 SDRAM Address 10 Line Output
Burst Flash Controller
BFCK Burst Flash Clock Output
BFCS Burst Flash Chip Select Output Low
BFAVD Burst Flash Address Valid Output Low
BFBAA Burst Flash Address Advance Output Low
BFOE Burst Flash Output Enable Output Low
BFRDY Burst Flash Ready Input High
BFWE Burst Flash Write Enable Output Low
Multimedia Card Interface
MCCK Multimedia Card Clock Output
MCCDA Multimedia Card A Command I/0
MCDAO - MCDA3 Multimedia Card A Data I/0
MCCDB Multimedia Card B Command I/0
MCDBO - MCDB3 Multimedia Card B Data I/0
USART
SCKO - SCK3 Serial Clock I/0
TXDO - TXD3 Transmit Data Output
RXDO - RXD3 Receive Data Input
RTSO - RTS3 Ready To Send Output
CTS0- CTS3 Clear To Send Input
DSR1 Data Set Ready Input
DTR1 Data Terminal Ready Output
DCD1 Data Carrier Detect Input
R Ring Indicator Input
6 /A T'91T IRIVIO2 0/ 150

1768I-ATARM-09-Jul-09

Table 3-1. Signal Description by Peripheral
Active
Pin Name Function Type Level | Comments
USB Device Port

DDM USB Device Port Data - Analog
DDP USB Device Port Data + Analog

USB Host Port
HDMA USB Host Port A Data - Analog
HDPA USB Host Port A Data + Analog
HDMB USB Host Port B Data - Analog
HDPB USB Host Port B Data + Analog

Ethernet MAC
EREFCK Reference Clock Input RMII only
ETXCK Transmit Clock Input MIl only
ERXCK Receive Clock Input MiIl only
ETXEN Transmit Enable Output
ETXO0 - ETX3 Transmit Data Output ETXO0 - ETX1 only in RMII
ETXER Transmit Coding Error Output MIl only
ERXDV Receive Data Valid Input MIl only
ECRSDV Carrier Sense and Data Valid Input RMII only
ERXO - ERX3 Receive Data Input ERXO0 - ERX1 only in RMII
ERXER Receive Error Input
ECRS Carrier Sense Input MIl only
ECOL Collision Detected Input MiIl only
EMDC Management Data Clock Output
EMDIO Management Data Input/Output 1/0
EF100 Force 100 Mbits/sec. Output High RMIl only

Synchronous Serial Controller

TDO - TD2 Transmit Data Output
RDO - RD2 Receive Data Input
TKO - TK2 Transmit Clock /0
RKO - RK2 Receive Clock I/0
TFO - TF2 Transmit Frame Sync /0
RFO - RF2 Receive Frame Sync 1/0

Timer/Counter
TCLKO - TCLK5 External Clock Input Input
TIOAO - TIOA5 I/O Line A I/0
TIOBO - TIOB5 I/O Line B I/0

1768I-ATARM-09-Jul-09

ATMEL

ATMEL

Table 3-1. Signal Description by Peripheral

Active
Pin Name Function Type Level | Comments
SPI

MISO Master In Slave Out I/0

MOSI Master Out Slave In I/0

SPCK SPI Serial Clock I/0

NPCSO0 SPI Peripheral Chip Select 0 /0 Low
NPCS1 - NPCS3 SPI Peripheral Chip Select Output Low

Two-Wire Interface
TWD Two-wire Serial Data /0
TWCK Two-wire Serial Clock /0

4. Package and Pinout
The AT91RM9200 is available in two packages:

¢ 208-pin PQFP, 31.2 x 31.2 mm, 0.5 mm pitch

* 256-ball BGA, 15 x 15 mm, 0.8 mm ball pitch
The product features of the 256-ball BGA package are extended compared to the 208-lead
PQFP package. The features that are available only with the 256-ball BGA package are:

e Parallel /0 Controller D

« ETM™ port with outputs multiplexed on the PIO Controller D

* a second USB Host transceiver, opening the Hub capabilities of the embedded USB Host.

41 208-pin PQFP Package Outline
Figure 4-1 shows the orientation of the 208-pin PQFP package.

A detailed mechanical description is given in the section “AT91RM9200 Mechanical Characteris-
tics” of the product datasheet.

Figure 4-1. 208-pin PQFP Package (Top View)

157 :15;-? 135: 104
: T
8 AT91RM9200 messs—

1768I-ATARM-09-Jul-09

4.2 208-pin PQFP Package Pinout

Table 4-1. AT91RM9200 Pinout for 208-pin PQFP Package

Pin Pin Pin Pin

Number | Signal Name Number | Signal Name Number | Signal Name Number | Signal Name
1 PC24 37 VDDPLL 73 PA27 109 T™MS

2 PC25 38 PLLRCB 74 PA28 110 NTRST

3 PC26 39 GNDPLL 75 VDDIOP 111 VDDIOP
4 pPC27 40 VDDIOP 76 GND 112 GND

5 pPC28 41 GND 77 PA29 113 TSTO

6 PC29 42 PAO 78 PA30 114 TSTH

7 VDDIOM 43 PA1 79 PA31/BMS 115 NRST

8 GND 44 PA2 80 PBO 116 VDDCORE
9 PC30 45 PA3 81 PB1 117 GND

10 PC31 46 PA4 82 PB2 118 PB23

11 PC10 47 PA5 83 PB3 119 PB24

12 PC11 48 PAG 84 PB4 120 PB25

13 PC12 49 PA7 85 PB5 121 PB26

14 PC13 50 PA8 86 PB6 122 PB27

15 PC14 51 PA9 87 PB7 123 PB28

16 PC15 52 PA10 88 PB8 124 PB29

17 PCO 53 PA11 89 PB9 125 HDMA
18 PC1 54 PA12 90 PB10 126 HDPA
19 VDDCORE 55 PA13 91 PB11 127 DDM

20 GND 56 VDDIOP 92 PB12 128 DDP

21 PC2 57 GND 93 VDDIOP 129 VDDIOP
22 PC3 58 PA14 94 GND 130 GND

23 PC4 59 PA15 95 PB13 131 VDDIOM
24 PC5 60 PA16 96 PB14 132 GND

25 PC6 61 PA17 97 PB15 133 AO/NBSO
26 VDDIOM 62 VDDCORE 98 PB16 134 A1/NBS2/NWR2
27 GND 63 GND 99 PB17 135 A2

28 VDDPLL 64 PA18 100 PB18 136 A3

29 PLLRCA 65 PA19 101 PB19 137 A4

30 GNDPLL 66 PA20 102 PB20 138 A5

31 XOuT 67 PA21 103 PB21 139 A6

32 XIN 68 PA22 104 PB22 140 A7

33 VDDOSC 69 PA23 105 JTAGSEL 141 A8

34 GNDOSC 70 PA24 106 TDI 142 A9

35 XOUT32 71 PA25 107 TDO 143 A10

36 XIN32 72 PA26 108 TCK 144 SDA10

ATMEL ;

1768I-ATARM-09-Jul-09

ATMEL

Table 4-1. AT91RM9200 Pinout for 208-pin PQFP Package (Continued)

Pin Pin Pin Pin

Number | Signal Name Number | Signal Name Number | Signal Name Number | Signal Name
145 A11 161 PC7 177 CAS 193 D10
146 VDDIOM 162 PC8 178 SDWE 194 D11

147 GND 163 PC9 179 DO 195 D12

148 A12 164 VDDIOM 180 D1 196 D13
149 A13 165 GND 181 D2 197 D14

150 A14 166 NCSO0/BFCS 182 D3 198 D15

151 A15 167 NCS1/SDCS 183 VDDIOM 199 VDDIOM
152 VDDCORE 168 NCS2 184 GND 200 GND
153 GND 169 NCS3/SMCS 185 D4 201 PC16
154 A16/BAO 170 NRD/NOE/CFOE 186 D5 202 PC17
155 A17/BA1 171 NWRO/NWE/CFWE 187 D6 203 PC18
156 A18 172 NWR1/NBS1/CFIOR 188 VDDCORE 204 PC19
157 A19 173 NWR3/NBS3/CFIOW 189 GND 205 PC20
158 A20 174 SDCK 190 D7 206 PC21
159 A21 175 SDCKE 191 D8 207 pC22
160 A22 176 RAS 192 D9 208 PC23

Note: 1. Shaded cells define the pins powered by VDDIOM.

4.3 256-ball BGA Package Outline
Figure 4-2 shows the orientation of the 256-ball LFBGA package.

A detailed mechanical description is given in the section “AT91RM9200 Mechanical Characteris-
tics” of the product datasheet.

Figure 4-2. 256-ball LFBGA Package (Top View)

17 000 000000000000 OO0
16 000 000000000000 OO0
15 000 O0CO0OO0OO0OODOOODOOO0OOOO
14 00000000000 0D0O0O0OO0COO
13 00 0000000000000 O0OO0
12 0OO0OO0O0OO0OO0OO0 o 0000000
1 000000 0000 00
10 0 0000 Q00 00
9 000000 0000 00
8 0O O0OO0O0O0 00000
7 000000 0000 00
6 0000000 o 0000000
5 0OO0OO0OO0OO0OO0OO0OOOODO0OOOOOO
4 00000000000 0DO0O0OO0COO
3 00000000000 0O0OO0O0O0O OO
2 00000000000 0000 0O
1000000000000000000
BALLA1J ABCDEFGHUJKLMNPRTU

1768I-ATARM-09-Jul-09

44 256-ball BGA Package Pinout

Table 4-2. AT91RM9200 Pinout for 256-ball BGA Package

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
Al TDI C3 PD14 E5 TCK G14 PA1

A2 JTAGSEL C4 PB22 E6 GND G15 PA2

A3 PB20 C5 PB19 E7 PB15 G16 PA3

A4 PB17 Cé6 PD10 E8 GND G17 XIN32
A5 PD11 Cc7 PB13 E9 PB7 H1 PD23
A6 PD8 C8 PB12 E10 PB3 H2 PD20
A7 VDDIOP Cc9 PB6 E11 PA29 H3 PD22
A8 PB9 C10 PB1 E12 PA26 H4 PD21

A9 PB4 Ci1 GND E13 PA25 H5 VDDIOP
A10 PA31/BMS c12 PA20 E14 PA9 H13 VDDPLL
Al VDDIOP C13 PA18 E15 PA6 H14 VDDIOP
A12 PA23 C14 VDDCORE E16 PD3 H15 GNDPLL
A13 PA19 C15 GND E17 PDO H16 GND
A14 GND C16 PA8 F1 PD16 H17 XOUT32
A15 PA14 Cc17 PD5 F2 GND J1 PD25
A16 VDDIOP D1 TSTH F3 PB23 J2 PD27
A17 PA13 D2 VDDIOP F4 PB25 J3 PD24

B1 TDO D3 VDDIOP F5 PB24 J4 PD26
B2 PD13 D4 GND F6 VDDCORE J5 PB28
B3 PB18 D5 VDDIOP F7 PB16 J6 PB29
B4 PB21 D6 PD7 F9 PB11 J12 GND

B5 PD12 D7 PB14 F11 PA30 J13 GNDOSC
B6 PD9 D8 VDDIOP F12 PA28 J14 VDDOSC
B7 GND D9 PB8 F13 PA4 J15 VDDPLL
B8 PB10 D10 PB2 F14 PD2 J16 GNDPLL
B9 PB5 D11 GND F15 PD1 J17 XIN

B10 PBO D12 PA22 F16 PA5 K1 HDPA
B11 VDDIOP D13 PA21 F17 PLLRCB K2 DDM
B12 PA24 D14 PA16 G1 PD19 K3 HDMA
B13 PA17 D15 PA10 G2 PD17 K4 VDDIOP
B14 PA15 D16 PD6 G3 GND K5 DDP
B15 PA11 D17 PD4 G4 PB26 K13 PC5

B16 PA12 E1 NRST G5 PD18 K14 PC4
B17 PA7 E2 NTRST G6 PB27 K15 PC6

C1 T™MS E3 GND G12 PA27 K16 VDDIOM
Cc2 PD15 E4 TSTO G13 PAO K17 XOouT

ATMEL Y

1768I-ATARM-09-Jul-09

ATMEL

Table 4-2. AT91RM9200 Pinout for 256-ball BGA Package (Continued)

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
L1 GND N2 A5 P13 D15 T7 g\é\llggNBSH
L2 HDPB N3 A9 P14 PC26 T8 SDWE

L3 HDMB N4 A4 P15 PC27 T9 GND

L4 A6 N5 Al4 P16 VDDIOM T10 VDDCORE
L5 GND N6 SDA10 P17 GND T11 D9

L6 VDDIOP N7 A8 R1 GND T12 D12

L12 PC10 N8 A21 R2 GND T13 GND

L13 PC15 N9 NRD/NOE/CFOE R3 A18 T14 PC19

L14 PC2 N10 RAS R4 A20 T15 PC21

L15 PC3 N11 D2 R5 PC8 T16 PC23

L16 VDDCORE N12 GND R6 VDDIOM T17 PC25

L17 PLLRCA N13 PC28 R7 NCS3/SMCS U1 VDDCORE
M1 VDDIOM N14 PC31 R8 (l\)l\é\fg%NBSS/ U2 GND

M2 GND N15 PC30 R9 DO (UK] A16/BAO
M3 A3 N16 PC11 R10 VDDIOM U4 A19

M4 A1/NBS2/NWR2 N17 PC12 R11 D8 us GND

M5 A10 P1 A7 R12 D13 ué NCSO0/BFCS
M6 A2 P2 A13 R13 PC17 u7 SDCK

M7 GND P3 Al12 R14 VDDIOM us CAS

M9 NCS1/SDCS P4 VDDIOM R15 PC24 U9 D3

M11 D4 P5 Al R16 PC29 uio D6

M12 GND P6 A22 R17 VDDIOM Ui D7

M13 PC13 P7 PC9 T1 A15 ui2 D11

M14 PC1 P8 NWRO/NWE/CFWE T2 VDDCORE ui13 D14

M15 PCoO P9 SDCKE T3 A17/BA1 ui4 PC16

M16 GND P10 D1 T4 PC7 uU15 PC18

M17 PC14 P11 D5 T5 VDDIOM ui6 PC20

N1 AO/NBSO P12 D10 T6 NCS2 ui7 pPC22

Note: 1. Shaded cells define the balls powered by VDDIOM.

12 A T91 RIVI'O:2 0 () 50000000

5. Power Considerations

5.1 Power Supplies
The AT91RM9200 has five types of power supply pins:
* VDDCORE pins. They power the core, including processor, memories and peripherals;
voltage ranges from 1.65V to 1.95V, 1.8V nominal.

* VDDIOM pins. They power the External Bus Interface I/O lines; voltage ranges from 3.0V to
3.6V, 3V or 3.3V nominal.

* VDDIOP pins. They power the Peripheral I/O lines and the USB transceivers; voltage ranges
from 3.0V to 3.6V, 3V or 3.3V nominal.

* VDDPLL pins. They power the PLL cells; voltage ranges from 1.65V to 1.95V, 1.8V nominal.

* VDDOSC pin. They power both oscillators; voltage ranges from 1.65V to 1.95V, 1.8V
nominal.

The double power supplies VDDIOM and VDDIOP are identified in Table 4-1 on page 9 and
Table 4-2 on page 11. These supplies enable the user to power the device differently for inter-
facing with memories and for interfacing with peripherals.

Ground pins are common to all power supplies, except VDDPLL and VDDOSC pins. For these
pins, GNDPLL and GNDOSC are provided, respectively.

5.2 Power Consumption

The AT91RM9200 consumes about 500 pA of static current on VDDCORE at 25- C. For
dynamic power consumption, the AT91RM9200 consumes a maximum of 25 mA on VDDCORE
at maximum speed in typical conditions (1.8V, 25- C), processor running full-performance
algorithm.

6. 1/0 Considerations

6.1 JTAG Port Pins
TMS and TDI are Schmitt trigger inputs and integrate internal pull-up resistors of 15 kOhm typi-
cal. TCK is a Schmitt trigger input without internal pull-up resistor.

TDO is a tri-state output. The JTAGSEL pin is used to select the JTAG boundary scan when
asserted at a high level. The NTRST pin is used to initialize the EmbeddedICE™ TAP Controller.

6.2 Test Pin

The TSTO and TST1 pins are used for manufacturing test purposes when asserted high. As they
do not integrate a pull-down resistor, they must be tied low during normal operations. Driving this
line at a high level leads to unpredictable results.

6.3 Reset Pin

NRST is a Schmitt trigger without pull-up resistor. The NRST signal is inserted in the Boundary
Scan.

ATMEL 1

1768I-ATARM-09-Jul-09

ATMEL

6.4 PIO Controller A, B, C and D Lines

All the I/O lines PAO to PA31, PBO to PB29, PCO to PC31 and PDO to PD27 integrate a program-
mable pull-up resistor of 15 kOhm typical. Programming of this pull-up resistor is performed
independently for each 1/O line through the PIO Controllers.

After reset, all the 1/O lines default as inputs with pull-up resistors enabled, except those which
are multiplexed with the External Bus Interface signals that must be enabled as peripherals at
reset. This is explicitly indicated in the column "Reset State" of the PIO Controller multiplexing
tables.

7. Processor and Architecture

7.1 ARM920T Processor

¢ ARMOTDMI™-based on ARM Architecture v4T

¢ Two instruction sets
— ARM High-performance 32-bit Instruction Set
— Thumb High Code Density 16-bit Instruction Set

¢ 5-Stage Pipeline Architecture:
— Instruction Fetch (F)
— Instruction Decode (D)
— Execute (E)
— Data Memory (M)
— Register Write (W)

¢ 16-Kbyte Data Cache, 16-Kbyte Instruction Cache
— Virtually-addressed 64-way Associative Cache
— 8 words per line
— Write-though and write-back operation
— Pseudo-random or Round-robin replacement
— Low-power CAM RAM implementation

e Write Buffer
— 16-word Data Buffer
— 4-address Address Buffer
— Software Control Drain

» Standard ARMv4 Memory Management Unit (MMU)
— Access permission for sections

— Access permission for large pages and small pages can be specified separately for
each quarter of the pages

— 16 embedded domains
— 64 Entry Instruction TLB and 64 Entry Data TLB
8-, 16-, 32-bit Data Bus for Instructions and Data

7.2 Debug and Test
* Integrated EmbeddedICE

14 AT91RM9200 messs—

* Debug Unit
— Two-pin UART
— Debug Communication Channel
— Chip ID Register
» Embedded Trace Macrocell: ETM9™ Rev2a
— Medium Level Implementation
— Half-rate Clock Mode
— Four Pairs of Address Comparators
— Two Data Comparators
— Eight Memory Map Decoder Inputs
— Two Counters
— One Sequencer
— One 18-byte FIFO
e |IEEE1149.1 JTAG Boundary Scan on all Digital Pins

7.3 Boot Program
* Default Boot Program stored in ROM-based products
* Downloads and runs an application from external storage media into internal SRAM
¢ Downloaded code size depends on embedded SRAM size
¢ Automatic detection of valid application
* Bootloader supporting a wide range of non-volatile memories
— SPI DataFlash® connected on SPI NPCS0
— Two-wire EEPROM
— 8-bit parallel memories on NCS0

* Boot Uploader in case no valid program is detected in external NVM and supporting several
communication media

* Serial communication on a DBGU (XModem protocol)
¢ USB Device Port (DFU Protocol)

74 Embedded Software Services
* Compliant with ATPCS
e Compliant with AINSI/ISO Standard C
* Compiled in ARM/Thumb Interworking
* ROM Entry Service
¢ Tempo, Xmodem and DataFlash services
* CRC and Sine tables

7.5 Memory Controller
* Programmable Bus Arbiter handling four Masters

— Internal Bus is shared by ARM920T, PDC, USB Host Port and Ethernet MAC
Masters

— Each Master can be assigned a priority between 0 and 7

ATMEL 1

1768I-ATARM-09-Jul-09

ATMEL

¢ Address Decoder provides selection for
— Eight external 256-Mbyte memory areas
— Four internal 1-Mbyte memory areas
— One 256-Mbyte embedded peripheral area
¢ Boot Mode Select Option
— Non-volatile Boot Memory can be internal or external
— Selection is made by BMS pin sampled at reset
* Abort Status Registers
— Source, Type and all parameters of the access leading to an abort are saved
* Misalignment Detector
— Alignment checking of all data accesses
— Abort generation in case of misalignment
¢ Remap command
— Provides remapping of an internal SRAM in place of the boot NVM

16 A T91 RIVI'O:2 0 () 50000000

8. Memories

Figure 8-1.

0x0000 0000

OXOFFF FFFF
0x1000 0000

Ox1FFF FFFF
0x2000 0000

0x2FFF FFFF
0x3000 0000

O0X3FFF FFFF
0x4000 0000

OX4FFF FFFF
0x5000 0000

OX5FFF FFFF
0x6000 0000

OX6FFF FFFF
0x7000 0000

OX7FFF FFFF
0x8000 0000

OX8FFF FFFF
0x9000 0000

OXEFFF FFFF
0xF000 0000

OXFFFF FFFF

1768I-ATARM-09-Jul-09

Internal Memories

EBI
Chip Select 0/
BFC

EBI
Chip Select 1/
SDRAMC

EBI
Chip Select 2

EBI
Chip Select 3/
NANDFlash Logic

EBI
Chip Select 4/
CF Logic

EBI
Chip Select 5/
CF Logic

EBI
Chip Select 6/
CF Logic

EBI
Chip Select 7

Undefined
(Abort)

Internal Peripherals

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

256M Bytes

1,518M Bytes

256M Bytes

AT91RM9200 Memory Mapping

Address Memory Space

Internal Memory Mapping

0x0000 0000
Boot Memory (1) 1 MBytes
0x0010 0000
ROM 1 MBytes
0x0020 0000
SRAM 1 MBytes
0x0030 0000
USB Host
User Interface 1 MBytes
0x0040 0000
Undefined
248 MBytes
(Abort) 4
OXOFFF FFFF
User Peripheral Mapping
0xF000 0000
Reserved
0xFFFA 0000
TCO, TC1, TC2 16K Bytes
O0xFFFA 4000
TC3,TC4,TC5 16K Bytes
O0xFFFA 8000
Reserved 16K Bytes
OxFFFB 0000
UDP 16K Bytes
OxFFFB 4000
MCI 16K Bytes
OxFFFB 8000
TWI 16K Bytes
OxFFFB C000
EMAC 16K Bytes
O0xFFFC 0000
USARTO 16K Bytes
O0xFFFC 4000
USART1 16K Bytes
O0xFFFC 8000
USART2 16K Bytes
O0xFFFC C000
USART3 16K Bytes
O0xFFFD 0000
SSCo 16K Bytes
O0xFFFD 4000
SSCH 16K Bytes
0xFFFD 8000
SSC2 16K Bytes
O0xFFFD C000
Reserved
OxFFFE 0000
SPI 16K Bytes
O0xFFFE 4000
Reserved
OXFFFF FFFF

ATMEL

Notes :

(1) Can be SRAM, ROM or Flash depending

on BMS and the REMAP Command

System Peripheral Mapping

O0xFFFE 4000

O0xFFFF FO0O

OxFFFF F200

OXFFFF F400

O0xFFFF F600

O0xFFFF F800

O0xFFFF FAOO

OXFFFF FC00

O0xFFFF FDOO

O0xFFFF FEOO

OXFFFF FFOO

OXFFFF FFFF

Reserved

AIC

DBGU

PIOA

PIOB

PIOC

PIOD

PMC

ST

RTC

MC

512 Bytes

512 Bytes

512 Bytes

512 Bytes

512 bytes

512 bytes

256 Bytes

256 Bytes

256 Bytes

256 Bytes

17

8.1
8.1.1

8.1.1.1

8.1.1.2

8.1.1.3

18

ATMEL

A first level of address decoding is performed by the Memory Controller, i.e., by the implementa-
tion of the Advanced System Bus (ASB) with additional features.

Decoding splits the 4G bytes of address space into 16 areas of 256M bytes. The areas 1 to 8 are
directed to the EBI that associates these areas to the external chip selects NCO to NCS7. The
area 0 is reserved for the addressing of the internal memories, and a second level of decoding
provides 1M bytes of internal memory area. The area 15 is reserved for the peripherals and pro-
vides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master
requesting such an access.

Embedded Memories

Internal Memory Mapping

Internal RAM
The AT91RM9200 integrates a high-speed, 16-Kbyte internal SRAM. After reset and until the
Remap Command is performed, the SRAM is only accessible at address 0x20 0000. After
Remap, the SRAM is also available at address 0xO.

Internal ROM
The AT91RM9200 integrates a 128-Kbyte Internal ROM. At any time, the ROM is mapped at
address 0x10 0000. It is also accessible at address 0x0 after reset and before the Remap Com-
mand if the BMS is tied high during reset.

USB Host Port

The AT91RM9200 integrates a USB Host Port Open Host Controller Interface (OHCI). The reg-
isters of this interface are directly accessible on the ASB Bus and are mapped like a standard
internal memory at address 0x30 0000.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

9. System Peripherals

A complete memory map is shown in Figure 8-1 on page 17.

9.1 Reset Controller
* Two reset input lines (NRST and NTRST) providing, respectively:

¢ Initialization of the User Interface registers (defined in the user interface of each peripheral)
and:

— Sample the signals needed at bootup
— Compel the processor to fetch the next instruction at address zero
¢ Initialization of the embedded ICE TAP controller

9.2 Advanced Interrupt Controller
* Controls the interrupt lines (NIRQ and nFIQ) of an ARM Processor
¢ Thirty-two individually maskable and vectored interrupt sources
— Source 0 is reserved for the Fast Interrupt Input (FIQ)
— Source 1 is reserved for system peripherals (ST, RTC, PMC, DBGU...)

— Source 2 to Source 31 control thirty embedded peripheral interrupts or external
interrupts

— Programmable Edge-triggered or Level-sensitive Internal Sources

— Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
External Sources

e 8-level Priority Controller
— Drives the Normal Interrupt of the processor
— Handles priority of the interrupt sources 1 to 31
— Higher priority interrupts can be served during service of lower priority interrupt
* Vectoring
— Optimizes Interrupt Service Routine Branch and Execution
— One 32-bit Vector Register per interrupt source
— Interrupt Vector Register reads the corresponding current Interrupt Vector
* Protect Mode
— Easy debugging by preventing automatic operations
* General Interrupt Mask
— Provides processor synchronization on events without triggering an interrupt

9.3 Power Management Controller

¢ Optimizes the power consumption of the whole system

* Embeds and controls:
— One Main Oscillator and One Slow Clock Oscillator (32.768Hz)
— Two Phase Locked Loops (PLLs) and Dividers
— Clock Prescalers

* Provides:
— the Processor Clock PCK

ATMEL 1

1768I-ATARM-09-Jul-09

ATMEL

— the Master Clock MCK

— the USB Clocks, UHPCK and UDPCK, respectively for the USB Host Port and the
USB Device Port

— Programmable automatic PLL switch-off in USB Device suspend conditions
— up to thirty peripheral clocks
— four programmable clock outputs PCKO to PCK3
e Four operating modes:
— Normal Mode, Idle Mode, Slow Clock Mode, Standby Mode

9.4 Debug Unit

e System peripheral to facilitate debug of Atmel's ARM-based systems

* Composed of the following functions
— Two-pin UART
— Debug Communication Channel (DCC) support
— Chip ID Registers

e Two-pin UART
— Implemented features are 100% compatible with the standard Atmel USART

— Independent receiver and transmitter with a common programmable Baud Rate
Generator

— Even, Odd, Mark or Space Parity Generation
— Parity, Framing and Overrun Error Detection
— Automatic Echo, Local Loopback and Remote Loopback Channel Modes
— Interrupt generation
— Support for two PDC channels with connection to receiver and transmitter
* Debug Communication Channel Support
— Offers visibility of COMMRX and COMMTX signals from the ARM Processor
— Interrupt generation
¢ Chip ID Registers

— ldentification of the device revision, sizes of the embedded memories, set of
peripherals

9.5 PIO Controller

¢ Up to 32 programmable I/O Lines

 Fully programmable through Set/Clear Registers

* Multiplexing of two peripheral functions per 1/O Line

¢ For each /O Line (whether assigned to a peripheral or used as general purpose I/O)
— Input change interrupt
— Glitch filter
— Multi-drive option enables driving in open drain
— Programmable pull-up on each I/O line
— Pin data status register, supplies visibility of the level on the pin at any time

20 A T91 RIVI'O:2 0 () 50000000

* Synchronous output, provides Set and Clear of several I/O lines in a single write

10. User Peripherals

10.1 User Interface

The User Peripherals are mapped in the upper 256M bytes of the address space, between the
addresses OxFFFA 0000 and OxFFFE 3FFF. Each peripheral has a 16-Kbyte address space.

A complete memory map is presented in Figure 8-1 on page 17.

10.2 Peripheral Identifiers
The AT91RM9200 embeds a wide range of peripherals. Table 10-1 defines the peripheral iden-
tifiers of the AT91RM9200. A peripheral identifier is required for the control of the peripheral
interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with
the Power Management Controller.

Table 10-1. Peripheral Identifiers

Peripheral Peripheral Peripheral External
ID Mnemonic Name Interrupt
0 AIC Advanced Interrupt Controller FIQ
1 SYSIRQ

2 PIOA Parallel I/O Controller A

3 PIOB Parallel I/O Controller B

4 PIOC Parallel I/O Controller C

5 PIOD Parallel I/O Controller D

6 uso USART 0

7 USH USART 1

8 us2 USART 2

9 uss3 USART 3

10 MCI Multimedia Card Interface

11 UDP USB Device Port

12 TWI Two-wire Interface

13 SPI Serial Peripheral Interface

14 SSCO0 Synchronous Serial Controller 0

15 SSC1 Synchronous Serial Controller 1

16 SSC2 Synchronous Serial Controller 2

17 TCO Timer/Counter 0

18 TCAH Timer/Counter 1

19 TC2 Timer/Counter 2

20 TC3 Timer/Counter 3

21 TC4 Timer/Counter 4

22 TC5 Timer/Counter 5

23 UHP USB Host Port

1768I-ATARM-09-Jul-09

ATMEL

21

ATMEL

Table 10-1. Peripheral Identifiers (Continued)

Peripheral Peripheral Peripheral External
ID Mnemonic Name Interrupt
24 EMAC Ethernet MAC

25 AIC Advanced Interrupt Controller IRQO

26 AIC Advanced Interrupt Controller IRQ1

27 AIC Advanced Interrupt Controller IRQ2

28 AIC Advanced Interrupt Controller IRQ3

29 AIC Advanced Interrupt Controller IRQ4

30 AIC Advanced Interrupt Controller IRQ5

31 AIC Advanced Interrupt Controller IRQ6

10.3 Peripheral Multiplexing on PIO Lines

22

The AT91RM9200 features four P1O controllers:

* PIOA and PIOB, multiplexing I/O lines of the peripheral set

* PIOC, multiplexing the data bus bits 16 to 31 and several External Bus Interface control
signals. Using PIOC pins increases the number of general-purpose I/O lines available but
prevents 32-bit memory access

¢ PIOD, available in the 256-ball BGA package option only, multiplexing outputs of the
peripheral set and the ETM port

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral
functions, A or B. The tables in the following paragraphs define how the I/O lines of the peripher-
als A and B are multiplexed on the PIO Controllers A, B, C and D. The two columns “Function”
and “Comments” have been inserted for the user's own comments; they may be used to track
how pins are defined in an application.

The column “Reset State” indicates whether the PIO line resets in I/O mode or in peripheral
mode. If equal to “I/O”, the PIO line resets in input with the pull-up enabled so that the device is
maintained in a static state as soon as the NRST pin is asserted. As a result, the bit correspond-
ing to the PIO line in the register PIO_PSR (Peripheral Status Register) resets low.

If a signal name is in the “Reset State” column, the PIO line is assigned to this function and the
corresponding bit in PIO_PSR resets high. This is the case for pins controlling memories, either
address lines or chip selects, and that require the pin to be driven as soon as NRST raises. Note
that the pull-up resistor is also enabled in this case.

See Table 10-2 on page 23, Table 10-3 on page 24, Table 10-4 on page 25 and Table 10-5 on
page 26.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

10.3.1 PIO Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A

PIO Controller A Application Usage
Reset
1/0 Line Peripheral A Peripheral B State Function Comments
PAO MISO PCK3 I/0
PA1 MOSI PCKO I/0
PA2 SPCK IRQ4 I/0
PA3 NPCSO0 IRQ5 I/0
PA4 NPCS1 PCKA1 I/O
PA5 NPCS2 TXD3 I/0
PA6 NPCS3 RXD3 I/0
PA7 ETXCK/EREFCK PCK2 I/0
PA8 ETXEN MCCDB 1/0
PA9 ETXO0 MCDBO I/0
PA10 ETX1 MCDB1 I/O
PA11 ECRS/ECRSDV MCDB2 I/0
PA12 ERXO0 MCDB3 I/0
PA13 ERX1 TCLKO I/0
PA14 ERXER TCLK1 I/0
PA15 EMDC TCLK2 I/0
PA16 EMDIO IRQ6 I/0
PA17 TXDO TIOAO I/0
PA18 RXDO TIOBO I/0
PA19 SCKO TIOA1 I/0
PA20 CTSO TIOB1 I/0
PA21 RTSO TIOA2 I/0
PA22 RXD2 TIOB2 I/0
PA23 TXD2 IRQ3 I/0
PA24 SCK2 PCK1 I/0
PA25 TWD IRQ2 I/0
PA26 TWCK IRQ1 I/0
PA27 MCCK TCLK3 1/0
PA28 MCCDA TCLK4 I/0
PA29 MCDAO TCLK5 I/0
PA30 DRXD CTSs2 I/0
PA31 DTXD RTS2 I/0

ATMEL 2

1768I-ATARM-09-Jul-09

ATMEL

10.3.2 PIO Controller B Multiplexing

Table 10-3. Multiplexing on P1O Controller B

PIO Controller B Application Usage
Reset
1/0 Line Peripheral A Peripheral B State Function Comments
PBO TFO RTS3 I/0
PB1 TKO CTS3 I/0
PB2 TDO SCK3 I/0
PB3 RDO MCDA1 I/0
PB4 RKO MCDA2 /0
PB5 RFO MCDAS3 /0
PB6 TF1 TIOA3 /0
PB7 TK1 TIOB3 I/0
PB8 TDA TIOA4 I/0
PB9 RD1 TIOB4 /0
PB10 RK1 TIOA5 /0
PB11 RF1 TIOB5 /0
PB12 TF2 ETX2 /0
PB13 TK2 ETX3 I/0
PB14 TD2 ETXER /0
PB15 RD2 ERX2 /0
PB16 RK2 ERX3 /0
PB17 RF2 ERXDV 110
PB18 RI1 ECOL /0
PB19 DTR1 ERXCK I/0
PB20 TXD1 LY
PB21 RXD1 1’0
PB22 SCK1 /0
PB23 DCD1 /0
PB24 CTSt /0
PB25 DSR1 EF100 1/0
PB26 RTS1 I/0
PB27 PCKO I/0
PB28 FIQ /0
PB29 IRQO /0
24 ATOTRMO20()

1768I-ATARM-09-Jul-09

10.3.3 PIO Controller C Multiplexing
The PIO Controller C has no multiplexing and only peripheral A lines are used. Selecting Peripheral B on the PIO Controller
C has no effect.

Table 10-4. Multiplexing on P1O Controller C

PIO Controller C Application Usage
Reset
1/0 Line Peripheral A Peripheral B State Function Comments
PCO BFCK /0
PC1 BFRDY/SMOE I/0
PC2 BFAVD /0
PC3 BFBAA/SMWE /0
PC4 BFOE I/0
PC5 BFWE /0
PC6 NWAIT /0
PC7 A23 A23
PC8 A24 A24
PC9 A25/CFRNW A25
PC10 NCS4/CFCS NCS4
PC11 NCS5/CFCE1 NCS5
PC12 NCS6/CFCE2 NCS6
PC13 NCS7 NCS7
PC14 1/0
PC15 I/0
PC16 D16 I/0
PC17 D17 I/0
PC18 D18 1/0
PC19 D19 I/0
PC20 D20 1/0
PC21 D21 1/0
PC22 D22 I/0
PC23 D23 I/0
PC24 D24 1/0
PC25 D25 I/0
PC26 D26 1/0
PC27 D27 1/0
PC28 D28 1/0
PC29 D29 I/0
PC30 D30 I/0
PC31 D31 /0

ATMEL 2

1768I-ATARM-09-Jul-09

ATMEL

10.3.4 PIO Controller D Multiplexing
The PIO Controller D multiplexes pure output signals on peripheral A connections, in particular from the EMAC MIl inter-
face and the ETM Port on the peripheral B connections.

The PIO Controller D is available only in the 256-ball BGA package option of the AT91RM9200.

Table 10-5. Multiplexing on P1O Controller D

PIO Controller D Application Usage
Reset
1/0 Line Peripheral A Peripheral B State Function Comments
PDO ETX0 /0
PD1 ETX1 I/0
PD2 ETX2 /0
PD3 ETX3 /0
PD4 ETXEN /0
PD5 ETXER /0
PD6 DTXD I/0
PD7 PCKO TSYNC /0
PD8 PCK1 TCLK /0
PD9 PCK2 TPSO I/O
PD10 PCK3 TPS1 1/0
PD11 TPS2 /0
PD12 TPKO 1/0
PD13 TPKA1 1/0
PD14 TPK2 1/0
PD15 TDO TPK3 1/0
PD16 TDA1 TPK4 1/0
PD17 TD2 TPK5 /0
PD18 NPCS1 TPK6 /0
PD19 NPCS2 TPK7 /0
PD20 NPCS3 TPK8 /0
PD21 RTSO TPK9 I/0
PD22 RTSH TPK10 110
PD23 RTS2 TPK11 /0
PD24 RTS3 TPK12 /0
PD25 DTR1 TPK13 /0
PD26 TPK14 /0
PD27 TPK15 /0
26 AT91RM9200 me———

1768I-ATARM-09-Jul-09

10.3.5 System Interrupt
The System Interrupt is the wired-OR of the interrupt signals coming from:
¢ the Memory Controller
¢ the Debug Unit
e the System Timer
* the Real-Time Clock
* the Power Management Controller

The clock of these peripherals cannot be controlled and the Peripheral ID 1 can only be used
within the Advanced Interrupt Controller.

10.3.6 External Interrupts
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQO to
IRQ6, use a dedicated Peripheral ID. However, there is no clock control associated with these
peripheral IDs.

10.4 External Bus Interface

* Integrates three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— Burst Flash Controller

 Additional logic for NAND Flash/SmartMedia and CompactFlash support

¢ Optimized External Bus:
— 16- or 32-bit Data Bus
— Up to 26-bit Address Bus, up to 64-Mbytes addressable
— Up to 8 Chip Selects, each reserved to one of the eight Memory Areas
— Optimized pin multiplexing to reduce latencies on External Memories

* Configurable Chip Select Assignment:
— Burst Flash Controller or Static Memory Controller on NCSO
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia Support
— Static Memory Controller on NCS4 - NCS6, Optional CompactFlash Support
— Static Memory Controller on NCS7

10.5 Static Memory Controller
¢ External memory mapping, 512-Mbyte address space
* Up to 8 Chip Select Lines
* 8- or 16-bit Data Bus
* Remap of Boot Memory
¢ Multiple Access Modes supported
— Byte Write or Byte Select Lines
— Two different Read Protocols for each Memory Bank
* Multiple device adaptability

ATMEL 2

1768I-ATARM-09-Jul-09

ATMEL

— Compliant with LCD Module

— Programmable Setup Time Read/Write

— Programmable Hold Time Read/Write
* Multiple Wait State Management

— Programmable Wait State Generation

— External Wait Request

— Programmable Data Float Time

10.6 SDRAM Controller
* Numerous configurations supported
- 2K, 4K, 8K Row Address Memory Parts
— SDRAM with two or four Internal Banks
— SDRAM with 16- or 32-bit Data Path
¢ Programming facilities
— Word, half-word, byte access
— Automatic page break when Memory Boundary has been reached
— Multibank Ping-pong Access
— Timing parameters specified by software
— Automatic refresh operation, refresh rate is programmable
* Energy-saving capabilities
— Self-refresh and Low-power Modes supported
¢ Error detection
— Refresh Error Interrupt
e SDRAM Power-up Initialization by software
* Latency is set to two clocks (CAS Latency of 1, 3 Not Supported)
* Auto Precharge Command not used

10.7 Burst Flash Controller

e Multiple Access Modes supported
— Asynchronous or Burst Mode Byte, Half-word or Word Read Accesses
— Asynchronous Mode Half-word Write Accesses

* Adaptability to different device speed grades
— Programmable Burst Flash Clock Rate
— Programmable Data Access Time
— Programmable Latency after Output Enable

» Adaptability to different device access protocols and bus interfaces

— Two Burst Read Protocols: Clock Control Address Advance or Signal Controlled
Address Advance

— Multiplexed or separate address and data buses
— Continuous Burst and Page Mode Accesses supported

28 A T91 RIVI'O:2 0 () 50000000

10.8 Peripheral DMA Controller (PDC)
¢ Generates transfers to/from peripherals such as DBGU, USART, SSC, SPI and MCI
* Twenty channels
* One Master Clock cycle needed for a transfer from memory to peripheral
¢ Two Master Clock cycles needed for a transfer from peripheral to memory

10.9 System Timer
* One Period Interval Timer, 16-bit programmable counter
* One Watchdog Timer, 16-bit programmable counter
* One Real-time Timer, 20-bit free-running counter
* Interrupt Generation on event

10.10 Real-time Clock
* Low power consumption
* Full asynchronous design
¢ Two hundred year calendar
* Programmable Periodic Interrupt
* Alarm and update parallel load
¢ Control of alarm and update Time/Calendar Data In

10.11 USB Host Port
¢ Compliance with Open HCI Rev 1.0 specification
e Compliance with USB V2.0 Full-speed and Low-speed Specification
e Supports both Low-speed 1.5 Mbps and Full-speed 12 Mbps USB devices
* Root hub integrated with two downstream USB ports
* Two embedded USB transceivers
* Supports power management
* Operates as a master on the Memory Controller

10.12 USB Device Port
* USB V2.0 full-speed compliant, 12 Mbits per second
¢ Embedded USB V2.0 full-speed transceiver
¢ Embedded dual-port RAM for endpoints
e Suspend/Resume logic
* Ping-pong mode (two memory banks) for isochronous and bulk endpoints
¢ Six general-purpose endpoints
— Endpoint 0, Endpoint 3: 8 bytes, no ping-pong mode
— Endpoint 1, Endpoint 2: 64 bytes, ping-pong mode
— Endpoint 4, Endpoint 5: 256 bytes, ping-pong mode

10.13 Ethernet MAC
» Compatibility with IEEE Standard 802.3

ATMEL 2

1768I-ATARM-09-Jul-09

ATMEL

* 10 and 100 Mbits per second data throughput capability

¢ Full- and half-duplex operation

¢ MIl or RMII interface to the physical layer

* Register interface to address, status and control registers

* DMA interface, operating as a master on the Memory Controller
* Interrupt generation to signal receive and transmit completion

* 28-byte transmit and 28-byte receive FIFOs

* Automatic pad and CRC generation on transmitted frames

* Address checking logic to recognize four 48-bit addresses

¢ Supports promiscuous mode where all valid frames are copied to memory
* Supports physical layer management through MDIO interface

10.14 Serial Peripheral Interface
¢ Supports communication with serial external devices

— Four chip selects with external decoder support allow communication with up to 15
peripherals

— Serial memories, such as DataFlash and 3-wire EEPROMSs

— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

— External co-processors

¢ Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select

— Programmable transfer delays between consecutive transfers and between clock
and data per chip select

— Programmable delay between consecutive transfers
— Selectable mode fault detection
¢ Connection to PDC channel optimizes data transfers
— One channel for the receiver, one channel for the transmitter
— Next buffer support

10.15 Two-wire Interface
e Compatibility with standard two-wire serial memory
* One, two or three bytes for slave address
¢ Sequential Read/Write operations

10.16 USART
* Programmable Baud Rate Generator
* 5- to 9-bit full-duplex synchronous or asynchronous serial communications
— 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection
— Framing error detection, overrun error detection

30 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

— MSB- or LSB-first
— Optional break generation and detection
— By 8 or by-16 over-sampling receiver frequency
— Optional hardware handshaking RTS-CTS
— Optional modem signal management DTR-DSR-DCD-RI
— Receiver time-out and transmitter timeguard
— Optional Multi-drop Mode with address generation and detection
* RS485 with driver control signal
¢ 1SO7816, T =0 or T = 1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
¢ |[rDA modulation and demodulation
— Communication at up to 115.2 Kbps
* Test Modes
— Remote Loopback, Local Loopback, Automatic Echo
* Connection of two Peripheral DMA Controller (PDC) channels
— Offers buffer transfer without processor intervention
The USART describes features allowing management of the Modem Signals DTR, DSR, DCD
and RI. For details, see “Modem Mode” on page 434.

In the AT91RM9200, only the USART1 implements these signals, named DTR1, DSR1, DCD1
and RI1.

The USARTO0, USART2 and USART3 do not implement all the modem signals. Only RTS and
CTS (RTSO0 and CTSO0, RTS2 and CTS2, RTS3 and CTS3, respectively) are implemented in
these USARTSs for other features.

Thus, programming the USARTO, USART2 or the USART3 in Modem Mode may lead to unpre-
dictable results. In these USARTSs, the commands relating to the Modem Mode have no effect
and the status bits relating the status of the modem signals are never activated.

10.17 Serial Synchronous Controller
¢ Provides serial synchronous communication links used in audio and telecom applications
¢ Contains an independent receiver and transmitter and a common clock divider
¢ Interfaced with two PDC channels to reduce processor overhead
» Offers a configurable frame sync and data length

¢ Receiver and transmitter can be programmed to start automatically or on detection of
different event on the frame sync signal

* Receiver and transmitter include a data signal, a clock signal and a frame synchronization
signal

10.18 Timer Counter
* Three 16-bit Timer Counter Channels
* Wide range of functions including:
— Frequency Measurement

ATMEL s

— Event Counting

1768I-ATARM-09-Jul-09

ATMEL

— Interval Measurement
— Pulse Generation

— Delay Timing

— Pulse Width Modulation
— Up/down Capabilities

* Each channel is user-configurable and contains:

— Three external clock inputs
— Five internal clock inputs

— Two multi-purpose input/output signals

¢ Internal interrupt signal

* Two global registers that act on all three TC Channels

¢ The Timer Counter 0 to 5 are described with five generic clock inputs, TIMER_CLOCKT to
TIMER_CLOCKS. In the AT91RM9200, these clock inputs are connected to the Master Clock
(MCK), to the Slow Clock (SLCK) and to divisions of the Master Clock. For details, see “Clock

Control” on page 488.

Table 10-6 gives the correspondence between the Timer Counter clock inputs and clocks in
the AT91RM9200. Each Timer Counter 0 to 5 displays the same configuration.

Table 10-6. Timer Counter Clocks Assignment

TC Clock Input Clock
TIMER_CLOCK1 MCK/2
TIMER_CLOCK?2 MCK/8
TIMER_CLOCKS3 MCK/32
TIMER_CLOCKA4 MCK/128
TIMER_CLOCKS5 SLCK

10.19 MultiMedia Card Interface

e Compatibility with MultiMedia Card Specification Version 2.2
» Compatibility with SD Memory Card Specification Version 1.0
¢ Cards clock rate up to Master Clock divided by 2

* Embedded power management to slow down clock rate when not used

¢ Supports two slots

— One slot for one MultiMedia Card bus (up to 30 cards) or one SD Memory Card

e Support for stream, block and multi-block data read and write
¢ Connection to a Peripheral DMA Controller (PDC) channel
— Minimizes processor intervention for large buffer transfers

32 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

11. ARM920T Processor Overview

11.1 Overview

The ARM920T cached processor is a member of the ARM9™ Thumb family of high-performance
32-bit system-on-a-chip processors. It provides a complete high performance CPU subsystem
including:

¢ ARM9TDMI RISC integer CPU

* 16-Kbyte instruction and 16-Kbyte data caches

e Instruction and data memory management units (MMUs)

e Write buffer

* AMBA™ (Advanced Microprocessor Bus Architecture) bus interface

¢ Embedded Trace Macrocell (ETM) interface

The ARM9TDMI core within the ARM920T executes both the 32-bit ARM and 16-bit Thumb
instruction sets. The ARM9TDMI processor is a Harvard architecture device, implementing a
five-stage pipeline consisting of Fetch, Decode, Execute, Memory and Write stages.

The ARM920T processor incorporates two coprocessors:

* CP14 - Controls software access to the debug communication channel
* CP15 - System Control Processor, providing 16 additional registers that are used to configure
and control the caches, the MMU, protection system, clocking mode and other system
options
The main features of the ARM920T processor are:
* ARMOTDMI-based, ARM Architecture v4T
* Two Instruction Sets
— ARM High-performance 32-bit Instruction Set
— Thumb High Code Density 16-bit Instruction Set
* 5-Stage Pipeline Architecture
— Instruction Fetch (F)
— Instruction Decode (D)
— Execute (E)
— Data Memory Access (M)
— Register Write (W)
¢ 16-Kbyte Data Cache, 16-Kbyte Instruction Cache
— Virtually-addressed 64-way Associative Cache
— 8 Words per Line
— Write-though and Write-back Operation
— Pseudo-random or Round-robin Replacement
— Low-power CAM RAM Implementation
e Write Buffer
— 16-word Data Buffer
— 4-address Address Buffer
— Software Control Drain

ATMEL s

1768I-ATARM-09-Jul-09

ATMEL

» Standard ARMv4 Memory Management Unit (MMU)
— Access Permission for Sections

— Access Permission for Large Pages and Small Pages Can be Specified Separately
for Each Quarter of the Pages

— 16 Embedded Domains
— 64-entry Instruction TLB and 64-entry Data TLB
¢ 8-, 16-, 32-bit Data Bus for Instructions and Data

34 AT91RM9200 messs—

11.2 Block Diagram

ARM920T Internal Functional Block Diagram

Figure 11-1.
ARMO920T
Instruction Instruction
Cache MMU Instruction
Physical
A A Address
Bus
‘ Instruction)
Modified
Virtual
R13 AdgLeSSS
Instruction < A Instruction A >
Virtual Bus
Address
Bus v
ICE
Interface Bus
<—»|ICE| ARMOTDMI cPis Interface |<=t=3p MmOy
Data
Virtual Data
Add
BLeSSS (v Bus V) Write _)
A Buffer
Data
R13 Modified
Virtual
l Address PPE;/ e;tiial
Bus
< o Address
Bus
Data Data Write Back J Write Back
Cache MMU P PATAG RAM Physical
Address
Data Index Bus T Bus

1768I-ATARM-09-Jul-09

ATMEL

35

ATMEL

11.3 ARM9TDMI Processor

11.3.1

11.3.2

11.3.3

1134

36

Data Types

Instruction Type

Instructions are either 32 bits (in ARM state) or 16 bits (in Thumb state).

ARM9TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must be
aligned to four-byte boundaries and half-words to two-byte boundaries.

Unaligned data access behavior depends on which instruction is used in a particular location.

ARMOTDMI Operating Modes

The ARM9TDMI, based on ARM architecture v4T, supports seven processor modes:

* User: Standard ARM program execution state

* FIQ: Designed to support high-speed data transfer or channel processes
¢ |IRQ: Used for general-purpose interrupt handling

* Supervisor: Protected mode for the operating system

¢ Abort mode: Implements virtual memory and/or memory protection

e System: A privileged user mode for the operating system

* Undefined: Supports software emulation of hardware coprocessors

Mode changes may be made under software control, or may be brought about by external inter-
rupts or exception processing. Most application programs will execute in User Mode. The non-
user modes, known as privileged modes, are entered in order to service interrupts or exceptions
or to access protected resources.

ARM9TDMI Registers

The ARM9TDMI processor core consists of a 32-bit datapath and associated control logic. That
datapath contains 31 general-purpose registers, coupled to a full shifter, Arithmetic Logic Unit
and multiplier.

At any one time, 16 registers are visible to the user. The remainder are synonyms used to speed
up exception processing.

Register 15 is the Program Counter (PC) and can be used in all instructions to reference data
relative to the current instruction.

R14 holds the return address after a subroutine call.

R13 is used (by software convention) as a stack pointer.

Table 11-1. ARMO9TDMI Modes and Register Layout

User and Fast
System Supervisor Undefined Interrupt Interrupt
Mode Mode Abort Mode Mode Mode Mode
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4

A T91 RIVI'O:2 0 () 50000000

Table 11-1. ARM9TDMI Modes and Register Layout (Continued)

User and Fast
System Supervisor Undefined Interrupt Interrupt
Mode Mode Abort Mode Mode Mode Mode
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8_FIQ
R9 R9 R9 R9 R9 R9_FIQ
R10 R10 R10 R10 R10 R10_FIQ
R11 R11 R11 R11 R11 R11_FIQ
R12 R12 R12 R12 R12 R12_FIQ
R13 R13_SVC R13_ABORT | R13_UNDEF R13_IRQ R13_FIQ
R14 R14_SVC R14_ABORT | R14_UNDEF R14_IRQ R14_FIQ

PC PC PC PC PC PC
CPSR CPSR CPSR CPSR CPSR CPSR
spsR_svc | SPSRABO | SPSRUND | gpop rq | spsR_FIQ
RT EF
Mode-specific banked
registers

Registers RO to R7 are unbanked registers, thus each of them refers to the same 32-bit physical
register in all processor modes. They are general-purpose registers, with no special uses man-
aged by the architecture, and can be used wherever an instruction allows a general-purpose
register to be specified.

Registers R8 to R14 are banked registers. This means that each of them depends of the current
processor mode.

For further details, see the ARM Architecture Reference Manual, Rev. DDI0O100E.

11.3.4.1 Modes and Exception Handling

All exceptions have banked registers for R14 and R13.

After an exception, R14 holds the return address for exception processing. This address is used
both to return after the exception is processed and to address the instruction that caused the
exception.

R13 is banked across exception modes to provide each exception handler with a private stack
pointer.

The fast interrupt mode also banks registers 8 to 12 so that interrupt processing can begin with-
out the need to save these registers.

ATMEL s

1768I-ATARM-09-Jul-09

ATMEL

A seventh processing mode, System Mode, does not have any banked registers. It uses the
User Mode registers. System Mode runs tasks that require a privileged processor mode and
allows them to invoke all classes of exceptions.

11.34.2 Status Registers
All other processor states are held in status registers. The current operating processor status is
in the Current Program Status Register (CPSR). The CPSR holds:
* four ALU flags (Negative, Zero, Carry, and Overflow),
¢ two interrupt disable bits (one for each type of interrupt),
e one bit to indicate ARM or Thumb execution
* five bits to encode the current processor mode

All five exception modes also have a Saved Program Status Register (SPSR) which holds the
CPSR of the task immediately before the exception occurred.

11.3.4.3 Exception Types
The ARM9TDMI supports five types of exceptions and a privileged processing mode for each
type. The types of exceptions are:
» fast interrupt (FIQ)
e normal interrupt (IRQ)
* memory aborts (used to implement memory protection or virtual memory)
¢ attempted execution of an undefined instruction
e software interrupt (SWIs)
Exceptions are generated by internal and external sources.

More than one exception can occur at the same time.

When an exception occurs, the banked version of R14 and the SPSR for the exception mode
are used to save the state.

To return after handling the exception, the SPSR is moved to the CPSR and R14 is moved to the
PC. This can be done in two ways:

¢ use of a data-processing instruction with the S-bit set, and the PC as the destination

¢ use of the Load Multiple with Restore CPSR instruction (LDM)

11.35 ARM Instruction Set Overview
The ARM instruction set is divided into:
* Branch instructions
» Data processing instructions
» Status register transfer instructions
* Load and Store instructions
» Coprocessor instructions
* Exception-generating instructions
ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition
code field (bits[31:28]).

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0151C.

38 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Table 11-2 gives the ARM instruction mnemonic list.

Table 11-2. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation
MOV Move CDP Coprocessor Data Processing
ADD Add MVN Move Not
SuB Subtract ADC Add with Carry
RSB Reverse Subtract SBC Subtract with Carry
CMP Compare RSC Reverse Subtract with Carry
TST Test CMN Compare Negated
AND Logical AND TEQ Test Equivalence
EOR Logical Exclusive OR BIC Bit Clear
MUL Multiply ORR Logical (inclusive) OR
SMULL Sign Long Multiply MLA Multiply Accumulate
SMLAL Signed Long Multiply Accumulate UMULL Unsigned Long Multiply
MSR Move to Status Register UMLAL Unsigned Long Multiply Accumulate
B Branch MRS Move From Status Register
BX Branch and Exchange BL Branch and Link
LDR Load Word Swi Software Interrupt
LDRSH Load Signed Halfword STR Store Word
LDRSB Load Signed Byte STRH Store Half Word
LDRH Load Half Word STRB Store Byte
LDRB Load Byte STRBT Store Register Byte with Translation
LDRBT Load Register Byte with Translation STRT Store Register with Translation
LDRT Load Register with Translation STM Store Multiple
LDM Load Multiple SWPB Swap Byte
SWP Swap Word MRC Move From Coprocessor
MCR Move To Coprocessor STC Store From Coprocessor
LDC Load To Coprocessor

11.3.6 Thumb Instruction Set Overview
The Thumb instruction set is a re-encoded subset of the ARM instruction set.

The Thumb instruction set is divided into:

* Branch instructions

» Data processing instructions

* Load and Store instructions

¢ Load and Store multiple instructions
¢ Exception-generating instruction

In Thumb mode, eight general-purpose registers are available, RO to R7, that are the same
physical registers as RO to R7 when executing ARM instructions. Some Thumb instructions also
access the Program Counter (ARM Register 15), the Link Register (ARM Register 14) and the

ATMEL s

1768I-ATARM-09-Jul-09

ATMEL

Stack Pointer (ARM Register 13). Further instructions allow limited access to the ARM register 8
to 15.

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0O151C.

Table 11-3 gives the Thumb instruction mnemonic list.

Table 11-3. Thumb Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation
MOV Move MVN Move Not
ADD Add ADC Add with Carry
SuUB Subtract SBC Subtract with Carry
CMP Compare CMN Compare Negated
TST Test NEG Negate
AND Logical AND BIC Bit Clear
EOR Logical Exclusive OR ORR Logical (inclusive) OR
LSL Logical Shift Left LSR Logical Shift Right
ASR Arithmetic Shift Right ROR Rotate Right
MUL Multiply
B Branch BL Branch and Link
BX Branch and Exchange Swi Software Interrupt
LDR Load Word STR Store Word
LDRH Load Half Word STRH Store Half Word
LDRB Load Byte STRB Store Byte
LDRSH Load Signed Halfword LDRSB Load Signed Byte
LDMIA Load Multiple STMIA Store Multiple
PUSH Push Register to stack POP Pop Register from stack
40 /A T'91T IRIVIO2 0/ 150

1768I-ATARM-09-Jul-09

11.4 CP15 Coprocessor

Coprocessor 15, or System Control Coprocessor CP15, is used when special features are used
with the ARMOTDMI such as:

* On-chip Memory Management Unit (MMU)

¢ Instruction and/or Data Cache

¢ Write buffer

To control these features, CP15 provides 16 additional registers. See Table 11-4.

Table 11-4. CP15 Registers

Register Name Access

0 ID Register Read-only
1 Control Read/Write
2 Translation Table Base Read/Write
3 Domain Access Control Read/Write
4 Reserved None

5 Fault Status Read/Write
6 Fault Address Read/Write
7 Cache Operations Write-only
8 TLB™ Operations Write-only
9 cache lockdown Read/Write
10 TLB lockdown Read/Write
11 Reserved None

12 Reserved None

13 FCSE PID® Read/Write
14 Reserved None

15 Test configuration None

Notes: 1. TLB: Translation Lookaside Buffer
2. FCSE PID: Fast Context Switch Extension Process |dentifier

11.441 CP15 Register Access

CP15 registers can only be accessed in privileged mode by:

* MCR (Move to Coprocessor from ARM Register) instruction
* MRC (Move to ARM Register from Coprocessor) instruction

Other instructions (CDP, LDC, STC) cause an undefined instruction exception.

The MCR instruction is used to write an ARM register to CP15.

The MRC instruction is used to read the value of CP15 to an ARM register.

The assembler code for these instructions is:

MCR/MRC{cond} pl15, opcode_1, Rd, CRn, CRm, opcode_2.

1768I-ATARM-09-Jul-09

ATMEL

41

ATMEL

The MCR, MRC instructions bit pattern is shown below:

31 30 29 28 27 26 25 24
| Cond | 1 1 1 0

23 22 21 20 19 18 17 16
| opcode_1 L | CRn

15 14 13 12 11 10 9 8
| Rd | 1 1 | 1 1

7 6 5 4 3 2 1 0
| opcode_2 | 1 | CRBRm

¢ CRm[3:0]: Specified Coprocessor Action

Determines specific coprocessor action. lts value is dependent on the CP15 register used. For details, refer to CP15 spe-

cific register behavior.

e opcode_2[7:5]

Determines specific coprocessor operation code. By default, set to 0.

¢ Rd[15:12]: ARM Register

Defines the ARM register whose value is transferred to the coprocessor. If R15 is chosen, the result is unpredictable.

e CRn[19:16]: Coprocessor Register
Determines the destination coprocessor register.

e opcode_1[23:20]: Coprocessor Code
Defines the coprocessor specific code. Value is ¢15 for CP15.

¢ L: Instruction Bit
0 = MCR instruction

1 = MRC instruction

e Cond [31:28]: Condition

42 AT91RM9200 messs—

1768I-ATARM-09-Jul-09

11.5 Memory Management Unit (MMU)

11.5.1 Domain

11.5.2 MMU Faults

1768I-ATARM-09-Jul-09

The ARM920T processor implements an enhanced ARM architecture v4 MMU to provide trans-
lation and access permission checks for the instruction and data address ports of the
ARM9TDMI core. The MMU is controlled from a single set of two-level page tables stored in the
main memory, providing a single address and translation protection scheme. Independently,
instruction and data TLBs in the MMU can be locked and flushed.

Table 11-5. Mapping Details

Mapping Name Mapping Size Access Permission By Subpage Size
Section 1M byte Section -

Large Page 64K bytes 4 separated subpages 16K bytes
Small Page 4K bytes 4 separated subpages 1K byte

Tiny Page 1K byte Tiny Page -

A domain is a collection of sections and pages. The ARM920T supports 16 domains. Access to
the domains is controlled by the Domain Access Control register. For details, refer to “CP15
Register 3, Domain Access Control Register” on page 50.

The MMU generates alignment faults, translation faults, domain faults and permission faults.
Alignment fault checking is not affected by whether the MMU is enabled or not.

The access controls of the MMU detect the conditions that produce these faults. If the fault is a
result of memory access, the MMU aborts the access and signals the fault to the CPU core.The
MMU stores the status and address fault in the FSR and FAR registers (only for faults generated
by data access).

The MMU does not store fault information about faults generated by an instruction fetch.

The memory system can abort during line fetches, memory accesses and translation table
access.

ATMEL i

ATMEL

11.6 Caches, Write Buffers and Physical Address

The ARM920T includes an Instruction Cache (ICache), a Data Cache (DCache), a write buffer
and a Physical Address (PA) TAG RAM to reduce the effect on main memory bandwidth and
latency performance.

The ARM920T implements separate 16-Kbyte Instruction and 16-Kbyte Data Caches.

The caches and the write buffer are controlled by the CP15 Register 1 (Control), CP15 Register
7 (Cache Operations) and CP15 Register 9 (Cache Lockdown).

11.6.1 Instruction Cache (ICache)

The ARM920T includes a 16-Kbyte Instruction Cache (ICache). The ICache has 512 lines of 32
bytes, arranged as a 64-way set associative cache.

Instruction access is subject to MMU permission and translation checks.

If the ICache is enabled with the MMU disabled, all instructions fetched as threats are cachable.
No protection checks are made and the physical address is flat-mapped to the modified virtual
address.

When the ICache is disabled, the cache contents are ignored and all instruction fetches appear
on the AMBA bus.

On reset, the ICache entries are invalidated and the ICache is disabled. For best performance,
ICache should be enabled as soon as possible after reset.

The ICache is enabled by writing 1 to | bit of the CP15 Register 1 and disabled by writing 0 to
this bit. For more details, see “CP15 Register 1, Control” on page 48.

The ICache is organized as eight segments, each containing 64 lines with each line made up of
8 words.The position of the line within the segment is called the index and is numbered from 0 to
63.

A line in the cache is identified by the index and segment. The index is independent of the MVA
(Modified Virtual Address), and the segment is the bit[7:5] of the MVA.

11.6.2 Data Cache (DCache) and Write Buffer

11.6.2.1 DCache

Write-though Operation

The ARM920T includes a 16-Kbyte data cache (DCache). The DCache has 512 lines of 32
bytes, arranged as a 64-way set associative cache, and uses MVAs translated by CP15 Regis-
ter 13 from the ARM9DTMI core.

The DCache is organized as eight segments, each containing 64 lines with each line made up of
eight words.The position of the line within the segment is called the index and is a number from
0 to 63.

The Write Buffer can hold up to 16 words of data and four separate addresses.

DCache and Write Buffer operations are closely connected as their configuration is set in each
section by the page descriptor in the MMU translation table.

All data accesses are subject to MMU permission and translation checks. Data accesses
aborted by the MMU cannot cause linefill or data access via the AMBA ASB interface.

When a cache hit occurs for a data access, the cache line that contains the data is updated to
contains its value. The new data is also immediately written to the main memory.

a4 AT91RM9200 messs—

1768I-ATARM-09-Jul-09

Write-back Operation When a cache hit occurs for a data access, the cache line is marked as dirty, meaning that its
contents are not up-to-date with those in the main memory.

11.6.2.2 Write Buffer

The ARM920T incorporates a 16-entry write buffer to avoid stalling the processor when writes to
external memory are performed. When a store occurs, its data, address and other details are
written to the write buffer at high speed. The write buffer then completes the store at the main
memory speed (typically slower than the ARM speed). In parallel, the ARM9TDMI processor can
execute further instructions at full speed.

11.6.2.3 Physical Address Tag RAM (PA TAG RAM)

The ARM920T implements Physical Address Tag RAM (PA TAG RAM) to perform write-backs
from the data cache. The physical address of all the lines held in the data cache is stored in the
PA TAG memory, removing the need for address translation when evicting a line from the cache.

When a line is written into the data cache, the physical address TAG is written into the PA TAG
RAM. If this line has to be written back to the main memory, the PA TAG RAM is read and the
physical address is used by the AMBA ASB interface to perform the write-back.

For a 16-Kbyte DCache, the PA TAG RAM is organized by eight segments with:

* 64 rows per segments
* 26 bits per rows
* be

ATMEL X

1768I-ATARM-09-Jul-09

11.7 ARM920T User Interface

11.7.1 CP15 Register 0, ID Code and Cache Type

Access: Read-only

ATMEL

The CP Register 0 contains specific hardware information. The contents of the read accesses are determined by the
opcode_2 field value. Writing to Register 0 is unpredictable.

11.7.1.1 ID Code

The ID code register is accessed by reading the register 0 with the opcode_2 field set to 0.

The contents of the ID code is shown below:

31 30

29

28

27

26 25

24

imp

23 22

21

20

18 17

16

SRev

archi

15 14

13

12

10 9

PNumber

Layout Rev

¢ LayoutRev[3:0]: Revision

Contains the processor revision number

¢ PNumber[15:4]: Processor Part Number

0x920 value for ARM920T processor.

¢ archi[19:16]: Architecture

Details the implementor architecture code.

0x2 value means ARMv4T architecture.

¢ SRev[23:20]: Specification Revision Number

0x1 value; specification revision number used to distinguished two variants of the same primary part.

e imp[31:24]: Implementor Code

0x41 (= A); means ARM Ltd.

46 AT91RM9200 messs—

1768I-ATARM-09-Jul-09

11.7.1.2 Cache Type
The Cache Type register is accessed by reading the register 0 with the opcode_2 field set to 1.

The Cache Type register contains information about the size and architecture of the caches.

31 30 29 28 27 26 25 24

| 0 0 0 ctype S |
23 22 21 20 19 18 17 16

| DSize |
15 14 13 12 11 10 9 8

I I |
7 6 5 4 3 2 1 0

| ISize |

¢ |Size[11:0]: Instruction Cache Size
Indicates the size, line length and associativity of the instruction cache.

e DSize[23:12]: Data Cache Size
Indicates the size, line length and associativity of the data cache.

e S[24]: Cache
Indicates if the cache is unified or has separate instruction and data caches.

Set to 1, this field indicates separate Instruction and Data caches.

¢ ctype[28:25]: Cache Type
Defines the cache type.

For details on bits DSize and ISize, refer to the ARM920T Technical Reference Manual, Rev. DDI0O151C.

ATMEL i

1768I-ATARM-09-Jul-09

ATMEL

11.7.2 CP15 Register 1, Control
Access: Read/Write

The CP15 Register 1, or Control Register, contains the control bits of the ARM920T.

31 30 29 28 27 26 25 24

L a [o | : | : | : | - | : | : |
23 22 21 20 19 18 17 16

| : | - | : | : | : | - | : | : |
15 14 13 12 11 10 9 8

| : | re | v] | [o [o | wr | s |
7 6 5 4 3 2 1 0

[B | 1 | 1 | 1 | 1 | ¢ | A [wm |

e M[0]: MMU Enable
0 = MMU disabled.

1 = MMU enabled.

e A[1]: Alignment Fault Enable

0 = Fault checking disabled.

1 = Fault checking enabled.

¢ C[2]: DCache Enable

0 = DCache disabled.

1 = DCache enabled.

¢ B[7]: Endianness

0 = Little endian mode.

1 = Big endian mode.

e S[8]: System Protection

Modifies the MMU protection system.

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0O151C.
¢ R[9]: ROM Protection

Modifies the MMU protection system.

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0151C.
¢ |[12]: ICache Control

0 = ICache disabled.

1 = ICache enabled.

48 AT91RM9200 messs—

¢ V[13]: Base Location of Exception Register

0 = Low address means 0x00000000.
1 = High address means OxFFFF0000.

¢ RR[14]: Round Robin Replacement
0 = Random replacement.

1 = Round robin replacement.

¢ Clocking Mode[31:30] (iA and nF bits)

iA nF Clocking mode
0 0 Fast Bus

0 1 Synchronous

1 0 Reserved

1 1 Asynchronous

11.7.3
Access: Read/Write

The CP15 Register 2, or Translation Table Base (TTB) Register, defines the first-level translation table.

CP15 Register 2, TTB

31 30 29 28 27 26 25 24

| Pointer |
23 22 21 20 19 18 17 16

| Pointer |
15 14 13 12 11 10 9 8

| Pointer - - | - - - - |
7 6 5 4 3 2 1 0

¢ Pointer[31:14]

Points to the first-level translation table base. Read returns the currently active first-level translation table. Write sets the

pointer to the first-level table to the written value.

The non-defined bits should be zero when written and are unpredictable when read.

1768I-ATARM-09-Jul-09

ATMEL

49

ATMEL

11.7.4 CP15 Register 3, Domain Access Control Register
Access: Read/Write

The CP 15 Register 3, or Domain Access Control Register, defines the domain’s access permission.
MMU accesses are priory controlled through the use of 16 domains.

Each field of Register 3 is associated with one domain.

31 30 29 28 27 26 25 24

| D15 | D14 | D13 | D12 |
23 22 21 20 19 18 17 16

| D11 | D10 | D9 | D8 |
15 14 13 12 11 10 9 8

| D7 | D6 | D5 | D4 |
7 6 5 4 3 2 1 0

| D3 | D2 | D1 | DO |

e D15 to DO: Named Domain Access
The 2-bit field value allows domain access as described in the table below.

Value Access Description
0 0 No access Any access generates a domain fault
0 1 Client The Users of domain (execute programs, access data), the domain access

permission controlled the domain access.

1 0 Reserved Reserved

Controls the behavior of the domain, no checking of the domain access

1 1 Manager o
permission is done

11.75 CP15 Register 4, Reserved
Any access (Read or Write) to this register causes unpredictable behavior.

50 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

11.7.6 CP15 Register 5, Fault Status Register
Access: Read/Write

Reading the CP 15 Register 5, or Fault Status Register (FSR), returns the source of the last data fault, indicating the
domain and type of access being attempted when the data abort occurred.

In addition, the virtual address which caused the data abort is written into the Fault Address Register (CP15 Register 6).

Writing the CP 15 Register 5, or Fault Status Register (FSR), sets the FSR to the value of the data written. This is useful for
a debugger to restore the value of the FSR.

31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| Domain | Status |

e Status[3:0]: Fault Type
Indicates the fault type. The status field is encoded by the MMU when a data abort occurs. The interpretation of the Status
field is dependant on the domain field and the MVA associated with the data abort (stored in the FAR).

e Domain[7:4]: Domain
Indicates the domain (D15 - DO) being accessed when the fault occurred.

The non-defined bits should be zero when written and are unpredictable when read.

ATMEL 2

1768I-ATARM-09-Jul-09

ATMEL

11.7.7 CP15 Register 6, Fault Address Register
Access: Read/Write

The CP 15 Register 6, or Fault Address Register (FAR), contains the MVA (Modified Virtual Address) of the access being
attempted when the last fault occurred. The FAR is only updated for data faults, not for prefetch faults.

The ability to write to the FAR is provided to allow a debugger to restore a previous state.

31 30 29 28 27 26 25 24

| FAR |
23 22 21 20 19 18 17 16

| FAR |
15 14 13 12 11 10 9 8

| FAR |
7 6 5 4 3 2 1 0

| FAR |

¢ FARI[31:0]: Fault Address

On reading: returns the value of the FAR. The FAR holds the virtual address of the access which was attempted when fault
occurred.

On writing: sets the FAR to the value of the written data. This is useful for a debugger to restore the value of the FAR.
11.7.8 CP15 Register 7, Cache Operation Register
Access: Write-only

The CP15 Register 7, or Cache Operation Register, is used to manage the Instruction Cache (ICache) and the Data Cache
(DCache).

The function of each cache operation is selected by the opcode_2 and CRm fields in the MCR instruction used to write
CP15 Register 7.

Table 11-6. Cache Functions

Function Data CRm opcode_2
Wait for Interrupt SBZ c0 4
Invalidate ICache SBZ c5 0
Invalidate ICache single entry (using MVA) MVA format c5 1
Invalidate DCache SBZ c6 0
Invalidate DCache single entry (using MVA) MVA format c6 1
Invalidate ICache and DCache SBZ c7 0
Clean DCache singe entry (using MVA) MVA format c10 1
Clean DCache single entry (using index) Index format c10 2
Drain write buffer SBZ c10 4
Prefetch ICache line (using MVA) MVA format c13 1
Clean and Invalidate DCache entry (using MVA) MVA format cl4 1
Clean and Invalidate DCache entry (using index) Index format cl4 2
52 AT9T1RM9200 m——

1768I-ATARM-09-Jul-09

Function Details

» Wait for interrupt

Stops execution in low-power state until an interrupt occurs.

¢ Invalidate

The cache line (or lines) is marked as invalid, so no cache hits occur in that line until it is re-allocated to an address.

¢ Clean

Applies to write-back data caches. If the cache line contains stored data that has not yet been written out to the main mem-

ory, it is written to main memory immediately.

¢ Drain write buffer

Stops the execution until all data in the write buffer has been stored in the main memory.

¢ Prefetch

The memory cache line at the specified virtual address is loaded into the cache.

The operation carried out on a single cache line identifies the line using the data transferred in the MCR instruction.

The data is interpreted as using one of the two formats:

— MVA format
— index format

Below are the details of CP15 Register 7, or Cache Function Register, in MVA format.

31 30 29 28 26 25 24

| mva |
23 22 21 20 18 17 16

| mva |
15 14 13 12 10 9 8

| mva |
7 6 5 4 2 1 0

| mva S : :]

¢ mva[31:5]: Modified Virtual Address

The non-defined bits should be zero when written and are unpredictable when read.

1768I-ATARM-09-Jul-09

ATMEL

53

ATMEL

Below the details of CP15 Register 7, or Cache Function Register, in Index format:

31 30 29 28 27 26 25 24
| index | - |

23 22 21 20 19 18 17 16
I I - I I - I I - I I

15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I

7 6 5 4 3 2 1 0
I set I - I - I - I - I

¢ index[31:26]: Line
Determines the cache line.

e set[7:5]: Segment
Determines the cache segment.

The non-defined bits should be zero when written and are unpredictable when read.

Writing other opcode_2 values or CRm values is unpredictable.

Reading from CP15 Register 7 is unpredictable.

54 AT91RM9200 messs—

11.7.9 CP15 Register 8, TLB Operations Register
Access: Write-only

The CP15 Register 8, or Translation Lookaside Buffer (TLB) Operations Register, is used to manage instruction TLBs and
data TLBs.

The TLB operation is selected by opcode_2 and CRm fields in the MCR instruction used to write CP15 Register 8.

Table 11-7. TLB Operations

Function Data CRm opcode_2
Invalidate | TLB SBZ 5 0
Invalidate | TLB single entry (using MVA) MVA format 5 1
Invalidate D TLB SBZ 6 0
Invalidate D TLB single entry (using MVA) MVA format 6 1
Invalidate both Instruction and Data TLB SBZ 7

Below are details of the CP15 Register 8 for TLB operation on MVA format and one single entry.

31 30 29 28 27 26 25 24

| va |
23 22 21 20 19 18 17 16

| mva |
15 14 13 12 11 10 9 8

I mva I - : |
7 6 5 4 3 2 1 0

¢ mva[31:10]: Modified Virtual Address
The non-defined bits should be zero when written and are unpredictable when read.

Writing other opcode_2 values or CRm values is unpredictable.

Reading from CP15 Register 8 is unpredictable.

ATMEL s

1768I-ATARM-09-Jul-09

ATMEL

11.7.10 CP15 Register 9, Cache Lockdown Register
Access: Read/Write

The CP15 Register 9, or Cache Lockdown Register, is 0x0 on reset. The Cache Lockdown Register allows software to con-
trol which cache line in the ICache or DCache is loaded for a linefill. It prevents lines in the ICache or DCache from being
evicted during a linefill, locking them into the cache.

Reading from the CP15 Register 9 returns the value of the Cache Lockdown Register that is the base pointer for all cache
segments.

Only the bits[31:26] are returned; others are unpredictable.

Writing to the CP15 Register 9 updates the Cache Lockdown Register with both the base and the current victim pointers for
all cache segments.

Table 11-8. Cache Lockdown Functions

Function Data CRm opcode_2
Read DCache lockdown base Base 0 0
Write DCache victim and lockdown base Victim = Base 0 0
Read ICache lockdown base Base 0 1
Write ICache victim and lockdown base Victim = Base 0 1
31 30 29 28 27 26 25 24
| index | - | - |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

¢ index[31:26]: Victim Pointer
Current victim pointer that specifies the cache line to be used as victim for the next linefill.

The non-defined bits should be zero when written and are unpredictable when read.

56 A T91 RIVI'O:2 0 () 50000000

11.7.11 CP15 Register 10, TLB Lockdown Register
Access: Read/Write

The CP15 Register 10, or TLB Lockdown Register, is 0x0 on reset. There is a TLSB Lockdown Register for each of the
TLBs; the value of opcode_2 determines which TLB register to access:

* opcode_2 = 0x0 for D TLB register
e opcode_2 = 0x1 for | TLB register

Table 11-9. TLB Lockdown Functions

Function Data CRm Opcode_2
Read D TLB lockdown TLB lockdown 0 0
Write D TLB lockdown TLB lockdown 0 0
Read | TLB lockdown TLB lockdown 0 1
Write | TLB lockdown TLB lockdown 0 1
31 30 29 28 27 26 25 24
| Base | |
23 22 21 20 19 18 17 16
| Victim | - | - | - | - |
15 14 13 12 11 10 9 8
I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0
I : I - I : I : I : I - I : I P |

e Base[31:26]: Base

The TLB replacement strategy only uses the TLB entries numbered from base to 63. The Victim field provided is in that
range.

¢ Victim[25:20]: Victim Counter
Specifies the TLB entry (line) being overwritten.

¢ P[0]: Preserved
If 0, the TLB entry can be invalidated.

If 1, the TLB entry is protected. It cannot be invalidated during the Invalidate All instruction. Refer to “CP15 Register 8, TLB
Operations Register” on page 55.

The non-defined bits should be zero when written and are unpredictable when read.

11.7.12 CP15 Registers 11, 12, Reserved
Any access (Read or Write) to these registers causes unpredictable behavior.

ATMEL 5

1768I-ATARM-09-Jul-09

ATMEL

11.7.13 CP15 Register 13, FCSE PID Register
Access: Read/Write

The CP15 Register 13, or Fast Context Switch Extension (FCSE) Process Identifier (PID) Register, is set to 0x0 on reset.
Reading from CP15 Register 13 returns the FCSE PID value.

Writing to CP15 Register 13 sets the FCSE PID.

The FCSE PID sets the mapping between the ARM9TDMI and the MMU of the cache memories.

The addresses issued by the ARM9TDMI are in the range of 0 to 32 Mbytes and are translated via the FCSE PID.

31 30 29 28 27 26 25 24

| FCSEPID | - |
23 22 21 20 19 18 17 16

I I - I I I I - I I |
15 14 13 12 11 10 9 8

I I - I I I I - I I |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
« FCSEPID[31:25]: FCSE PID

The FCSE PID modifies the behavior of the of the ARM920T memory system. This modification allows multiple programs to
run on the ARM.

The 4-GB virtual address is divided into 128 process blocks of 32 Mbytes each. Each process block can contain a program
that has been compiled to use the address range 0x00000000 to Ox01FFFFFF. For each i = 0 to 127 process blocks, i runs
from address i*0x20000000 to address i*0x20000000 + 0x01FFFFFF.

For further details, see the ARM920T Technical Reference Manual, Rev. DDI0151C.

The non-defined bits should be zero when written and are unpredictable when read.

11.7.14 CP15 Register 14, Reserved
Any access (Read or Write) of these registers causes unpredictable behavior.

11.7.15 CP15 Register 15, Test Configuration Register
CP15 Register 15, or Test Configuration Register, is used for test purposed. Any access (write or read) to this register
causes unpredictable behavior.

58 A T91 RIVI'O:2 0 () 50000000

12. Debug and Test Features (DBG Test)

12.1 Overview

1768I-ATARM-09-Jul-09

The AT91RM9200 features a number of complementary debug and test capabilities. A common
JTAG/ICE (In-Circuit Emulator) port is used for standard debugging functions such as download-
ing code and single-stepping through programs. An ETM (Embedded Trace Macrocell) provides
more sophisticated debug features such as address and data comparators, half-rate clock
mode, counters, sequencer and FIFO. The Debug Unit provides a two-pin UART that can be
used to upload an application into internal SRAM. It manages the interrupt handling of the inter-
nal COMMTX and COMMRX signals that trace the activity of the Debug Communication
Channel.

A set of dedicated debug and test input/output pins give direct access to these capabilities from
a PC-based test environment.

Features of Debug and Test Features are:

* Integrated Embedded In-Circuit-Emulator
* Debug Unit
— Two-pin UART
— Debug Communication Channel
— Chip ID Register
* Embedded Trace Macrocell: ETM9 Rev2a
— Medium Level Implementation
— Half-rate Clock Mode
— Four Pairs of Address Comparators
— Two Data Comparators
— Eight Memory Map Decoder Inputs
— Two Counters
— One Sequencer
— One 18-byte FIFO
* IEEE1149.1 JTAG Boundary Scan on all Digital Pins

ATMEL s

ATMEL

12.2 Block Diagram

Figure 12-1. AT91RM9200 Debug and Test Block Diagram

TMS

TCK

TDI

NTRST

ICE/JTAG
Boundary TAP

Port
]

JTAGSEL

I | | |

TDO

TPKO-TPK15

TPSO-TPS2

ARMOTDMI ICE > ETM

TSYNC

TCLK

I o

ARM920T

DTXD

PDC DBGU

DRXD

e

Reset |:| TSTO-TSTH
and

Test |:| NRST

TAP: Test Access Port

60 A T91 RIVI'O:2 0 () 50000000

12.3 Application Examples

12.3.1 Debug Environment

Figure 12-2 on page 61 shows a complete debug environment example. The ICE/JTAG inter-
face is used for standard debugging functions such as downloading code and single-stepping
through the program. The Trace Port interface is used for tracing information. A software debug-
ger running on a personal computer provides the user interface for configuring a Trace Port
interface utilizing the ICE/JTAG interface.

Figure 12-2. AT91RM9200-based Application Debug and Trace Environment Example

/ Host Debugger
/ \

ICENJTAG Trace Port
Interface Interface

ICE/JTAG Trace
Connector| |Connector

| 1
AT91RM9200

RS232

Terminal
Connector

AT91RM9200-based Application Board

12.4 Test Environment

1768I-ATARM-09-Jul-09

Figure 12-3 below shows a test environment example. Test vectors are sent and interpreted by
the tester. In this example, the “board under test” is designed using many JTAG compliant
devices. These devices can be connected together to form a single scan chain.

ATMEL o

ATMEL

Test Adaptor

JTAG
Interface

Tester

ICE/TAG)
Connector |—{Chip n| ___|Chip 2

|
AT91RM920 Chip 1

AT91RM9200-based Application Board Under Test

12.5 Debug and Test Pin Description

Figure 12-3. AT91RM9200-based Application IEEE1149.1 Test Environment Example

Table 12-1. Debug and Test Pin List
Pin Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input Low
TSTO Test Mode Select Input
TSTH Test Mode Select Input
ICE and JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
T™MS Test Mode Select Input
NTRST Test Reset Signal Input Low
JTAGSEL JTAG Selection Input
ETM (available only in BGA package)
TSYNC Trace Synchronization Signal Output
TCLK Trace Clock Output
TPSO- TPS2 Trace ARM Pipeline Status Output
TPKO - TPK15 Trace Packet Port Output
Debug Unit
DRXD Debug Receive Data Input DRXD
DTXD Debug Transmit Data Output DTXD
62 /A T'91T IRIVIO2 0/ 150

1768I-ATARM-09-Jul-09

12.6 Functional Description

12.6.1

12.6.2

12.6.3

12.6.4

Test Mode Pins

Two dedicated pins (TST1, TSTO) are used to define the test mode of the device. The user must
make sure that these pins are both tied at low level to ensure normal operating conditions. Other
values associated to these pins are manufacturing test reserved.

Embedded In-Circuit Emulator

Debug Unit

The ARM9TDMI Embedded In-Circuit Emulator is supported via the ICE/JTAG port. It is con-
nected to a host computer via an ICE interface. Debug support is implemented using an
ARM9TDMI core embedded within the ARM920T. The internal state of the ARM920T is exam-
ined through an ICE/JTAG port which allows instructions to be serially inserted into the pipeline
of the core without using the external data bus. Therefore, when in debug state, a store-multiple
(STM) can be inserted into the instruction pipeline. This exports the contents of the ARM9TDMI
registers. This data can be serially shifted out without affecting the rest of the system.

There are six scan chains inside the ARM920T processor which support testing, debugging, and
programming of the Embedded ICE. The scan chains are controlled by the ICE/JTAG port.

Embedded ICE mode is selected when JTAGSEL is low. It is not possible to switch directly
between ICE and JTAG operations. A chip reset must be performed (NRST and NTRST) after
JTAGSEL is changed. The test reset input to the embedded ICE (NTRST) is provided separately
to facilitate debug of the boot program.

For further details on the Embedded In-Circuit-Emulator, see the ARM920T Technical Refer-
ence Manual, ARM Ltd, - DDI 0151C.

The Debug Unit provides a two-pin (DXRD and TXRD) UART that can be used for several
debug and trace purposes and offers an ideal means for in-situ programming solutions and
debug monitor communication. Moreover, the link with two Peripheral DMA Controller channels
provides packet handling of these tasks with processor time reduced to a minimum.

The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals
that come from the ICE and trace the activity of the Debug Communication Channel.

The Debug Unit can be used to upload an application into internal SRAM. It is activated by the
boot program when no valid application is detected.

A specific register, the Debug Unit Chip ID Register, informs about the product version and its
internal configuration.

The AT91RM9200 Debug Unit Chip ID value is: 0x09290781, on 32-bit width.
For further details on the Debug Unit, see “Debug Unit (DBGU)” on page 321.

For further details on the Debug Unit and the Boot program, see “Boot Program” on page 83.

Embedded Trace Macrocell

1768I-ATARM-09-Jul-09

The AT91RM9200 features an Embedded Trace Macrocell (ETM), which is closely connected to
the ARMOTDMI Processor. The Embedded Trace is a standard mid-level implementation and
contains the following resources:

e Four pairs of address comparators

ATMEL e

¢ Two data comparators

12.6.4.1

64

Trace Port

¢ Eight memory map decoder inputs
* Two counters

* One sequencer

¢ Four external inputs

¢ One external output

¢ One 18-byte FIFO

The Embedded Trace Macrocell of the AT91RM9200 works in half-rate clock mode and thus
integrates a clock divider. This assures that the maximum frequency of all the trace port signals
do not exceed one half of the ARM920T clock speed.

The Embedded Trace Macrocell input and output resources are not used in the AT91RM9200.

The Embedded Trace is a real-time trace module with the capability of tracing the ARM9TDMI
instruction and data.

The Embedded Trace debug features are only accessible in the AT91RM9200 BGA package.

For further details on Embedded Trace Macrocell, see the ETM9 (Rev2a) Technical Reference
Manual, ARM Ltd. -DDI 0157E.

The Trace Port is made up of the following pins:

* TSYNC - the synchronization signal (Indicates the start of a branch sequence on the trace
packet port.)
¢ TCLK - the Trace Port clock, half-rate of the ARM920T processor clock.
* TPSO0 to TPS2 - indicate the processor state at each trace clock edge.
* TPKO to TPK15 - the Trace Packet data value.
The trace packet information (address, data) is associated with the processor state indicated by
TPS. Some processor states have no additional data associated with the Trace Packet Port (i.e.

failed condition code of an instruction). The packet is 8-bits wide, and up to two packets can be
output per cycle.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Figure 12-4. ETM9 Block

>TPS-TPS0
ARM920T |4 Trace FIFO -
Bus Tracker Control >TPK15-TPKO
>TSYNC

Trace Enable, View Data

TAP Trigger, Sequencer, Counters
Controller
Scan Chain 6
‘_ ETM9
ol T
=0 o]g
FIFl F'F

12.6.4.2 Implementation Details

This section gives an overview of the Embedded Trace resources. For further details, see the
Embedded Trace Macrocell Specification, ARM Ltd. -IHI 0014H.

Three-state Sequencer

The sequencer has three possible next states (one dedicated to itself and two others) and can
change on every clock cycle. The sate transition is controlled with internal events. If the user
needs multiple-stage trigger schemes, the trigger event is based on a sequencer state.

Address Comparator

In single mode, address comparators compare either the instruction address or the data address
against the user-programmed address.

In range mode, the address comparators are arranged in pairs to form a virtual address range
resource.

Details of the address comparator programming are:

* The first comparator is programmed with the range start address.
* The second comparator is programmed with the range end address.
* The resource matches if the address is within the following range:
— (address > = range start address) AND (address < range end address)

* Unpredictable behavior occurs if the two address comparators are not configured in the same
way.
Data Comparator

Each full address comparator is associated with a specific data comparator. A data comparator
is used to observe the data bus only when load and store operations occur.

A data comparator has both a value register and a mask register, therefore it is possible to com-
pare only certain bits of a preprogrammed value against the data bus.

ATMEL o

1768I-ATARM-09-Jul-09

ATMEL

Memory Decoder Inputs

The eight memory map decoder inputs are connected to custom address decoders. The
address decoders divide the memory into regions of on-chip SRAM, on-chip ROM, and peripher-
als. The address decoders also optimize the ETM9 trace trigger.

Table 12-2. ETM Memory Map Inputs Layout

Description Region Access type start_address end_address
SRAM Internal Data 0x00000000 O0x000FFFFF
SRAM Internal Fetch 0x00000000 0x000FFFFF
ROM Internal Data 0x00100000 0x001FFFFF
ROM Internal Fetch 0x00100000 0x001FFFFF
NCS0-NCS7 External Data 0x10000000 Ox8FFFFFFF
NCS0-NCS7 External Fetch 0x10000000 Ox8FFFFFFF
User Peripheral Internal Data 0xF0000000 OxFFFFEFFF
ﬁgzt;:g ol Internal Data OxFFFFF000 OXFFFFFFFF

FIFO

An 18-byte FIFO is used to store data tracing. The FIFO is used to separate the pipeline status
from the trace packet. So, the FIFO can be used to buffer trace packets.

A FIFO overflow is detected by the embedded trace macrocell when the FIFO is full or when the
FIFO has less bytes than the user-programmed number.

For further details, see the ETM9 (Rev2a) Technical Reference Manual, ARM Ltd. DDI 0157E.
Half-rate Clocking Mode

The ETM9 is implemented in half-rate mode that allows both rising and falling edge data tracing
of the trace clock.

The half-rate mode is implemented to maintain the signal clock integrity of high speed systems
(up to 100 Mhz).

Figure 12-5. Half-rate Clocking Mode

ARM920T Clock —|

Trace Clock

M\ [
TraceData) {|

[T\ [
L/ —

L

A\
/

Half-rate Clocking Mode

Care must be taken on the choice of the trace capture system as it needs to support half-rate
clock functionality.

A T91 RIVI'O:2 0 () 50000000

12.6.4.3 Application Board Restriction
The TCLK signal needs to be set with care, some timing parameters are required.

Refer to AT91RM9200 “JTAG/ICE Timings” on page 657 and “ETM Timings” on page 660.
The specified target system connector is the AMP Mictor connector.

The connector must be oriented on the application board as described below in Figure 12-6. The
view of the PCB is shown from above with the trace connector mounted near the edge of the
board. This allows the Trace Port Analyzer to minimize the physical intrusiveness of the inter-
connected target.

Figure 12-6. AMP Mictor Connector Orientation

AT91RM9200-based

Application Board
38 37

Pin 1Chamfer

12.6.5 IEEE 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST
and BYPASS functions are implemented. In ICE debug mode, the ARM processor responds
with a non-JTAG chip ID that identifies the processor to the ICE system. This is not IEEE 1149.1
JTAG-compliant.

It is not possible to switch directly between JTAG and ICE operations. A chip reset must be per-
formed (NRST and NTRST) after JTAGSEL is changed.

Two Boundary Scan Descriptor Language (BSDL) files are provided to set up testing. Each
BSDL file is dedicated to a specific packaging.

12.6.5.1 JTAG Boundary Scan Register
The Boundary Scan Register (BSR) contains 449 bits which correspond to active pins and asso-
ciated control signals.

Each AT91RM9200 input pin has a corresponding bit in the Boundary Scan Register for
observability.

Each AT91RM9200 output pin has a corresponding 2-bit register in the BSR. The OUTPUT bit
contains data which can be forced on the pad. The CTRL bit can put the pad into high
impedance.

ATMEL o

1768I-ATARM-09-Jul-09

ATMEL

Each AT91RM9200 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT
bit contains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CTRL bit selects the direction of the pad.

Table 12-3. JTAG Boundary Scan Register

Bit Associated BSR

Number Pin Name Pin Type Cells
449 A19 Output OUTPUT
448 A[19:16)/BAO/BA1 Output CTRL
447 A20 Output OUTPUT
446 A[22:20/NWE/NWRO Output CTRL
445 A21 Output OUTPUT
444 A22 Output OUTPUT
443 INPUT
442 PC7/A23 I/0 OUTPUT
441 CTRL
440 INPUT
439 PC8/A24 I/0 OUTPUT
438 CTRL
437 INPUT
436 PC9/A25/CFRNW /0 OUTPUT
435 CTRL
434 NCS0/BFCS Output OUTPUT
NWRINBBYBFCS/SDCE
432 NCS1/SDCS Output OUTPUT
431 NCS2 Output OUTPUT
430 NCS[2:3/NBS3 Output CTRL
429 NCS3 Output OUTPUT
428 NOE/NRD Output OUTPUT
427 INPUT
126 NWE/NWRO Output OUTPUT
425 INPUT
44 NUB/NWR1/NBS1 Output OUTPUT
423 NBS3 Output OUTPUT
422 SDCKE Output OUTPUT
421 SDCKE/RAS/CAS/WE/SDA10 Output CTRL
420 RAS Output OUTPUT
419 CAS Output OUTPUT
418 WE Output OUTPUT

68 /A T 91 RIVI'O2 0/ 15000000000 —

1768I-ATARM-09-Jul-09

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells

417 INPUT
DO I/0

416 OUTPUT

415 D[3:0] 1/0 CTRL

414 INPUT
D1 1/0

413 OUTPUT

412 INPUT
D2 I/0

411 OUTPUT

410 INPUT
D3 I/0

409 OUTPUT

408 INPUT
D4 /0

407 OUTPUT

406 D[7:4] 1/0 CTRL

405 INPUT
D5 I/0

404 OUTPUT

403 INPUT
D6 1/0

402 OUTPUT

401 INPUT
D7 I/0

400 OUTPUT

399 INPUT
D8 I/0

398 OUTPUT

397 D[11:8] /0 CTRL

396 INPUT
D9 /0

395 OUTPUT

394 INPUT
D10 I/0

393 OUTPUT

392 INPUT
D11 I/0

391 OUTPUT

390 INPUT
D12 /0

389 OUTPUT

388 D[15:12] I/0 CTRL

387 INPUT
D13 I/0

386 OUTPUT

385 INPUT
D14 I/0

384 OUTPUT

ATMEL L

1768I-ATARM-09-Jul-09

ATMEL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
383 INPUT
D15 10
382 OUTPUT
381 INPUT
380 PC16/D16 Te OUTPUT
379 CTRL
378 INPUT
377 PC17D17 110 OUTPUT
376 CTRL
375 INPUT
374 PC18/D18 Te OUTPUT
373 CTRL
372 INPUT
371 PC19/D19 Te OUTPUT
370 CTRL
369 INPUT
368 PC20/D20 Te OUTPUT
367 CTRL
366 INPUT
365 PC21/D21 1o OUTPUT
364 CTRL
363 INPUT
362 PC22/D22 Te OUTPUT
361 CTRL
360 INPUT
359 PC23/D23 Te OUTPUT
358 CTRL
357 INPUT
356 PC24/D24 Yo OUTPUT
355 CTRL
354 INPUT
353 PC25/D25 Te OUTPUT
352 CTRL
351 INPUT
350 PC26/D26 Te OUTPUT
349 CTRL
70 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
348 INPUT
347 PC27/D27 I/0 OUTPUT
346 CTRL
345 INPUT
344 PC28/D28 I/0 OUTPUT
343 CTRL
342 INPUT
341 PC29/D29 I/0 OUTPUT
340 CTRL
339 INPUT
338 PC30/D30 I/0 OUTPUT
337 CTRL
336 INPUT
335 PC31/D31 I/0 OUTPUT
334 CTRL
333 INPUT
332 PC10/NCS4/CFCS I/0 OUTPUT
331 CTRL
330 INPUT
329 PC11/NCS5/CFCE1 1/0 OUTPUT
328 CTRL
327 INPUT
326 PC12/NCS6/CFCE2 I/0 OUTPUT
325 CTRL
324 INPUT
323 PC13/NCS7 I/0 OUTPUT
322 CTRL
321 INPUT
320 PC14 I/0 OUTPUT
319 CTRL
318 INPUT
317 PC15 /0 OUTPUT
316 CTRL

ATMEL g

1768I-ATARM-09-Jul-09

ATMEL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
315 INPUT
314 PCO/BCFK Vo OUTPUT
313 CTRL
312 INPUT
311 PC1/BFRDY/SMOE Te OUTPUT
310 CTRL
309 INPUT
308 PC2/BFAVD Te OUTPUT
307 CTRL
306 INPUT
305 PC3/BFBAA/SMWE Te OUTPUT
304 CTRL
303 INPUT
302 PCA4/BFOE Vo OUTPUT
301 CTRL
300 INPUT
299 PC5/BFWE 1o OUTPUT
208 CTRL
297 INPUT
296 PCE/NWAIT Te OUTPUT
295 CTRL
294 INPUT
203 PAO/MISO/PCK3 Te OUTPUT
292 CTRL
291 INPUT
290 PA1/MOSI/PCKO Te OUTPUT
289 CTRL
288 INPUT
287 PA2/SPCK/IRQ4 Te) OUTPUT
286 CTRL
285 INPUT
284 PA3/NPCS0/IRQ5 10 OUTPUT
283 CTRL
72 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
282 INPUT
281 PA4/NPCS1/PCK1 /0 OUTPUT
280 CTRL
279 INPUT
278 PA5/NPCS2/TXD3 I/0 OUTPUT
277 CTRL
276 INPUT
275 PDO/ETX0 /0 OUTPUT
274 CTRL
273 INPUT
272 PD1/ETX1 I/0 OUTPUT
271 CTRL
270 INPUT
269 PD2/ETX2 /0 OUTPUT
268 CTRL
267 INPUT
266 PD3/ETX3 I/0 OUTPUT
265 CTRL
264 INPUT
263 PD4/ETXEN /0 OUTPUT
262 CTRL
261 INPUT
260 PD5/ETXER I/0 OUTPUT
259 CTRL
258 INPUT
257 PD6/DTXD /0 OUTPUT
256 CTRL
255 INPUT
254 PA6/NPCS3/RXD3 I/0 OUTPUT
253 CTRL
252 INPUT
251 PA7/ETXCK/EREFCK/PCK2 /0 OUTPUT
250 CTRL

ATMEL 7

1768I-ATARM-09-Jul-09

ATMEL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
249 INPUT
248 PA8/ETXEN/MCCDB /0 OUTPUT
247 CTRL
246 INPUT
245 PA9/ETX0/MCDBO /0 OUTPUT
244 CTRL
243 INPUT
242 PA10/ETX1/MCDB1 I/0 OUTPUT
241 CTRL
240 INPUT
239 PA11/ECRS/ECRSDV/MCDB2 1/0 OUTPUT
238 CTRL
237 INPUT
236 PA12/ERX0/MCDBS3 1/0 OUTPUT
235 CTRL
234 INPUT
233 PA13/ERX1/TCLKO 1/0 OUTPUT
232 CTRL
231 INPUT
230 PA14/ERXER/TCLK1 1/0 OUTPUT
229 CTRL
228 INPUT
227 PA15/EMDC/TCLK2 I/0 OUTPUT
226 CTRL
225 INPUT
224 PA16/EMDIO/IRQ6 1/0 OUTPUT
223 CTRL
222 INPUT
221 PA17/TXDO/TIOAOQ IO OUTPUT
220 CTRL
219 INPUT
218 PA18/RXDO0/TIOBO 1/0 OUTPUT
217 CTRL
74 /AT 1T RIVID:2:0/() 150000000

1768I-ATARM-09-Jul-09

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells

216 INPUT
215 PA19/SCKO/TIOA1 /0 OUTPUT
214 CTRL
213 INPUT
212 PA20/CTSO0/TIOB1 I/0 OUTPUT
211 CTRL
210 INPUT
209 PA21/RTSO/TIOA2 1/0 OUTPUT
208 CTRL
207 INPUT
206 PA22/RXD2/TIOB2 I/0 OUTPUT
205 CTRL
204 INPUT
203 PA23/TXD2/IRQ3 I/0 OUTPUT
202 CTRL
201 INPUT
200 PA24/SCK2/PCK1 I/0 OUTPUT
199 CTRL
198 INPUT
197 PA25/TWD/IRQ2 1/0 OUTPUT
196 CTRL
195 INPUT
194 PA26/TWCK/IRQ1 I/O OUTPUT
193 CTRL
192 INPUT
191 PA27/MCCK/TCLK3 /0 OUTPUT
190 CTRL
189 INPUT
188 PA28/MCCDA/TCLK4 I/0 OUTPUT
187 CTRL
186 INPUT
185 PA29/MCDAO/TCLK5 1/0 OUTPUT
184 CTRL

ATMEL 7

1768I-ATARM-09-Jul-09

ATMEL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
183 INPUT
182 PA30/DRXD/CTS2 1o OUTPUT
181 CTRL
180 INPUT
179 PA31/DTXD/RTS2 110 OUTPUT
178 CTRL
177 INPUT
176 PBO/TFO/RTS3 Te OUTPUT
175 CTRL
174 INPUT
173 PB1/TKO/CTS3 Te OUTPUT
172 CTRL
171 INPUT
170 PB2/TD0/SCK3 Te OUTPUT
169 CTRL
168 INPUT
167 PB3/RDO/MCDA1 Te OUTPUT
166 CTRL
165 INPUT
164 PB4/RKO/MCDA2 Te OUTPUT
163 CTRL
162 INPUT
161 PB5/RFO/MCDA3 /o OUTPUT
160 CTRL
159 INPUT
158 PB6/TF1/TIOA3 /0 OUTPUT
157 CTRL
156 INPUT
155 PB7/TK1/TIOB3 1o OUTPUT
154 CTRL
153 INPUT
152 PB8/TD1/TIOA4 Te OUTPUT
151 CTRL
76 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
150 INPUT
149 PB9/RD1/TIOB4 I/O OUTPUT
148 CTRL
147 INPUT
146 PB10/RK1/TIOA5 I/0 OUTPUT
145 CTRL
144 INPUT
143 PB11/RF1/TIOB5 /0 OUTPUT
142 CTRL
141 INPUT
140 PB12/TF2/ETX2 I/0 OUTPUT
139 CTRL
138 INPUT
137 PB13/TK2/ETX3 I/0 OUTPUT
136 CTRL
135 INPUT
134 PB14/TD2/ETXER I/0 OUTPUT
133 CTRL
132 INPUT
131 PB15/RD2/ERX2 1/0 OUTPUT
130 CTRL
129 INPUT
128 PB16/RK2/ERX3 I/0 OUTPUT
127 CTRL
126 INPUT
125 PD7/PCKO/TSYNC I/0 OUTPUT
124 CTRL
123 INPUT
122 PD8/PCK1/TCLK I/0 OUTPUT
121 CTRL
120 INPUT
119 PD9/PCK2/TPS0 /0 OUTPUT
118 CTRL

ATMEL L

1768I-ATARM-09-Jul-09

ATMEL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
117 INPUT
116 PD10/PCK3/TPS1 /o OUTPUT
115 CTRL
114 INPUT
113 PD11/TPS2 Te) OUTPUT
112 CTRL
111 INPUT
110 PD12/TPKO Vo OUTPUT
109 CTRL
108 INPUT
107 PB17/RF2/ERXDV Vo OUTPUT
106 CTRL
105 INPUT
104 PB18/RI1/ECOL Te OUTPUT
103 CTRL
102 INPUT
101 PB19/DTR1/ERXCK 110 OUTPUT
100 CTRL
99 INPUT
98 PB20/TXD1 1o OUTPUT
97 CTRL
96 INPUT
95 PB21/RXD1 Te OUTPUT
94 CTRL
93 INPUT
92 PB22/SCK1 10 OUTPUT
o1 CTRL
90 INPUT
89 PD13/TPK1 T OUTPUT
88 CTRL
87 INPUT
86 PD14/TPK2 Vo OUTPUT
85 CTRL
78 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
84 INPUT
83 PD15/TDO/TPK3 1/0 OUTPUT
82 CTRL
81 INPUT
80 PB23/DCD1 I/0 OUTPUT
79 CTRL
78 INPUT
77 PB24/CTSH1 /0 OUTPUT
76 CTRL
75 INPUT
74 PB25/DSR1/EF100 I/O OUTPUT
73 CTRL
72 INPUT
71 PB26/RTS1 /0 OUTPUT
70 CTRL
69 INPUT
68 PB27/PCKO I/0 OUTPUT
67 CTRL
66 INPUT
65 PD16/TD1/TPK4 1/0 OUTPUT
64 CTRL
63 INPUT
62 PD17/TD2/TPK5 I/0 OUTPUT
61 CTRL
60 INPUT
59 PD18/NPCS1/TPK6 /0 OUTPUT
58 CTRL
57 INPUT
56 PD19/NPCS2/TPK7 I/0 OUTPUT
55 CTRL
54 INPUT
53 PD20/NPCS3/TPK8 /0 OUTPUT
52 CTRL

ATMEL 7

1768I-ATARM-09-Jul-09

ATMEL

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
51 INPUT
50 PD21/RTS0/TPK9 I/0 OUTPUT
49 CTRL
48 INPUT
47 PD22/RTS1/TPK10 I/0 OUTPUT
46 CTRL
45 INPUT
44 PD23/RTS2/TPK11 I/0 OUTPUT
43 CTRL
42 INPUT
41 PD24/RTS3/TPK12 I/0 OUTPUT
40 CTRL
39 INPUT
38 PD25/DTR1/TPK13 I/0 OUTPUT
37 CTRL
36 INPUT
35 PD26/TPK14 I/0 OUTPUT
34 CTRL
33 INPUT
32 PD27/TPK15 I/0 OUTPUT
31 CTRL
30 INPUT
29 PB28/FIQ I/0 OUTPUT
28 CTRL
27 INPUT
26 PB29/IRQ0 I/O OUTPUT
25 CTRL
24 AO/NLB/NBSO Output OUPUT
23 A[3:0]/NL/EI:I/2\SNZR2/NBSO Output CTRL
22 A1/NWR2/NBS2 Output OUTPUT
21 A2 Output OUTPUT
20 A3 Output OUTPUT
19 A4 Output OUTPUT
18 A[7:4] Output CTRL
17 A5 Output OUTPUT
80 /A T'91T IRIVIO2 0/ 150

1768I-ATARM-09-Jul-09

Table 12-3. JTAG Boundary Scan Register (Continued)

Bit Associated BSR
Number Pin Name Pin Type Cells
16 A6 Output OUTPUT
15 A7 Output OUTPUT
14 A8 Output OUTPUT
13 A[11:8] Output CTRL
12 A9 Output OUTPUT
11 A10 Output OUTPUT
10 SDA10 Output OUTPUT
9 Al Output OUTPUT
8 A12 Output OUTPUT
7 A[15:12] Output CTRL
6 A13 Output OUTPUT
5 Al14 Output OUTPUT
4 A15 Output OUTPUT
3 A16/BA0 Output OUTPUT
2 A17/BA1 Output OUTPUT
1 A18 Output OUTPUT

ATMEL o

1768I-ATARM-09-Jul-09

ATMEL

12.6.6 AT91RM9200 ID Code Register
Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |

15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

e VERSION[31:28]: Product Version Number
Set to 0x0 = JTAGSEL is low.

Set to Ox1 = JTAGSEL is high.

e PART NUMBER[27:14]: Product Part Number
Set to 0x5b02.

¢ MANUFACTURER IDENTITY[11:1]
Set to 0x01f.

¢ Bit [0]: Required by IEEE Std. 1149.1
Setto 1.

The AT91RM9200 ID Code value is 0x15b0203f (JTAGSEL is High).
The AT91RM9200 ID Code value is 0x05b0203f (JTAGSEL is Low).

82 A T91 RIVI'O:2 0 () 50000000

13. Boot Program

13.1 Overview

1768I-ATARM-09-Jul-09

The Boot Program is capable of downloading an application in an AT91RM9200-based system.
It integrates a Bootloader and a boot Uploader to assure correct information download.

The Bootloader is activated first. It looks for a sequence of eight valid ARM exception vectors in
a DataFlash connected to the SPI, an EEPROM connected to the Two-wire Interface (TWI) or
an 8-bit memory device connected to the external bus interface (EBI). All these vectors must be
Bbranch or LDR load register instructions except for the sixth instruction. This vector is used to
store information, such as the size of the image to download and the type of DataFlash device.

If a valid sequence is found, code is downloaded into the internal SRAM. This is followed by a
remap and a jump to the first address of the SRAM.

If no valid ARM vector sequence is found, the boot Uploader is started. It initializes the Debug
Unit serial port (DBGU) and the USB Device Port. It then waits for any transaction and down-
loads a piece of code into the internal SRAM via a Device Firmware Upgrade (DFU) protocol for
USB and XMODEM protocol for the DBGU. After the end of the download, it branches to the
application entry point at the first address of the SRAM.

The main features of the Boot Program are:

* Default Boot Program stored in ROM-based products
¢ Downloads and runs an application from external storage media into internal SRAM
¢ Downloaded code size depends on embedded SRAM size
* Automatic detection of valid application
* Bootloader supporting a wide range of non-volatile memories
— SPI DataFlash connected on SPI NPCSO
— Two-wire EEPROM
— 8-bit parallel memories on NCSO

* Boot Uploader in case no valid program is detected in external NVM and supporting several
communication media

* Serial communication on a DBGU (XModem protocol)
* USB Device Port (DFU Protocol)

ATMEL .

ATMEL

13.2 Flow Diagram
The Boot Program implements the algorithm presented in Figure 13-1.

Figure 13-1. Boot Program Algorithm Flow Diagram

Device
Setup

SPI DataFlash _Yes Download from
Boot DataFlash Run

— Timeout 10 ms Bootloader

TWI Yes Download from
EEPROM Boot EEPROM Run

—Timeout 40 ms

Parallel Yes Download from Run
Boot 8-bit Device
—_— DBGU Serial Run
Download

1 OR Boot Uploader

USB Download R
DFU* protocol un

ANANA

*DFU = Device Firmware Upgrade

84 AT91RM9200 messs—

1768I-ATARM-09-Jul-09

13.3 Bootloader

1768I-ATARM-09-Jul-09

The Boot Program is started from address 0x0000_0000 (ARM reset vector) when the on-chip
boot mode is selected (BMS high during the reset, only on devices with EBI integrated). The first
operation is the search for a valid program in the off-chip non-volatile memories. If a valid appli-
cation is found, this application is loaded into internal SRAM and executed by branching at
address 0x0000_0000 after remap. This application may be the application code or a second-
level Bootloader.

To optimize the downloaded application code size, the Boot Program embeds several functions
that can be reused by the application. The Boot Program is linked at address 0x0010_0000 but
the internal ROM is mapped at both 0x0000_0000 and 0x0010_0000 after reset. All the call to
functions is PC relative and does not use absolute addresses. The ARM vectors are present at
both addresses, 0x0000_0000 and 0x0010_0000.

To access the functions in ROM, a structure containing chip descriptor and function entry points
is defined at a fixed address in ROM.

If no valid application is detected, the debug serial port or the USB device port must be con-
nected to allow the upload. A specific application provided by Atmel (DFU uploader) loads the
application into internal SRAM through the USB. To load the application through the debug
serial port, a terminal application (HyperTerminal) running the Xmodem protocol is required.

Figure 13-2. Remap Action after Download Completion

Internal Internal
SRAM ROM
REMAP
0x0020_0000 0x0010_0000
>
Internal Internal
ROM SRAM
0x0000_0000 0x0000_0000

After reset, the code in internal ROM is mapped at both addresses 0x0000_0000 and
0x0010_0000:

100000 ea00000b B 0x2c00ea00000bB0Ox2C

100004 e59ff014 LDR PC, [PC,20] 04e59f£014LDRPC, [PC,20]

100008 e59ff014 LDR PC, [PC,20] 08e59££014LDRPC, [PC,20]

10000c e59ff014 LDR PC, [PC,20] 0ce59f£f014LDRPC, [PC,20]

100010 e59ff014 LDR PC, [PC,20]10e59f£014LDRPC, [PC,20]

100014 00001234 LDR PC, [PC,20]1400001234LDRPC, [PC,20]

100018 e51fff20 LDR PC, [PC, -0xf20] 18e51£££f20LDRPC, [PC, -0xf20]
10001c e51fff20 LDR PC, [PC, -0x£20] 1ce51£££20LDRPC, [PC, -0x£f20]

ATMEL L

ATMEL

13.3.1 Valid Image Detection
The Bootloader software looks for a valid application by analyzing the first 32 bytes correspond-
ing to the ARM exception vectors. These bytes must implement ARM instructions for either
branch or load PC with PC relative addressing. The sixth vector, at offset 0x14, contains the size

of the image to download and the DataFlash parameters.

The user must replace this vector with his own vector.

Figure 13-3. LDR Opcode

31 28|27 24|23 20|19 16 (15 1211 0
111 00 1 1 P|UO W1 Rn Rd
Figure 13-4. B Opcode
31 28|27 2423 0
111 01 0 1 0 Offset (24 bits)
Unconditional instruction: OxE for bits 31 to 28
Load PC with PC relative addressing instruction:
— Rn=Rd=PC =0xF
—_ |==1
—_— P::
— U offset added (U==1) or subtracted (U==0)
13.3.1.1 Example
An example of valid vectors:
00 €a00000b B 0x2c
004 e59f£014 LDR pPc, [Pc,20]
08 e59ff014 LDR pc, [PpC,20]
oc e59ff014 LDR pPc, [Pc,20]
10 e59ff014 LDR pPc, [Pc,20]
14 00001234 <- Code size = 4660 bytes
18 e51f££20 LDR pPc, [Pc,-0xf20]
ic e51f££20 LDR pPc, [PC,-0xf20]
In download mode (DataFlash, EEPROM or 8-bit memory in device with EBI integrated), the
size of the image to load into SRAM is contained in the location of the sixth ARM vector. Thus
the user must replace this vector by the correct vector for his application.

1768I-ATARM-09-Jul-09

13.3.2 Structure of ARM Vector 6

The ARM exception vector 6 is used to store information needed by the Boot ROM downloader.
This information is described below.

Figure 13-5. Structure of the ARM vector 6

31

17|16 13|12 8|7 0

DataFlash page size

Number of Reserved Nb of 512 bytes blocks to
pages download

13.3.2.1 Example

1768I-ATARM-09-Jul-09

The first eight bits contain the number of blocks to download. The size of a block is 512 bytes,
allowing download of up to 128K bytes.

The bits 13 to 16 determine the DataFlash page number.
— DataFlash page number = 2(NP of pages)

The last 15 bits contain the DataFlash page size.

Table 13-1. DataFlash Device

Device Density Page Size (bytes) Number of pages
AT45DB011B 1 Mbit 264 512
AT45DB021B 2 Mbits 264 1024
AT45DB041B 4 Mbits 264 2048
AT45DB081B 8 Mbits 264 4096
AT45DB161B 16 Mbits 528 4096
AT45DB321B 32 Mbits 528 8192
AT45DB642 64 Mbits 1056 8192
AT45DB1282 128 Mbits 1056 16384

The following vector contains the information to describe a AT45DB642 DataFlash which con-
tains 11776 bytes to download.

Vector 6 is 0x0841A017 (00001000010000011010000000010111b):
Size to download: 0x17 * 512 bytes = 11776 bytes
Number pages (1101b): 13 ==> Number of DataFlash pages = 2'3 = 8192
DataFlash page size(000010000100000b) = 1056

For download in the EEPROM or 8-bit external memory, only the size to be downloaded is
decoded.

ATMEL o

ATMEL

13.3.3 Bootloader Sequence

The Boot Program performs device initialization followed by the download procedure. If unsuc-
cessful, the upload is done via the USB or debug serial port.

13.3.3.1 Device Initialization
Initialization follows the steps described below:

1. PLL setup

— PLLB is initialized to generate a 48 MHz clock necessary to use the USB Device. A
register located in the Power Management Controller (PMC) determines the
frequency of the main oscillator and thus the correct factor for the PLLB.

Table 13-2 defines the crystals supported by the Boot Program.

Table 13-2. Crystals Supported by Software Auto-detection (MHz)

3.0 3.2768 3.6864 3.84 4.0
4.433619 4.9152 5.0 5.24288 6.0
6.144 6.4 6.5536 7.159090 7.3728
7.864320 8.0 9.8304 10.0 11.05920
12.0 12.288 13.56 14.31818 14.7456
16.0 17.734470 18.432 20.0

2. Stacks setup for each ARM mode

3. Main oscillator frequency detection

4. Interrupt controller setup

5. C variables initialization

6. Branch main function

13.3.3.2 Download Procedure

The download procedure checks for a valid boot on several devices. The first device checked is
a serial DataFlash connected to the NPCSO0 of the SPI, followed by the serial EEPROM con-

nected to the TWI and by an 8-bit parallel memory connected on NCSO of the External Bus
Interface.

88 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

13.3.3.3 Serial DataFlash Download
The Boot Program supports all Atmel DataFlash devices. Table 13-1 summarizes the parame-
ters to include in the ARM vector 6 for all devices.

The DataFlash has a Status Register that determines all the parameters required to access the
device.

Thus, to be compatible with the future design of the DataFlash, parameters are coded in the
ARM vector 6.

Figure 13-6. Serial DataFlash Download

(Start)

Send status command

No Serial DataFlash
—>|
Download

Read the first 8 instructions (32 bytes).
Decode the sixth ARM vector

8 vectors
(except vector 6) are LDR
or Branch instruction ?

Read the DataFlash into the internal SRAM.
(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP
to jump to the downloaded application

End

ATMEL L

1768I-ATARM-09-Jul-09

13.3.3.4

90

ATMEL

Serial Two-wire EEPROM Download
Generally, serial EEPROMSs have no identification code. The bootloader checks for an acknowl-

edgment on the first read. The device address on the two-wire bus must be 0x0. The bootloader
supports the devices listed in Table 13-3.

Table 13-3. Supported EEPROM Devices

Device Size Organization
AT24C16A 16 Kbits 16 bytes page write
AT24C164 16 Kbits 16 bytes page write

AT24C32 32 Kbits 32 bytes page write
AT24C64 64 Kbits 32 bytes page write
AT24C128 128 Kbits 64 bytes page write
AT24C256 256 Kbits 64 bytes page write
AT24C512 528 Kbits 128 bytes page write

Figure 13-7. Serial Two-Wire EEPROM Download

‘ Start ’

Send Read command

8-bits parallel memory
—> Download
No Only for Device with EBI integrated
Device ACK ?

Memory Uploader
> Only for Device without
EBI integrated

Read the first 8 instructions (32 bytes).
Decode the sixth ARM vector

8 vectors
(except vector 6) are LDR
or Branch instruction ?

Read the Two-Wire EEPROM into the
internal SRAM
(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP
to jump to the downloaded application

End

AT91RM9200

1768I-ATARM-09-Jul-09

AT91RM9200

13.3.3.5 8-bit Parallel Flash Download (Applicable to Devices with EBI)

1768I-ATARM-09-Jul-09

Eight-bit parallel Flash download is supported if the product integrates an External Bus Interface
(EBI).

All 8-bit memory devices supported by the EBI when NCSO is configured in 8-bit data bus width
are supported by the bootloader.

Figure 13-8. 8-bit Parallel Flash Download

(Start)

Setup memory controller

Read the first 8 instructions (32 bytes).
Read the size in sixth ARM vector

8 vectors
(except vector 6) are LDR
or Branch instruction ?

Memory uploader)

Read the external memory into the
internal SRAM
(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP
to jump to the downloaded application

End

ATMEL o

ATMEL

13.4 Boot Uploader

13.4.1

13.4.1.1

13.4.1.2

92

If no valid boot device has been found during the Bootloader sequence, initialization of serial
communication devices (DBGU and USB device ports) is performed.

— Initialization of the DBGU serial port (115200 bauds, 8, N, 1) and Xmodem protocol
start

— Initialization of the USB Device Port and DFU protocol start
— Download of the application

The boot Uploader performs the DFU and Xmodem protocols to upload the application into inter-
nal SRAM at address 0x0020_0000.

The Boot Program uses a piece of internal SRAM for variables and stacks. To prevent any
upload error, the size of the application to upload must be less than the SRAM size minus 3K
bytes.

After the download, the peripheral registers are reset, the interrupts are disabled and the remap
is performed. After the remap, the internal SRAM is at address 0x0000_0000 and the internal
ROM at address 0x0010_0000. The instruction setting the PC to 0 is the one just after the remap
command. This instruction is fetched in the pipe before doing the remap and executed just after.
This fetch cycle executes the downloaded image.

External Communication Channels

DBGU Serial Port

The upload is performed through the DBGU serial port initialized to 115200 Baud, 8, n, 1.

The DBGU sends the character ‘C’ (0x43) to start an Xmodem protocol. Any terminal performing
this protocol can be used to send the application file to the target. The size of the binary file to
send depends on the SRAM size embedded in the product (Refer to the microcontroller
datasheet to determine SRAM size embedded in the microcontroller). In all cases, the size of the
binary file must be lower than SRAM size because the Xmodem protocol requires some SRAM
memory to work.

Xmodem Protocol

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two charac-
ter CRC-16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

— <SOH> = 01 hex

— <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to 00H (not
to 01)

— <255-blk #> = 1’'s complement of the blk#.
— <checksum> = 2 bytes CRC16
Figure 13-9 shows a transmission using this protocol.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Figure 13-9. Xmodem Transfer Example

13.4.1.3 USB Device Port

Host Device

C

SOH 01 FE Data[128] CRC CRC
ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC
ACK

EOT

ACK

A 48 MHz USB clock is necessary to use USB Device port. It has been programmed earlier in
the device initialization with PLLB configuration.

13.4.1.4 DFU Protocol

The DFU allows upgrade of the firmware of USB devices. The DFU algorithm is a part of the
USB specification. For more details, refer to “USB Device Firmware Upgrade Specification, Rev.

1.0”.

There are four distinct steps when carrying out a firmware upgrade:

1.
2.
3.

4.

Enumeration: The device informs the host of its capabilities.
Reconfiguration: The host and the device agree to initiate a firmware upgrade.

Transfer: The host transfers the firmware image to the device. Status requests are
employed to maintain synchronization between the host and the device.

Manifestation: Once the device reports to the host that it has completed the reprogram-

ming operations, the host issues a reset and the device executes the upgraded
firmware.

Figure 13-10. DFU Protocol

1768I-ATARM-09-Jul-09

Host Device

Prepare for an upgrade

USB reset

DFU mode activated

Download this firmware

Prepare to exit DFU mode

USB reset

ATMEL .

ATMEL

13.5 Hardware and Software Constraints
The software limitations of the Boot Program are:

¢ The downloaded code size is less than the SRAM size -4K embedded in the product.
¢ The device address of the EEPROM must be 0 on the TWI bus.

* The code is always downloaded from the device address 0x0000_0000 (DataFlash,
EEPROM) to the address 0x0000_0000 of the internal SRAM (after remap).

* The downloaded code must be position-independent or linked at address 0x0000_0000.
The hardware limitations of the Boot Program are:

¢ The DataFlash must be connected to NPCSO of the SPI.
¢ The 8-bit parallel Flash must be connected to NCSO of the EBI.

* The Boot Program initializes the DBGU pins multiplexed on the PIO common to both the 208-
lead PQFP and 256-ball BGA packages, in this case meaning PIOA.

* Using an external clock source on the XIN pin is not possible as the main oscillator is enabled
by the Boot ROM.

The SPI and TWI drivers use several PIOs in alternate functions to communicate with devices.
Care must be taken when these PIOs are used by the application. The devices connected could
be unintentionally driven at boot time, and electrical conflicts between SPI or TWI output pins
and the connected devices may appear.

To assure correct functionality, it is recommended to plug in critical devices to other pins or to
boot on an external 16-bit parallel memory by setting bit BMS.

Table 13-4 contains a list of pins that are driven during the Boot Program execution. These pins
are driven during the boot sequence for a period of about 6 ms if no correct boot program is
found. The download through the TWI takes about 5 sec for 64K bytes due to the TWI bit rate
(100 Kbits/s).

For the DataFlash driven by SPCK signal at 12 MHz, the time to download 64K bytes is reduced
to 66 ms.

Before performing the jump to the application in internal SRAM, all the PIOs and peripherals
used in the Boot Program are set to their reset state.

Table 13-4. Pins Driven during Boot Program Execution

Pin Used SPI (DataFlash) TWI (EEPROM)
MosI™ 0 X
SPCK™ X
NPCSo(" 0 X
TWD™M X I/0
TWCK™ X o)

Note: 1. See Section 10.3 “Peripheral Multiplexing on PIO Lines” on page 22.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

14. Embedded Software Services

14.1 Overview

An embedded software service is an independent software object that drives device resources
for frequently implemented tasks. The object-oriented approach of the software provides an
easy way to access services to build applications.

An AT91 service has several purposes:

* |t gives software examples dedicated to the AT91 devices.

* It can be used on several AT91 device families.

¢ |t offers an interface to the software stored in the ROM.
The main features of the software services are:

e Compliant with ATPCS

* Compliant with ANSI/ISO Standard C

* Compiled in ARM/Thumb Interworking

¢ ROM Entry Service

¢ Tempo, Xmodem and DataFlash services
¢ CRC and Sine tables

14.2 Service Definition
14.2.1 Service Structure

14.2.1.1 Structure Definition
A service structure is defined in C header files.

This structure is composed of data members and pointers to functions (methods) and is similar
to a class definition. There is no protection of data access or methods access. However, some
functions can be used by the customer application or other services and so be considered as
public methods. Similarly, other functions are not invoked by them. They can be considered as
private methods. This is also valid for data.

14.2.1.2 Methods
In the service structure, pointers to functions are supposed to be initialized by default to the stan-
dard functions. Only the default standard functions reside in ROM. Default methods can be
overloaded by custom application methods.

Methods do not declare any static variables nor invoke global variables. All methods are invoked
with a pointer to the service structure. A method can access and update service data without
restrictions.

Similarly, there is no polling in the methods. In fact, there is a method to start the functionality (a
read to give an example), a method to get the status (is the read achieved?), and a callback, ini-
tialized by the start method. Thus, using service, the client application carries out a synchronous
read by starting the read and polling the status, or an asynchronous read specifying a callback
when starting the read operation.

ATMEL s

1768I-ATARM-09-Jul-09

ATMEL

14.2.1.3 Service Entry Point
Each AT91 service, except for the ROM Entry Service (see 14.3.2 “ROM Entry Service” on
page 99), defines a function named AT91F_Open_<Service>. It is the only entry point defined
for a service. Even if the functions AT91F_Open_<Service> may be compared with object
constructors, they do not act as constructors in that they initiate the service structure but they do
not allocate it. Thus the customer application must allocate it.

Example

// Allocation of the service structure

AT91S_Pipe pipe;

// Opening of the service

AT91PS_Pipe pPipe = AT91F_OpenPipe (&pipe, ..);
Method pointers in the service structure are initialized to the default methods defined in the
AT91 service. Other fields in the service structure are initialized to default values or with the
arguments of the function AT91F_Open_<Service>.

In summary, an application must know what the service structure is and where the function
AT91F Open_<Service> is.

The default function AT91F_Open_<Service> may be redefined by the application or com-
prised in an application-defined function.

14.2.2 Using a Service

14.2.2.1 Opening a Service
The entry point to a service is established by initializing the service structure. An open function is
associated with each service structure, except for the ROM Entry Service (see 14.3.2 “ROM
Entry Service” on page 99). Thus, only the functions AT91F _Open_<service> are visible from
the user side. Access to the service methods is made via function pointers in the service
structure.

The function AT91F_Open_<service> has at least one argument: a pointer to the service
structure that must be allocated elsewhere. It returns a pointer to the base service structure or a
pointer to this service structure.

The function AT91F_Open_<service> initializes all data members and method pointers. All
function pointers in the service structure are set to the service’s functions.

The advantage of this method is to offer a single entry point for a service. The methods of a ser-
vice are initialized by the open function and each member can be overloaded.

14.2.2.2 Overloading a Method
Default methods are defined for all services provided in ROM. These methods may not be
adapted to a project requirement. It is possible to overload default methods by methods defined
in the project.

A method is a pointer to a function. This pointer is initialized by the function
AT91F_Open_<Service>. To overload one or several methods in a service, the function
pointer must be updated to the new method.

It is possible to overload just one method of a service or all the methods of a service. In this latter
case, the functionality of the service is user-defined, but still works on the same data structure.

96 A T91 RIVI'O:2 0 () 50000000

Note: Calling the default function AT91F_Open_<Service> ensures that all methods and data are

initialized.

This can be done by writing a new function My_Openservice (). This new Open function must
call the library-defined function AT91F_Open_<Service>, and then update one or several

function pointers:

Table 14-1. Overloading a Method with the Overloading of the Open Service Function

Default service behavior in ROM Overloading AT91F_ChildMethod by My_ChildMethod

// Defined in embedded services.h
typedef struct _AT91S_Service {
char data;
char (*MainMethod) ();
char (*ChildMethod) ();
} AT91S_Service, * AT91PS_Service;

// Defined in obj_service.c (in ROM)
char AT91F MainMethod ()

{

}

char AT91F ChildMethod ()
{
}

// Init the service with default methods
AT91PS_Service AT91F_OpenService (
AT91PS_Service pService)
{
pService->data = 0;
pService->MainMethod =AT91F_ MainMethod;
pService->ChildMethod=AT91F_ChildMethod;

return pService;

// My_ChildMethod will replace
AT9 1F_Chi ldMethod

char My_ChildMethod ()
{
}

// Overloading Open Service Method
AT91PS_Service My_OpenService (
AT91PS_Service pService)

{

AT91F_OpenService (pService) ;

// Overloading ChildMethod default value
pService->ChildMethod= My_ChildMethod;

return pService;

// Allocation of the service structure

AT91S_Service service;

// Opening of the service

AT91PS_Service pService =
My_OpenService (&service) ;

1768I-ATARM-09-Jul-09

ATMEL

97

ATMEL

This also can be done directly by overloading the method after the use of AT91F open_<ser-
vice> method:

Table 14-2. Overloading a Method without the Overloading of the Open Service Function.

Default service behavior in ROM Overloading AT91F_ChildMethod by My_ChildMethod
// Defined in embedded_services.h // My_ChildMethod will replace
typedef struct _AT91S_ Service { AT91F_ChildMethod
char data; char My_ChildMethod ()
char (*MainMethod) (); {
char (*ChildMethod) () ; }

} AT91S_Service, * AT91PS_Service;
// Allocation of the service structure

// Defined in obj_service.c (in ROM) AT91S_Service service;
char AT91F_MainMethod ()

{ // Opening of the service
} AT91PS_Service pService =

AT91F_OpenService (&service) ;

char AT91F ChildMethod ()

{

}

// Init the service with default methods

// Overloading ChildMethod default value
pService->ChildMethod= My_ChildMethod;

AT91PS_Service AT91F_OpenService (

AT91PS_Service pService)

{
pService->data = 0;
pService->MainMethod =AT91F_MainMethod;
pService->ChildMethod=AT91F_ChildMethod;

return pService;

08 A T91 RIVI'O:2 0 () 50000000

14.3 Embedded Software Services

14.3.1

14.3.2

Table 14-3.

Definition

Several AT91 products embed ROM. In most cases, the ROM integrates a bootloader and sev-
eral services that may speed up the application and reduce the application code size.

When software is fixed in the ROM, the address of each object (function, constant, table, etc.)
must be related to a customer application. This is done by providing an address table to the
linker. For each version of ROM, a new address table must be provided and all client applica-
tions must be recompiled.

The Embedded Software Services offer another solution to access objects stored in ROM. For
each embedded service, the customer application requires only the address of the Service Entry
Point (see 14.2.1.3 “Service Entry Point” on page 96).

Even if these services have only one entry point (AT91F_oOpen_<Service> function), they must
be specified to the linker. The Embedded Software Services solve this problem by providing a
dedicated service: the ROM Entry Service.

The goal of this product-dedicated service is to provide just one address to access all ROM
functionalities.

ROM Entry Service

The ROM Entry Service of a product is a structure named AT91s_RomBoot. Some members of
this structure point to the open functions of all services stored in ROM (function
AT91F_Open_<Service>) but also the CRC and Sine Arrays. Thus, only the address of the
AT91S_RomBoot has to be published.

Initialization of the ROM Entry Service and Use with an Open Service Method

Application Memory Space

ROM Memory Space

AT91S_TempoStatus AT91F_OpenCtlTempo(

// Init the ROM Entry Service
AT91S_RomBoot const *pAT91;
pAT91 = AT91C_ROM_BOOT_ADDRESS;

/I Allocation of the service structure
AT91S_CtlTempo tempo;

// Call the Service Open method
pAT91->0OpenCtlTempo(&tempo, ...);

// Use of tempo methods
tempo.CtlITempoCreate(&tempo, ...);

AT91PS_CtlTempo pCtlTempo,
void const *pTempoTimer)

AT91S_TempoStatus AT91F_CtlITempoCreate (
AT91PS_CtlITempo pCirl,
AT91PS_SvcTempo pTempo)

}

1768I-ATARM-09-Jul-09

The application obtains the address of the ROM Entry Service and initializes an instance of the
AT91S_RomBoot Structure. To obtain the Open Service Method of another service stored in
ROM, the application uses the appropriate member of the aT91s_RomBoot structure.

The address of the aT915_RomBoot can be found at the beginning of the ROM, after the excep-
tion vectors.

ATMEL o

ATMEL

14.3.3 Tempo Service

14.3.3.1 Presentation
The Tempo Service allows a single hardware system timer to support several software timers
running concurrently. This works as an object notifier.

There are two objects defined to control the Tempo Service: AT91S_CtlTempo and
AT91S_SvcTempo.

The application declares one instance of AT91S_CtlTempo associated with the hardware sys-
tem timer. Additionally, it controls a list of instances of AT91S_SvcTempo.

Each time the application requires another timer, it asks the AT91S_cCtlTempo to create a new
instance of AT91S_SvcTempo, then the application initializes all the settings of
AT91S_SvcTempo.

14.3.3.2 Tempo Service Description

Table 14-4. Tempo Service Methods

Associated Function Pointers & Methods Used by Default Description
// Typical Use: Member of AT91S_RomBoot structure.
PAT91->OpenCtlTempo(...); Corresponds to the Open Service Method for the Tempo
Service.
// Default Method: Input Parameters:
AT91S_TempoStatus AT91F OpenCtlTempo (Pointer on a Control Tempo Object.

AT91PS_CtlTempo pCtlTempo, Pointer on a System Timer Descriptor Structure.
Output Parameters:

Returns 0 if OpenCtrITempo successful.
Returns 1 if not.

void const *pTempoTimer)

// Typical Use:

AT91S_CtlTempo ctlTempo; Member of aT91S_ctlTempo structure.
ctlTempo.CtlTempoStart(...); Start of the Hardware System Timer associated.

Input Parameters:
// Default Method: Pointer on a Void Parameter corresponding to a System Timer
AT91S_TempoStatus AT91F_STStart (void * Descriptor Structure.
pTimer) Output Parameters:

Returns 2.

// Typical Use:

AT91S_CtlTempo ctlTempo; Member of aT91s_ctlTempo structure.
ctlTempo.CtlTempoIsStart(...); Input Parameters:
Pointer on a Control Tempo Object.
// Default Method: Output Parameters:
AT91S_TempoStatus AT91F_STIsStart (Returns the Status Register of the System Timer.

AT91PS_CtlTempo pCtrl)

100 A T91 RIVI'O:2 0 () 50000000

Table 14-4. Tempo Service Methods (Continued)

Associated Function Pointers & Methods Used by Default

Description

// Typical Use:
AT91S_CtlTempo ctlTempo;
ctlTempo.CtlTempoCreate(...);

// Default Method:

AT91S_TempoStatus AT91F CtlTempoCreate (
AT91PS_CtlTempo pCtrl,

AT91PS_SvcTempo pTempo)

Member of aT91s_ctlTempo structure.

Insert a software timer in the aT91s_svcTempo’s list.
Input Parameters:

Pointer on a Control Tempo Object.

Pointer on a Service Tempo Object to insert.
Output Parameters:

Returns 0 if the software tempo was created.
Returns 1 if not.

// Typical Use:
AT91S_CtlTempo ctlTempo;
ctlTempo.CtlTempoRemove (...) ;

// Default Method:

AT91S_TempoStatus AT91F CtlTempoRemove
(AT91PS_CtlTempo pCtrl,

AT91PS_SvcTempo pTempo)

Member of aT91s_ctlTempo Structure.
Remove a software timer in the list.

Input Parameters:

Pointer on a Control Tempo Object.

Pointer on a Service Tempo Object to remove.
Output Parameters:

Returns 0 if the tempo was created.

Returns 1 if not.

// Typical Use:
AT91S_CtlTempo ctlTempo;
ctlTempo.CtlTempoTick(...);

// Default Method:

AT91S_TempoStatus AT91F CtlTempoTick
(AT91PS_CtlTempo pCtrl)

Member of aT91s_ctlTempo Structure.

Refresh all the software timers in the list. Update their timeout
and check if callbacks have to be launched. So, for example, this
function has to be used when the hardware timer starts a new
periodic interrupt if period interval timer is used.

Input Parameters:

Pointer on a Control Tempo Object.
Output Parameters:

Returns 1.

// Typical Use:
AT91S_SvcTempo svcTempo;
svcTempo.Start(...);

// Default Method:

AT91S_TempoStatus AT91F_ SvcTempoStart (
AT91PS_sSvcTempo pSvc,

unsigned int timeout,

unsigned int reload,

void *pData)

void (*callback) (AT91S_TempoStatus, void ¥*),

Member of aT91s_svcTempo Structure.
Start a software timer.

Input Parameters:

Pointer on a Service Tempo Object.
Timeout to apply.

Number of times to reload the tempo after timeout completed for
periodic execution.

Callback on a method to launch once the timeout completed.
Allows to have a hook on the current service.

Output Parameters:

Returns 1.

// Typical Use:
AT91S_SvcTempo svcTempo;
svcTempo.Stop(...);

// Default Method:
AT91S_TempoStatus AT91F_SvcTempoStop (
AT91PS_SvcTempo pSvc)

Member of aT91s_svcTempo Structure.
Force to stop a software timer.

Input Parameters:

Pointer on a Service Tempo Object.
Output Parameters:

Returns 1.

Note: AT91S_Tempostatus corresponds to an unsigned int.

1768I-ATARM-09-Jul-09

ATMEL

101

ATMEL

14.3.3.3 Using the Service

The first step is to find the address of the open service method AT91F_OpenCtlTempo using
the ROM Entry Service.

Allocate one instance of AT91S_CtlTempo and AT91S_SvcTempo in the application memory
space:

// Allocate the service and the control tempo

AT91S _CtlTempo ctlTempo;

AT91S_SvcTempo svcTempol;

Initialize the AT91S_ctlTempo instance by calling the AT91F_OpencCtlTempo function:

// Initialize service

PAT91->OpenCtlTempo (&ctlTempo, (void *) & (pAT91->SYSTIMER DESC));

At this stage, the application can use the AT91S_cCtlTempo service members.

If the application wants to overload an object member, it can be done now. For example, if
AT91F CtlTempoCreate (sctlTempo, &svcTempol) Method is to be replaced by the application
defined as my_ctlTempoCreate (...), the procedure is as follows:

// Overload AT91F_CtlTempoCreate
ctlTempo.CtlTempoCreate = my_ CtlTempoCreate;

In most cases, initialize the AT91S_SvcTempo object by calling the AT91F_CtlTempoCreate
method of the AT91S_CtlTempo service:

// Init the svcTempol, link it to the AT91S_CtlTempo object
ctlTempo.CtlTempoCreate (&ctlTempo, &svcTempol) ;

Start the timeout by calling start method of the svcTempo1 object. Depending on the function
parameters, either a callback is started at the end of the countdown or the status of the timeout
is checked by reading the TickTempo member of the svcTempo1 object.

// Start the timeout

svcTempol.Start (&svcTempol, 100, 0, NULL,NULL) ;

// Wait for the timeout of 100 (unity depends on the timer programmation)
// No repetition and no callback.

while (svcTempol.TickTempo) ;

When the application needs another software timer to control a timeout, it:

* Allocates one instance of AT91S_SvcTempo in the application memory space

// Allocate the service

AT91S_SvcTempo svcTempo?2;

¢ Initializes the AT91S_SvcTempo object calling the AT91F_CtlTempoCreate method of the
AT91S_CtlTempo service:

// Init the svcTempo2, link it to the AT91S_CtlTempo object
ctlTempo.CtlTempoCreate (&ctlTempo, &svcTempo2) ;

102 A T91 RIVI'O:2 0 () 50000000

14.3.4 Xmodem Service

14.3.4.1 Presentation
The Xmodem service is an application of the communication pipe abstract layer. This layer is
media-independent (USART, USB, etc.) and gives entry points to carry out reads and writes on
an abstract media, the pipe.

Communication Pipe Service

The pipe communication structure is a virtual structure that contains all the functions required to
read and write a buffer, regardless of the communication media and the memory management.

The pipe structure defines:

* a pointer to a communication service structure arsips_svccomm

* a pointer to a buffer manager structure arsips_Buffer

¢ pointers on read and write functions

* pointers to callback functions associated to the read and write functions
The following structure defines the pipe object:

typedef struct _AT91S_Pipe

{
// A pipe is linked with a peripheral and a buffer
AT91PS_SvcComm pSvcComm;
AT91PS_Buffer pBuffer;

// Callback functions with their arguments

void (*WriteCallback) (AT91S_PipeStatus, void *);
void (*ReadCallback) (AT91S_PipeStatus, void *);
void *pPrivateReadData;

void *pPrivateWriteData;

// Pipe methods
AT91S_PipeStatus (*Write) (
struct _AT91S_Pipe *pPipe,

char const * pData,

unsigned int size,

void (*callback) (AT91S_PipeStatus, void *),
void *privateData) ;

AT91S_PipeStatus (*Read) (
struct _AT91S_Pipe *pPipe,

char *pData,

unsigned int size,

void (*callback) (AT91S_PipeStatus, void *),
void *privateData) ;

AT91S_PipeStatus (*AbortWrite) (struct _AT91S_Pipe *pPipe);
AT91S_PipeStatus (*AbortRead) (struct _AT91S_Pipe *pPipe) ;
AT91S_PipeStatus (*Reset) (struct _AT91S Pipe *pPipe);

AImEl@ 103

1768I-ATARM-09-Jul-09

ATMEL

char (*IsWritten) (struct _AT91S Pipe *pPipe,char const *pVoid);
char (*IsReceived) (struct _AT91S_Pipe *pPipe,char const *pVoid);
} AT91S_Pipe, *AT91PS_Pipe;

The Xmodem protocol implementation demonstrates how to use the communication pipe.

Description of the Buffer Structure

The AT91PS_Buffer is a pointer to the AT91S_Buffer structure manages the buffers. This struc-
ture embeds the following functions:

e pointers to functions that manage the read buffer

* pointers to functions that manage the write buffer
All the functions can be overloaded by the application to adapt buffer management.

A simple implementation of buffer management for the Xmodem Service is provided in the boot
ROM source code.

typedef struct _AT91S_Buffer

{
struct _AT91S Pipe *pPipe;
void *pcChild;

// Functions invoked by the pipe

AT91S_BufferStatus (*SetRdBuffer) (struct _AT91S_Buffer *pSBuffer,
char *pBuffer, unsigned int Size);

AT91S_BufferStatus (*SetWrBuffer) (struct _AT91S_Buffer *pSBuffer,
char const *pBuffer, unsigned int Size);

AT91S_BufferStatus (*RstRdBuffer) (struct _AT91S_Buffer *pSBuffer);

AT91S_BufferStatus (*RstWrBuffer) (struct _AT91S_Buffer *pSBuffer);

char (*MsgWritten) (struct _AT91S_Buffer *pSBuffer, char const
*pBuffer) ;

char (*MsgRead) (struct _AT91S_Buffer *pSBuffer, char const

*pBuffer) ;

// Functions invoked by the peripheral

AT91S_BufferStatus (*GetWrBuffer) (struct _AT91S_Buffer *pSBuffer,
char const **pData, unsigned int *pSize);
AT91S_BufferStatus (*GetRdBuffer) (struct _AT91S_Buffer *pSBuffer,

char **pData, unsigned int *pSize);

AT91S_BufferStatus (*EmptyWrBuffer) (struct _AT91S_Buffer *pSBuffer,
unsigned int size);

AT91S_BufferStatus (*FillRdBuffer) (struct _AT91S_Buffer *pSBuffer,
unsigned int size);

char (*IsSWrEmpty) (struct _AT91S_Buffer *pSBuffer);

char (*IsRdFull) (struct _AT91S_Buffer *pSBuffer);

} AT91S Buffer, *AT91PS_Buffer;

Description of the The SveComm structure provides the interface between low-level functions and the pipe object.

SveComm Structure . . . C .
It contains pointers of functions initialized to the lower level functions (e.g. SvcXmodem).

104 AT91RM9200 messsssss—

1768I-ATARM-09-Jul-09

Description of the
SveXmodem Structure

1768I-ATARM-09-Jul-09

The Xmodem Service implementation gives an example of SvcComm use.

typedef struct _AT91S Service
{
// Methods:
AT91S_ SvcCommStatus
AT91S_SvcCommStatus
AT91S SvcCommStatus
AT91S_SvcCommStatus
AT91S_SvcCommStatus

(*Reset) (struct _AT91S_Service *pService);
(*StartTx) (struct _AT91S_Service *pService);
(*StartRx) (struct _AT91S_Service *pService);
(*StopTx)

(*StopRx)

(struct _AT91S_Service *pService);

(struct _AT91S_Service *pService);

char (*TxReady) (struct _AT91S_Service *pService) ;
char (*RxReady) (struct _AT91S_Service *pService);
// Data:

struct _AT91S Buffer *pBuffer; // Link to a buffer object
void *pChild;
} AT91S_SvcComm, *AT91PS_SvcComm;

The SvcXmodem service is a reusable implementation of the Xmodem protocol. It supports only
the 128-byte packet format and provides read and write functions. The SvceXmodem structure
defines:

¢ a pointer to a handler initialized to readHandler or writeHandler

* a pointer to a function that processes the xmodem packet crc

* a pointer to a function that checks the packet header

e a pointer to a function that checks data
With this structure, the Xmodem protocol can be used with all media (USART, USB, etc.). Only
private methods may be overloaded to adapt the Xmodem protocol to a new media.

The default implementation of the Xmodem uses a USART to send and receive packets. Read
and write functions implement Peripheral DMA Controller facilities to reduce interrupt overhead.
It assumes the USART is initialized, the memory buffer allocated and the interrupts
programmed.

A periodic timer is required by the service to manage timeouts and the periodic transmission of
the character “C” (Refer to Xmodem protocol). This feature is provided by the Tempo Service.

The following structure defines the Xmodem Service:

typedef struct _AT91PS_SvcXmodem {

// Public Methods:

AT91S_SvcCommStatus (*Handler)
AT91S_SvcCommStatus (*StartTx)
AT91S_SvcCommStatus (*StopTx)

(struct _AT91PS_SvcXmodem *, unsigned int);
(struct _AT91PS_SvcXmodem *, unsigned int);
(struct _AT91PS_SvcXmodem *, unsigned int);

// Private Methods:

AT91S_SvcCommStatus (*ReadHandler)
int csr);

(struct _AT91PS_SvcXmodem *, unsigned

AImEl@ 105

106

ATMEL

AT91S_SvcCommStatus (*WriteHandler) (struct _AT91PS_SvcXmodem *, unsigned
int csr);

unsigned short (*GetCrc) (char *ptr, unsigned int count);

char (*CheckHeader) (unsigned char currentPacket, char
*packet) ;

char (*CheckData) (struct _AT91PS_SvcXmodem *);

AT91S_SvcComm parent; // Base class

AT91PS_USART pUsart;

AT91S_SvcTempo tempo; // Link to a AT91S_Tempo object

char *pData;

unsigned int dataSize; // = XMODEM_DATA_STX or XMODEM_DATA SOH
char packetDesc [AT91C_XMODEM PACKET SIZE];

unsigned char packetId; // Current packet

char packetStatus;

char isPacketDesc;

char eot; // end of transmition

} AT91S_SvcXmodem, *AT91PS_SvcXmodem

A T91 RIVI'O:2 0 () 50000000

14.3.4.2 Xmodem Service Description

Table 14-5. Xmodem Service Methods

Associated Function Pointers & Methods Used by Default

Description

// Typical Use:
PAT91->OpensSvcXmodem(. . .) ;

// Default Method:

AT91PS_SvcComm AT91F_ OpenSvcXmodem (
AT91PS_SvcXmodem pSvcXmodem,
AT91PS_USART pUsart,
AT91PS_CtlTempo pCtlTempo)

Member of AT91S_RomBoot structure.

Corresponds to the Open Service Method for the Xmodem
Service.

Input Parameters:

Pointer on SvcXmodem structure.

Pointer on a USART structure.

Pointer on a CtlTempo structure.

Output Parameters:

Returns the Xmodem Service Pointer Structure.

// Typical Use:
AT91S_SvcXmodem svcXmodem;
svcXmodem.Handler (...);

// Default read handler:

AT91S_SvcCommStatus
AT91F_SvcXmodemReadHandler (AT91PS_SvcXmodem
pSvcXmodem, unsigned int csr)

// Default write handler:

AT91S_sSvcCommStatus
AT91F_SvcXmodemWriteHandler (AT91PS_SvcXmodem
pSvcXmodem, unsigned int csr)

Member of AT91S_svcxmodem structure.

interrupt handler for xmodem read or write functionnalities
Input Parameters:

Pointer on a Xmodem Service Structure.

csr: usart channel status register.

Output Parameters:

Status for xmodem read or write.

14.3.4.3 Using the Service

The following steps show how to initialize and use the Xmodem Service in an application:

Variables definitions:

AT91S_RomBoot const *pAT91; // struct containing Openservice functions
AT91S_SBuffer sXmBuffer;

// Xmodem Buffer allocation

AT91S_sSvcXmodem svcXmodem; // Xmodem service structure allocation

AT91S_Pipe xmodemPipe;// xmodem pipe communication struct

AT91S CtlTempo ctlTempo;

// Tempo struct

AT91PS_Buffer pXmBuffer; // Pointer on a buffer structure

AT91PS_SvcComm pSvcXmodem; // Pointer on a Media Structure

Initialisations

// Call Open methods:

PAT91 = AT91C_ROM BOOT_ADDRESS;

// OpenCtlTempo on the system timer

PAT91->OpenCtlTempo (&ctlTempo, (void *) & (pAT91->SYSTIMER DESC)) ;

ctlTempo.CtlTempoStart ((void *) & (pAT91->SYSTIMER DESC)) ;

// Xmodem buffer initialisation

pXmBuffer = pPAT91->OpenSBuffer (&sXmBuffer) ;

1768I-ATARM-09-Jul-09

ATMEL

107

ATMEL

pSvcXmodem = pAT91->OpenSvcXmodem (&svcXmodem, AT91C_BASE_DBGU, &ctlTempo) ;
// Open communication pipe on the xmodem service
PAT91->0OpenPipe (&xmodemPipe, pSvcXmodem, pXmBuffer) ;
// Init the DBGU peripheral
// Open PIO for DBGU
AT91F DBGU_C£gPIO() ;
// Configure DBGU
AT91F_US_Configure (
(AT91PS_USART) AT91C_BASE DBGU, // DBGU base address
MCK, // Master Clock
AT91C_US_ASYNC_MODE, // mode Register to be programmed
BAUDRATE , // baudrate to be programmed
0); // timeguard to be programmed
// Enable Transmitter
AT91F_US_EnableTx ((AT91PS_USART) AT91C BASE DBGU) ;
// Enable Receiver
AT91F_US_EnableRx ((AT91PS_USART) AT91C_BASE_DBGU) ;
// Initialize the Interrupt for System Timer and DBGU (shared interrupt)
// Initialize the Interrupt Source 1 for SysTimer and DBGU
AT91F_AIC_Conf igureIt (AT9 1C_BASE_AIC,
AT91C_ID_SYS,
AT91C_AIC_PRIOR HIGHEST,
AT91C_AIC_SRCTYPE INT LEVEL SENSITIVE,
AT91F ASM ST DBGU_Handler) ;

// Enable SysTimer and DBGU interrupt
AT91F AIC EnableIt (AT91C_BASE AIC, AT91C_ID_ SYS);

xmodemPipe.Read (&xmodemPipe, (char *) BASE_LOAD_ ADDRESS, MEMORY_ SIZE,
XmodemProtocol, (void *) BASE_LOAD_ADDRESS) ;

14.3.5 DataFlash Service

14.3.5.1 Presentation
The DataFlash Service allows the Serial Peripheral Interface (SPI) to support several Serial
DataFlash and DataFlash Cards for reading, programming and erasing operations.

This service is based on SPI interrupts that are managed by a specific handler. It also uses the
corresponding PDC registers.

For more information on the commands available in the DataFlash Service, refer to the relevant
DataFlash documentation.

108 A T91 RIVI'O:2 0 () 50000000

14.3.5.2 DataFlash Service Description

Table 14-6. DataFlash Service Methods

Associated Function Pointers & Methods Used by Default

Description

// Typical Use:
PAT91->OpenSvcDataFlash(...);

// Default Method:

AT91PS_SvcDataFlash AT91F_OpenSvcDataFlash (
const AT91PS_PMC pApmc,

AT91PS_SvcDataFlash pSvcDataFlash)

Member of AT91S_RomBoot structure.

Corresponds to the Open Service Method for the DataFlash
Service.

Input Parameters:

Pointer on a PMC Register Description Structure.
Pointer on a DataFlash Service Structure.
Output Parameters:

Returns the DataFlash Service Pointer Structure.

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.Handler(...);

// Default Method:
void AT91F_DataFlashHandler (
AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int status)

Member of aT91s_svcDataFlash Structure.
SPI Fixed Peripheral C interrupt handler.
Input Parameters:

Pointer on a DataFlash Service Structure.

Status: corresponds to the interruptions detected and validated
on SPI (SPI Status Register masked by SPI Mask Register).

Has to be put in the Interrupt handler for SPI.
Output Parameters:
None.

// Typical Use:
AT91S_SvcDataFlash svcDataFlash;
svcDataFlash.Status(...);

// Default Method:

AT91S_sSvcDataFlashStatus
AT91F DataFlashGetStatus (AT91PS_DataflashDes
c pDesc)

Member of aT91s_svcpataFlash structure.
Read the status register of the DataFlash.
Input Parameters:

Pointer on a DataFlash Descriptor Structure (member of the
service structure).

Output Parameters:
Returns 0 if DataFlash is Busy.
Returns 1 if DataFlash is Ready.

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.AbortCommand(...) ;

// Default Method:

void

AT91F_DataFlashAbortCommand (AT91PS_Dataflash
Desc pDesc)

Member of aT91s_svcbDataFlash structure
Allows to reset PDC & Interrupts.
Input Parameters:

Pointer on a DataFlash Descriptor Structure (member of the
service structure).

Output Parameters:
None.

1768I-ATARM-09-Jul-09

ATMEL

109

ATMEL

Table 14-6. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default

Description

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.PageRead (...) ;

// Default Method:

AT91S_svcDataFlashStatus
AT91F_DataFlashPageRead (

AT91PS_SvcDataFlash pSvcDataFlash,
unsigned int src,
unsigned char *dataBuffer,

int sizeToRead)

Member of aT91s_svcbDataFlash structure
Read a Page in DataFlash.

Input Parameters:

Pointer on DataFlash Service Structure.
DataFlash address.

Data buffer destination pointer.

Number of bytes to read.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.ContinuousRead(...);

// Default Method:

AT91S_svcDataFlashStatus
AT91F_DataFlashContinuousRead (

AT91PS_SvcDataFlash pSvcDataFlash,
int src,
unsigned char *dataBuffer,

int sizeToRead)

Member of AT91s_svcpataFlash Structure.
Continuous Stream Read.

Input Parameters:

Pointer on DataFlash Service Structure.
DataFlash address.

Data buffer destination pointer.

Number of bytes to read.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.ReadBuffer(...);

// Default Method:

AT91S_svcDataFlashStatus
AT91F_DataFlashReadBuffer (

AT91PS_SvcDataFlash pSvcDataFlash,
unsigned char BufferCommand,
unsigned int bufferAddress,
unsigned char *dataBuffer,

int sizeToRead)

Member of AT91s_svcpataFlash structure.
Read the Internal DataFlash SRAM Buffer 1 or 2.
Input Parameters:

Pointer on DataFlash Service Structure.

Choose Internal DataFlash Buffer 1 or 2 command.
DataFlash address.

Data buffer destination pointer.

Number of bytes to read.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.

Returns 5 if DataFlash Bad Address.

110 A T91 RIVI'O:2 0 () 50000000

Table 14-6. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default

Description

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;

svcDataFlash.MainMemoryToBufferTransfert (...
):

// Default Method:

AT91S_sSvcDataFlashStatus
AT91F_MainMemoryToBufferTransfert (

AT91PS_SvcDataFlash pSvcDataFlash,
unsigned char BufferCommand,

unsigned int page)

Member of AT91s_svcDataFlash structure

Read a Page in the Internal SRAM Buffer 1 or 2.
Input Parameters:

Pointer on DataFlash Service Structure.

Choose Internal DataFlash Buffer 1 or 2 command.
Page to read.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.

// Typical Use:
AT91S_SvcDataFlash svcDataFlash;
svcDataFlash.PagePgmBuf (...) ;

// Default Method:

AT91S_sSvcDataFlashStatus
AT91F DataFlashPagePgmBuf (

AT91PS_SvcDataFlash pSvcDataFlash,
unsigned char BufferCommand,
unsigned char *src,

unsigned int dest,

unsigned int SizeToWrite)

Member of AT91s_svcDataFlash structure

Page Program through Internal SRAM Buffer 1 or 2.
Input Parameters:

Pointer on DataFlash Service Structure.

Choose Internal DataFlash Buffer 1 or 2 command.
Source buffer.

DataFlash destination address.

Number of bytes to write.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.WriteBuffer(...);

// Default Method:

AT91S_sSvcDataFlashStatus
AT91F_DataFlashWriteBuffer (

AT91PS_SvcDataFlash pSvcDataFlash,
unsigned char BufferCommand,
unsigned char *dataBuffer,
unsigned int bufferAddress,

int SizeToWrite)

Member of AT91s_svcpataFlash structure.
Write data to the Internal SRAM buffer 1 or 2.
Input Parameters:

Pointer on DataFlash Service Structure.
Choose Internal DataFlash Buffer 1 or 2 command.
Pointer on data buffer to write.

Address in the internal buffer.

Number of bytes to write.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

Returns 4 if DataFlash Bad Command.
Returns 5 if DataFlash Bad Address.

1768I-ATARM-09-Jul-09

ATMEL

111

ATMEL

Table 14-6. DataFlash Service Methods (Continued)

Associated Function Pointers & Methods Used by Default

Description

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.WriteBufferToMain(...);

// Default Method:

AT91S_svcDataFlashStatus
AT91F _WriteBufferToMain (

AT91PS_SvcDataFlash pSvcDataFlash,
unsigned char BufferCommand,

unsigned int dest)

Member of aT91s_svcpataFlash structure.

Write Internal Buffer to the DataFlash Main Memory.
Input Parameters:

Pointer on DataFlash Service Structure.

Choose Internal DataFlash Buffer 1 or 2 command.
Main memory address on DataFlash.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash is Ready.

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.PageErase(...);

// Default Method:
AT91S_sSvcDataFlashStatus AT91F PageErase (
AT91PS_SvcDataFlash pSvcDataFlash,
unsigned int PageNumber)

Member of AT91s_svcpataFlash structure.
Erase a page in DataFlash.

Input Parameters:

Pointer on a Service DataFlash Object.
Page to erase.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.BlockErase(...) ;

// Default Method:

AT91S_svcDataFlashStatus AT91F_BlockErase (
AT91PS_SvcDataFlash pSvcDataFlash,

unsigned int BlockNumber)

Member of aT91s_svcpataFlash structure.
Erase a block of 8 pages.

Input Parameters:

Pointer on a Service DataFlash Object.
Block to erase.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.

// Typical Use:
AT91S_sSvcDataFlash svcDataFlash;
svcDataFlash.MainMemoryToBufferCompare(...);

// Default Method:

AT91S_sSvcDataFlashStatus
AT91F_MainMemoryToBufferCompare (

AT91PS_SvcDataFlash pSvcDataFlash,
unsigned char BufferCommand,

unsigned int page)

Member of aT91s_svcbataFlash Structure.

Compare the contents of a Page and one of the Internal SRAM
buffer.

Input Parameters:

Pointer on a Service DataFlash Object.

Internal SRAM DataFlash Buffer to compare command.
Page to compare.

Output Parameters:

Returns 0 if DataFlash is Busy.

Returns 1 if DataFlash Ready.

Returns 4 if DataFlash Bad Command.

Note:

AT91S_SvcDataFlashStatus corresponds to an unsigned int.

112 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

14.3.5.3 Using the Service

The first step is to find the address of the open service method aT91F_opensvcbataFlash USing
the ROM Entry Service.

1. Allocate one instance of ar91s_svcpatarFlash and aTeis pataflash in the application
memory space:

// Allocate the service and a device structure.
AT91S_SvcDataFlash svcDataFlash;
AT91S_Dataflash Device; // member of AT91S_sSvcDataFlash service

Then initialize the ar91s_svcpataFiash instance by calling the aT91F_opensvcbataFlash
function:

// Initialize service

PAT91->OpenSvcDataFlash (AT91C_BASE PMC, &svcDataFlash) ;

2. Initialize the sp1 Interrupt:
// Initialize the SPI Interrupt
at91_irq open (AT91C_BASE_AIC,AT91C_ID_SPT, 3,

AT91C_AIC_SRCTYPE INT LEVEL_SENSITIVE
,AT91F spi_asm_handler) ;

3. Configure the DataFlash structure with its correct features and link it to the device
structure in the aT91s_svcpataFlash Service structure:

// Example with an ATMEL AT45DB321B DataFlash
Device.pages_number = 8192;

Device.pages_size = 528;

Device.page_offset = 10;

Device.byte_mask = 0x300;

// Link to the service structure

svcDataFlash.pDevice = &Device;

4. Now the different methods can be used. Following is an example of a Page Read of 528
bytes on page 50:
// Result of the read operation in RxBufferDataFlash
unsigned char RxBufferDataFlash[528];

svcDataFlash.PageRead (&svcDataFlash,
(50*%528) ,RxBufferDataFlash, 528) ;

AImEl@ 113

1768I-ATARM-09-Jul-09

14.3.6 CRC Service

14.3.6.1 Presentation

This “service” differs from the preceding ones in that it is structured differently: it is composed of

ATMEL

an array and some methods directly accessible via the aT91s_RomBoot structure.

14.3.6.2 CRC Service Description

Table 14-7. CRC Service Description

Methods and Array Available

Description

// Typical Use:
PAT91->CRC32(...);

// Default Method:

void CalculateCrc32(

const unsigned char *address,
unsigned int size,

unsigned int *crc)

This function provides a table driven 32bit CRC generation for
byte data. This CRC is known as the CCITT CRC32.

Input Parameters:

Pointer on the data buffer.

The size of this buffer.

A pointer on the result of the CRC.
Output Parameters:

None.

// Typical Use:
PAT91->CRC16(...);

// Default Method:

void CalculateCrcié6 (

const unsigned char *address,
unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is calculated with the POLYNOME 0x8005

Input Parameters:

Pointer on the data buffer.

The size of this buffer.

A pointer on the result of the CRC.
Output Parameters:

None.

// Typical Use:
PAT91->CRCHDLC(...);

// Default Method:

void CalculateCrcHdlc(

const unsigned char *address,
unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is known as the HDLC CRC.

Input Parameters:

Pointer on the data buffer.

The size of this buffer.

A pointer on the result of the CRC.
Output Parameters:

None.

// Typical Use:
PAT91->CRCCCITT(...);

// Default Method:

void CalculateCrcléccitt (
const unsigned char *address,
unsigned int size,

unsigned short *crc)

This function provides a table driven 16bit CRC generation for
byte data. This CRC is known as the CCITT CRC16
(POLYNOME = 0x1021).

Input Parameters:

Pointer on the data buffer.

The size of this buffer.

A pointer on the result of the CRC.
Output Parameters:

None.

114

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Table 14-7. CRC Service Description (Continued)

Methods and Array Available

Description

// Typical Use:
char reverse_byte;

reverse_byte = pAT91-
>Bit_Reverse_ Arrayl[...]l;

// Array Embedded:

const unsigned char bit_rev[256]

Bit Reverse Array: array which allows to reverse one octet.
Frequently used in mathematical algorithms.

Used for example in the CRC16 calculation.

14.3.6.3 Using the Service

Compute the CRC16 CCITT of a 256-byte buffer and save it in the crc16 variable:

// Compute CRC16 CCITT

unsigned char BufferToCompute [256] ;

short crcie6;

(BufferToCompute Treatment)
PAT91->CRCCCITT (&BufferToCompute, 256, &crcl6) ;

14.3.7 Sine Service

14.3.7.1 Presentation

This “service” differs from the preceding one in that it is structured differently: it is composed of
an array and a method directly accessible through the AT91s_RomBoot structure.

14.3.7.2 Sine Service Description

Table 14-8. Sine Service Description

Method and Array Available

Description

// Typical Use:
pPAT91->S8ine(...);

// Default Method:
short AT91F Sinus (int step)

This function returns the amplitude coded on 16 bits, of a sine
waveform for a given step.

Input Parameters:

Step of the sine. Corresponds to the precision of the amplitude
calculation. Depends on the Sine Array used. Here, the array has
256 values (thus 256 steps) of amplitude for 180 degrees.

Output Parameters:
Amplitude of the sine waveform.

// Typical Use:
short sinus;

sinus = pAT91->SineTabl[...];

// Array Embedded:
const short AT91C_SINUS180_TAB[256]

Sine Array with a resolution of 256 values for 180 degrees.

1768I-ATARM-09-Jul-09

AImEl@ 115

ATMEL

116 AT91RM9200 —ﬂw_ATAW_OQJIOQ

15. AT91RM9200 Reset Controller

15.1 Overview

This chapter describes the AT91RM9200 reset signals and how to use them in order to assure
correct operation of the device.

The AT91RM9200 has two reset input lines called NRST and NTRST. Each line provides,
respectively:

¢ Initialization of the User Interface registers (defined in the user interface of each peripheral)
and:
— Sample the signals needed at bootup
— Compel the processor to fetch the next instruction at address zero.
* Initialization of the embedded ICE TAP controller.

The NRST signal must be considered as the System Reset signal and the reader must take care
when designing the logic to drive this reset signal. NTRST is typically used by the hardware
debug interface which uses the In-Circuit Emulator unit and Initializes it without affecting the nor-
mal operation of the ARM® processor. This line shall also be driven by an on board logic.

Both NRST and NTRST are active low signals that asynchronously reset the logic in the
AT91RM92000.

15.1.1 Reset Conditions

15.1.1.1 NRST Conditions

1768I-ATARM-09-Jul-09

NRST is the active low reset input. When power is first applied to the system, a power-on reset
(also denominated as “cold” reset) must be applied to the AT91RM9200. During this transient
state, it is mandatory to hold the reset signal low long enough for the power supply to reach a
working nominal level and for the oscillator to reach a stable operating frequency. Typically,
these features are provided by every power supply supervisor which, under a threshold voltage
limit, the electrical environment is considered as not nominal. Power-up is not the only event to
be considered as power-down or a brownout are also occurrences that assert the NRST signal.
The threshold voltage must be selected according to the minimum operating voltage of the
AT91RM9200 power supply lines marked as VDD in Figure 15-1. (See Section 37.2 "DC Char-
acteristics” on page 632.)

The choice of the reset holding delay depends on the start-up time of the low frequency oscilla-
tor as shown below in Figure 15-1. (See Section 37.4.1 ”32 kHz Oscillator Characteristics” on
page 633.)

Figure 15-1. Cold Reset and Oscillator Start-up relationship

V .
VDD(1) DD(min) 4
XIN32 Oscillator Stabilization
after Power-Up
NRST /
/

AImEl@ 117

15.1.1.2

15.1.2

15.1.2.1

15.1.2.2

118

ATMEL

Note: 1. VDD is applicable to VDDIOM, VDDIOP, VDDPLL, VDDOSC and VDDCORE

NRST can also be asserted in circumstances other than the power-up sequence, such as a
manual command. This assertion can be performed asynchronously, but exit from reset is syn-
chronized internally to the default active clock. During normal operation, NRST must be active
for a minimum delay time to ensure correct behavior. See Figure 15-2 and Table 15-1.

Table 15-1. Reset Minimum Pulse Width
Symbol | Parameter Min. Pulse Width Unit
RST1 NRST Minimum Pulse Width 92 ys

Figure 15-2. NRST assertion

RST1 >
NRST N -

NTRST Assertion

As with the NRST signal, at power-up, the NTRST signal must be valid while the power supply
has not obtained the minimum recommended working level. A clock on TCK is not required to
validate this reset request.

As with the NRST signal, NTRST can also be asserted in circumstances other than the power-
up sequence, such as a manual command or an ICE Interface action. This assertion and de-
assertion can be performed asynchronously but must be active for a minimum delay time. (See
Section 38.3 "JTAG/ICE Timings” on page 657.)

Reset Management

System Reset

The system reset functionality is provided through the NRST signal.
This Reset signal is used to compel the microcontroller unit to assume a set of initial conditions:

¢ Sample the Boot Mode Select (BMS) logical state.
¢ Restore the default states (default values) of the user interface.
¢ Require the processor to perform the next instruction fetch from address zero.

With the exception of the program counter and the Current Program Status Register, the proces-
sor’s registers do not have defined reset states. When the microcontroller’'s NRST input is
asserted, the processor immediately stops execution of the current instruction independently of
the clock.

The system reset circuitry must take two types of reset requests into account:

¢ The cold reset needed for the power-up sequence.
* The user reset request.

Both have the same effect but can have different assertion time requirements regarding the
NRST pin. In fact, the cold reset assertion has to overlap the start-up time of the system. The
user reset request requires a shorter assertion delay time than does cold reset.

Test Access Port (TAP) Reset

Test Access Port (TAP) reset functionality is provided through the NTRST signal.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

The NTRST control pin initializes the selected TAP controller. The TAP controller involved in this
reset is determined according to the initial logical state applied on the JTAGSEL pin after the last
valid NRST.

In Boundary Scan Mode, after a NTRST assertion, the IDCODE instruction is set onto the output
of the instruction register in the Test-Logic-Reset controller state.

Otherwise, in ICE Mode, the reset action is as follows:

. The core exits from Debug Mode.

. The IDCORE instruction is requested.

In either Boundary Scan or ICE Mode a reset can be performed from the same or different cir-

cuitry, as shown in Figure 15-3 below, upon system reset at power-up or upon user request.

Figure 15-3. Separate or Common Reset Management

Reset

Controller NTRST NTRST
Reset J
Controller NRST

Reset

Controller NRST
AT91RM9200 AT91RM9200
(1))

Notes: 1. NRST and NTRST handling in Debug Mode during development.

2. NRST and NTRST handling during production.
In order to benefit the most regarding the separation of NRST and NTRST during the Debug
phase of development, the user must independently manage both signals as shown in example
(1) of Figure 15-3 above. However, once Debug is completed, both signals are easily managed
together during production as shown in example (2) of Figure 15-3 above.

15.1.3 Required Features for the Reset Controller

The following table presents the features required of a reset controller in order to obtain an opti-
mal system with the AT91RM9200 processor.

Table 15-2. Reset Controller Functions Synthesis

Feature

Description

Power Supply Monitoring

Overlaps the transient state of the system during power-up/down and brownout.

Reset Active Timeout
Period

Overlaps the start-up time of the boot-up oscillator by holding the reset signal during this delay.

Manual Reset Command

Asserts the reset signal from a logic command and holds the reset signal with a shorter delay than that
of the “Reset Active Timeout Period”.

1768I-ATARM-09-Jul-09

AImEl@ 119

ATMEL

120 AT91RM9200 —ﬂw_ATAW_OQJIOQ

16. Memory Controller(MC)

16.1 Overview

The Memory Controller (MC) manages the ASB bus and controls access by up to four masters.
It features a bus arbiter and an address decoder that splits the 4G bytes of address space into
areas to access the embedded SRAM and ROM, the embedded peripherals and the external
memories through the External Bus Interface (EBI). It also features an abort status and a mis-
alignment detector to assist in application debug.

The Memory Controller allows booting from the embedded ROM or from an external non-volatile
memory connected to the Chip Select 0 of the EBI. The Remap command switches addressing
of the ARM vectors (0x0 - 0x20) on the embedded SRAM.

Key Features of the AT91RM9200 Memory Controller are:

* Programmable Bus Arbiter Handling Four Masters

— Internal Bus is Shared by ARM920T, PDC, USB Host Port and Ethernet MAC
Masters

— Each Master Can Be Assigned a Priority Between 0 and 7
* Address Decoder Provides Selection For
— Eight External 256-Mbyte Memory Areas
— Four Internal 1-Mbyte Memory Areas
— One 256-Mbyte Embedded Peripheral Area
* Boot Mode Select Option
— Non-volatile Boot Memory Can Be Internal or External
— Selection is Made By BMS Pin Sampled at Reset
¢ Abort Status Registers
— Source, Type and All Parameters of the Access Leading to an Abort are Saved
* Misalignment Detector
— Alignment Checking of All Data Accesses
— Abort Generation in Case of Misalignment
* Remap Command
— Provides Remapping of an Internal SRAM in Place of the Boot NVM

AImEl@ 121

1768I-ATARM-09-Jul-09

16.2 Block Diagram

Figure 16-1. Memory Controller Block Diagram

Memory Controller
ASB
ARM920T >
Processor Abort Abort »| Internal
Status | | Memories
Address
Decoder
EMAC e
DMA D
> Bus Misalignment
Arbiter Detector
External
UHP Bus
DMA - P Interface
User
Interface
" A
Peripheral
Coatartjler Y Memory
APB Controller
Bridge Interrupt
Peripheral O < > AIC
- APB
Peripheral 1 < From Master
to Slave
Peripheral N €

122 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

16.3 Functional Description
The Memory Controller (MC) handles the internal ASB bus and arbitrates the accesses of up to
four masters.
It is made up of:

* A bus arbiter

* An address decoder

* An abort status

* A misalignment detector

The Memory Controller handles only little-endian mode accesses. All masters must work in little-
endian mode only.

16.3.1 Bus Arbiter

The Memory Controller has a user-programmable bus arbiter. Each master can be assigned a
priority between 0 and 7, where 7 is the highest level. The bus arbiter is programmed in the reg-
ister MC_MPR (Master Priority Register).

The same priority level can be assigned to more than one master. If requests occur from two
masters having the same priority level, the following default priority is used by the bus arbiter to
determine the first to serve: Master 0, Master 1, Master 2, Master 3.

The masters are:

¢ the ARM920T as the Master 0

* the Peripheral DMA Controller as the Master 1
¢ the USB Host Port as the Master 2

e the Ethernet MAC as the Master 3

16.3.2 Address Decoder
The Memory Controller features an Address Decoder that first decodes the four highest bits of

the 32-bit address bus and defines 11 separate areas:
* One 256-Mbyte address space for the internal memories

* Eight 256-Mbyte address spaces, each assigned to one of the eight chip select lines of the
External Bus Interface

* One 256-Mbyte address space reserved for the embedded peripherals
¢ An undefined address space of 1536M bytes that returns an Abort if accessed

AImEl@ 123

1768I-ATARM-09-Jul-09

External Memory Areas
Figure 16-2 shows the assignment of the 256-Mbyte memory areas.

ATMEL

Figure 16-2. External Memory Areas
S A 0x0000 0000
256M Bytes Internal Memories
,,,,,,,,,,,,,,,,,,,,,,,,, OXOFFF FFFF el
0x1000 0000
256M Bytes Chip Select 0
,,,,,,,,,,,,,,,,,,,,,,,,, OXTFFF FFFF
0x2000 0000
256M Bytes Chip Select 1
,,,,,,,,,,,,,,,,,,,,,,,,, Ox2FFF FFFF
0x3000 0000
256M Bytes Chip Select 2
,,,,,,,,,,,,,,,,,,,,,,,,, OXSFFF FFFF
0x4000 0000) EBI
256M Bytes Ox4FFF FFFF Chip Select 3 External
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Bus
0x5000 0000
256M Bytes Chip Select 4 Interface
,,,,,,,,,,,,,,,,,,,,,,,,, OXSFFF FFFF
0x6000 0000
256M Bytes Chip Select 5
,,,,,,,,,,,,,,,,,,,,,,,,, OX6FFF FFFF
0x7000 0000
256M Bytes Chip Select 6
,,,,,,,,,,,,,,,,,,,,,,,,, OX7FFF FFFF
4 0x8000 0000
256M Bytes Chip Select 7
,,,,,,,,,,,,,,,,,,,,,,,,, OX8FFF FFFF R 2
0x9000 0000
6 x 256M Bytes Undefined
1,536M Bytes (Abort)
,,,,,,,,,,,,,,,,,,,,,,, OXEFFF FFFR
4 0xF000 0000
256M Bytes Peripherals
OxFFFF FFFF

16.3.2.2 Internal Memory Mapping
Within the Internal Memory address space, the Address Decoder of the Memory Controller
decodes eight more address bits to allocate 1-Mbyte address spaces for the embedded

memories.

The allocated memories are accessed all along the 1-Mbyte address space and so are repeated
n times within this address space, n equaling 1M byte divided by the size of the memory.

When the address of the access is undefined within the internal memory area, i.e. over the
address 0x0040 0000, the Address Decoder returns an Abort to the master.

124 AT91RM9200 messssss—

1768I-ATARM-09-Jul-09

Figure 16-3. Internal Memory Mapping After Remap

0x0000 0000

Internal Memory Area 0 1M Byte
0x000F FFFF

0x0010 0000

Internal Memory Area 1

1M Byte
0x001F EFEF Internal ROM

256M b 0x0020 0000 Internal Memory Area 2 MB
ytes yte
0X002F FEEF Internal SRAM
0x0030 0000 [|TTTTTTaTTTTUTTTTTTYTY
Internal Memory Area 3 1M Byte
0x003F FFFF USB Host Port
e
Undefined Area 252M bytes
(Abort)

OXOFFF FFFF

16.3.2.3 Internal Memory Area 0
Depending on the BMS pin state at reset and as a function of the remap command, the memory
mapped at address 0x0 is different. Before execution of the remap command the on-chip ROM
(BMS = 1) or the 16-bit non-volatile memory connected to external chip select zero (BMS = 0) is
mapped into Internal Memory Area 0. After the remap command, the internal SRAM at address
0x0020 0000 is mapped into Internal Memory Area 0. The memory mapped into Internal Mem-
ory Area 0 is accessible in both its original location and at address 0xO.

The first 32 bytes of Internal Memory Area 0 contain the ARM processor exception vectors.

Table 16-1. Internal Memory Area Depending on BMS and the Remap Command

Before Remap After Remap
BMS State 1 0 X
Internal Memory Area 0 Internal ROM External Memory Area 0 Internal SRAM

16.3.2.4 Boot Mode Select
The BMS pin state allows the device to boot out of an internal ROM or out of an external 16-bit
memory connected on the signal NCSO0. The input level on the BMS pin during the last 2 clock
cycles before the reset selects the type of boot memory according to the following conditions:

e If high, the Internal ROM, which is generally mapped within the Internal Memory Area 1, is
also accessible through the Internal Memory Area 0

* If low, the External Memory Area 0, which is generally accessible from address 0x10000000,
is also accessible through the Internal Memory Area 0.

The BMS pin is multiplexed with an I/O line. After reset, this pin can be used as any standard
PIO line.

16.3.3 Remap Command
After execution, the Remap Command causes the Internal SRAM to be accessed through the
Internal Memory Area 0.

As the ARM vectors (Reset, Abort, Data Abort, Prefetch Abort, Undefined Instruction, Interrupt,
and Fast Interrupt) are mapped from address 0x0 to address 0x20, the Remap Command allows
the user to redefine dynamically these vectors under software control.

AImEl@ 125

1768I-ATARM-09-Jul-09

16.3.4

126

Abort Status

ATMEL

The Remap Command is accessible through the Memory Controller User Interface by writing the
MC_RCR (Remap Control Register) RCB field to one.

The Remap Command can be cancelled by writing the MC_RCR RCB field to one, which acts as
a toggling command. This allows easy debug of the user-defined boot sequence by offering a
simple way to put the chip in the same configuration as just after a reset.

Table 16-1 on page 125 is provided to summarize the effect of these two key features on the
nature of the memory mapped to the address 0x0.

There are two reasons for an abort to occur:

¢ an access to an undefined address
* an access to a misaligned address.

When an abort occurs, a signal is sent back to all the masters, regardless of which one has gen-
erated the access. However, only the master having generated the access leading to the abort
takes this signal into account.

The abort signal generates directly an abort on the ARM9TDMI. Note that, from the processor
perspective, an abort can also be generated by the Memory Management Unit of the ARM920T,
but this is obviously not managed by the Memory Controller and not discussed in this section.

The Peripheral DMA Controller does not handle the abort input signal (and that’'s why the con-
nection is not represented in Figure 16-1). The UHP reports an unrecoverable error in the
HclinterruptStatus register and resets its operations. The EMAC reports the Abort to the user
through the ABT bit in its Status Register, which might generate an interrupt.

To facilitate debug or for fault analysis by an operating system, the Memory Controller integrates
an Abort Status register set.

The full 32-bit wide abort address is saved in the Abort Address Status Register (MC_AASR).
Parameters of the access are saved in the Abort Status Register (MC_ASR) and include:

¢ the size of the request (ABTSZ field)
¢ the type of the access, whether it is a data read or write or a code fetch (ABTTYP field)

* whether the access is due to accessing an undefined address (UNDADD bit) or a misaligned
address (MISADD bit)

¢ the source of the access leading to the last abort (MSTO0, MST1, MST2 and MST3 bits)

* whether or not an abort occurred for each master since the last read of the register
(SVMSTO, SVMST1, SVMST2 and SVMST3 bits) except if it is traced in the MST bits.

In case of Data Abort from the processor, the address of the data access is stored. This is prob-
ably the most useful, as finding which address has generated the abort would require
disassembling the instruction and full knowledge of the processor context.

However, in case of prefetch abort, the address might have changed, as the prefetch abort is
pipelined in the ARM processor. The ARM processor takes the prefetch abort into account only if
the read instruction is actually executed and it is probable that several aborts have occurred dur-
ing this time. So, in this case, it is preferable to use the content of the Abort Link register of the
ARM processor.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

16.3.5 Misalignment Detector

The Memory Controller features a Misalignment Detector that checks the consistency of the
accesses.

For each access, regardless of the master, the size of access and the 0 and 1 bits of the
address bus are checked. If the type of access is a word (32-bit) and the 0 and 1 bits are not O,
or if the type of the access is a half-word (16-bit) and the 0 bit is not 0, an abort is returned to the
master and the access is cancelled. Note that the accesses of the ARM processor when it is
fetching instructions are not checked.

The misalignments are generally due to software errors leading to wrong pointer handling.
These errors are particularly difficult to detect in the debug phase.

As the requested address is saved in the Abort Status and the address of the instruction gener-
ating the misalignment is saved in the Abort Link Register of the processor, detection and
correction of this kind of software error is simplified.

16.3.6 Memory Controller Interrupt

1768I-ATARM-09-Jul-09

The Memory Controller itself does not generate any interrupt. However, as indicated in Figure
16-1, the Memory Controller receives an interrupt signal from the External Bus Interface, which
might be activated in case of Refresh Error detected by the SDRAM Controller. This interrupt
signal just transits through the Memory Controller, which can neither enable/disable it nor return
its activity.

This Memory Controller interrupt signal is ORed with the other System Peripheral interrupt lines
(RTC, ST, DBGU, PMC) to provide the System Interrupt on Source 1 of the Advanced Interrupt
Controller.

AImEl@ 127

ATMEL

16.4 User Interface
Base Address: OxFFFFFFOO

AT91RM9200 Memory Controller Memory Map

Offset Register Name Access Reset State
0x00 MC Remap Control Register MC_RCR Write-only

0x04 MC Abort Status Register MC_ASR Read-only 0x0
0x08 MC Abort Address Status Register MC_AASR Read-only 0x0
0x0C MC Master Priority Register MC_MPR Read/Write 0x3210
0x10 - 0x5C Reserved

0x60 EBI Configuration Registers See “External Bus Interface (EBI)” on page 133

128 A T91 RIVI'O:2 0 () 50000000

16.4.1 MC Remap Control Register
Register Name: MC_RCR

Access Type: Write-only
Absolute Address: OxFFFF FFOO

31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | roB |

¢ RCB: Remap Command Bit
0: No effect.

1: This Command Bit acts on a toggle basis: writing a 1 alternatively cancels and restores the remapping of the page zero
memory devices.

AI“]EL@ 129

1768I-ATARM-09-Jul-09

ATMEL

16.4.2 MC Abort Status Register

Register Name: MC_ASR

Access Type: Read-only

Reset Value: 0x0

Absolute Address: OxFFFF FFO4
31 30 29 28 27 26 25 24

| - | - [- | - SVMST3 | SVMST2 SVMST1 | SVMSTO
23 22 21 20 19 18 17 16

| - | - [- | - MST3 | MST2 MST1 [MSTO
15 14 13 12 11 10 9 8

| - | — [- | - ABTTYP ABTSZ
7 6 5 4 3 2 1 0

| - | - | - | - - | - MISADD UNDADD

UNDADD: Undefined Address Abort Status
0: The last abort was not due to the access of an undefined address in the address space.

1: The last abort was due to the access of an undefined address in the address space.

MISADD: Misaligned Address Abort Status

0: The last aborted access was not due to an address misalignment.

1: The last aborted access was due to an address misalignment.

ABTSZ: Abort Size Status

ABTSZ Abort Size
0 0 Byte
0 1 Half-word
1 0 Word
1 1 Reserved

e ABTTYP: Abort Type Status

ABTTYP Abort Type
0 0 Data Read
0 1 Data Write
1 0 Code Fetch
1 1 Reserved

e MSTO: ARM920T Abort Source

0: The last aborted access was not due to the ARM920T.

1: The last aborted access was due to the ARM920T.

130 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

e MST1: PDC Abort Source
0: The last aborted access was not due to the PDC.

1: The last aborted access was due to the PDC.

e MST2: UHP Abort Source

0: The last aborted access was not due to the UHP.

1: The last aborted access was due to the UHP.

¢ MST3: EMAC Abort Source

0: The last aborted access was not due to the EMAC.

1: The last aborted access was due to the EMAC.

¢ SVMSTO: Saved ARM920T Abort Source

0: No abort due to the ARM920T occurred since the last read of MC_ASR or it is notified in the bit MSTO.
1: At least one abort due to the ARM920T occurred since the last read of MC_ASR.

e SVMST1: Saved PDC Abort Source

0: No abort due to the PDC occurred since the last read of MC_ASR or it is notified in the bit MST1.
1: At least one abort due to the PDC occurred since the last read of MC_ASR.

¢ SVMST2: Saved UHP Abort Source

0: No abort due to the UHP occurred since the last read of MC_ASR or it is notified in the bit MST2.
1: At least one abort due to the UHP occurred since the last read of MC_ASR.

¢ SVMSTS3: Saved EMAC Abort Source

0: No abort due to the EMAC occurred since the last read of MC_ASR or it is notified in the bit MST3.
1: At least one abort due to the EMAC occurred since the last read of MC_ASR.

AI“]EL@ 131

1768I-ATARM-09-Jul-09

16.4.3 MC Abort Address Status Register

Register Name: MC_AASR

Access Type: Read-only

Reset Value: 0x0

Absolute Address: OxFFFF FF08
31 30 29 28 27 26 25 24

| ABTADD |
23 22 21 20 19 18 17 16

| ABTADD |
15 14 13 12 11 10 9 8

| ABTADD |
7 6 5 4 3 2 1 0

| ABTADD |

e ABTADD: Abort Address
This field contains the address of the last aborted access.

16.4.4 MC Master Priority Register

Register Name: MC_MPR

Access Type: Read/Write

Reset Value: 0x3210

Absolute Address: OxFFFF FFOC
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | MSTP3 | - | MSTP2 |
7 6 5 4 3 2 1 0

| - | MSTP1 | - | MSTPO |

e MSTPO: ARM920T Priority
e MSTP1: PDC Priority
e MSTP2: UHP Priority

e MSTP3: EMAC Priority
000: Lowest priority
111: Highest priority

In the case of equal priorities, Master 0 has highest and Master 3 has lowest priority.

132 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

17. External Bus Interface (EBI)

17.1 Overview

1768I-ATARM-09-Jul-09

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an ARM-based device. The
Static Memory, SDRAM and Burst Flash Controllers are all featured external Memory Control-
lers on the EBI. These external Memory Controllers are capable of handling several types of
external memory and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash,
SDRAM and Burst Flash.

The EBI also supports the CompactFlash and the NAND Flash/SmartMedia protocols via inte-
grated circuitry that greatly reduces the requirements for external components. Furthermore, the
EBI handles data transfers with up to eight external devices, each assigned to eight address
spaces defined by the embedded Memory Controller. Data transfers are performed through a
16-bit or 32-bit data bus, an address bus of up to 26 bits, up to eight chip select lines (NCS[7:0])
and several control pins that are generally multiplexed between the different external Memory
Controllers.

Features of the EBI are:

* Integrates Three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— Burst Flash Controller
» Additional Logic for NAND Flash/SmartMedia and CompactFlash Support
¢ Optimized External Bus:
— 16- or 32-bit Data Bus'"
— Up to 26-bit Address Bus, Up to 64 Mbytes Addressable
— Up to 8 Chip Selects, Each Reserved for one of the Eight Memory Areas
— Optimized Pin Multiplexing to Reduce Latencies on External Memories
» Configurable Chip Select Assignment:
— Burst Flash Controller or Static Memory Controller on NCSO
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia Support

— Static Memory Controller on NCS4 - NCS6, Optional NAND Flash/SmartMedia and
CompactFlash Support

— Static Memory Controller on NCS7
Note: 1. The 32-bit Data Bus is for SDRAM only.

AImEl@ 133

ATMEL

17.2 Block Diagram
Figure 17-1 below shows the organization of the External Bus Interface.

Figure 17-1. Organization of the External Bus Interface

Memory External Bus Interface
Controller

D[15:0]

27>

ASB — | SDRAM) AO/NBSO

Controller

A1/NWR2/NBS2

A[15:2], A[22:18]

A16/BAO
< > MUX

Burst Flash Logic
Controller

A17/BA1

NCS0/BFCS

NCS1/SDCS

NCS2

NCS3/SMCS
NRD/NOE/CFOE
NWRO/NWE/CFWE

Static
Memory

> p| Controller | q———

NWR1/NBS1/CFIOR

NWRS3/NBS3/CFIOW
SDCK

SDCKE

RAS

CAS

SDWE
SDA10
D[31:16]

alll ol
> NAND Flash/ |~ ~
SmartMedia

Logic

A[24:23]
A25/CFRNW

PIO

CompactFlash
Logic

NCS4/CFCS

NCS5/CFCE1

NCS6/CFCE2

NCS7
BFCK
BFAVD

Address Decoder Chip Select
Assignor

BFBAA/SMWE

BFOE

BFRDY/SMOE
User Interface

i

y

BFWE

bhbbbabbsbobhbbbAbbAtbALEaALAAGLEAG

NWAIT

Y 3

APB

134 AT91RM9200 messssss—

17.3 1/0 Lines Description

Table 17-1. 1/O Lines Description
Name Function Type Active Level
EBI
D[31:0] Data Bus I/0
A[25:0] Address Bus Output
SMC
NCS[7:0] Chip Select Lines Output Low
NWR[1:0] Write Signals Output Low
NOE Output Enable Output Low
NRD Read Signal Output Low
NBSH1 NUB: Upper Byte Select Output Low
NBSO NLB: Lower Byte Select Output Low
NWE Write Enable Output Low
NWAIT Wait Signal Input Low
EBI for CompactFlash Support
CFCE[2:1] CompactFlash Chip Enable Output Low
CFOE CompactFlash Output Enable Output Low
CFWE CompactFlash Write Enable Output Low
CFIOR CompactFlash I/O Read Signal Output Low
CFIiowW CompactFlash 1/0O Write Signal Output Low
CFRNW CompactFlash Read Not Write Signal Output
CFCS CompactFlash Chip Select Line Output Low
EBI for NAND Flash/SmartMedia Support
SMCS NAND Flash/Smart Media Chip Select Line Output Low
SMOE NAND Flash/SmartMedia Output Enable Output Low
SMWE NAND Flash/SmartMedia Write Enable Output Low
SDRAM Controller
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Line Output Low
BA[1:0] Bank Select Output
SDWE SDRAM Write Enable Output Low
RAS - CAS Row and Column Signal Output Low
NWR([3:0] Write Signals Output Low
NBS[3:0] Byte Mask Signals Output Low
SDA10 SDRAM Address 10 Line Output
ATMEL 135
I)

1768I-ATARM-09-Jul-09

ATMEL

Table 17-1. 1/O Lines Description (Continued)

Name Function Type Active Level
Burst Flash Controller

BFCK Burst Flash Clock Output

BFCS Burst Flash Chip Select Line Output Low
BFAVD Burst Flash Address Valid Signal Output Low
BFBAA Burst Flash Address Advance Signal Output Low
BFOE Burst Flash Output Enable Output Low
BFRDY Burst Flash Ready Signal Input High
BFWE Burst Flash Write Enable Output Low

The connection of some signals through the MUX logic is not direct and depends on the Memory
Controller in use at the moment.

Table 17-2 below details the connections between the three Memory Controllers and the EBI

pins.

Table 17-2. EBI Pins and Memory Controllers I/O Line Connections

EBI Pins SDRAMC I/O Lines BFC I/O Lines SMC 1/O Lines
NWR1/NBS1/CFIOR NBS1 Not Supported NWR1/NUB
AO/NBSO Not Supported Not Supported AO/NLB
A1 Not Supported AO Al
A[11:2] A[9:0] A[10:1] A[11:2]
SDA10 A10 Not Supported Not Supported
A12 Not Supported A1 A12
A[14:13] Al12:11] A[13:12] A[14:13]
A[25:15] Not Supported A[24:14] A[25:15]
D[31:16] D[31:16] Not Supported Not Supported
D[15:0] D[15:0] D[15:0] D[15:0]

136 AT9T1RM9200 m———

1768I-ATARM-09-Jul-09

17.4 Application Example

17.441 Hardware Interface
Table 17-3 below details the connections to be applied between the EBI pins and the external
devices for each Memory Controller.

Table 17-3. EBI Pins and External Device Connections

Pins of the Interfaced Device
2 x 8-bit
8-bit Static Static 16-bit Static | Burst Flash NAND Flash/
Pin Device Devices Device Device SDRAM CompactFlash SmartMedia
Controller SMC BFC SDRAMC SMC
DO - D7 DO - D7 DO - D7 DO - D7 DO - D7 DO - D7 DO - D7 ADO - AD7
D8 - D15 - D8 - D15 D8 - D15 D8 - D15 D8 - D15 D8 - 15 -
D16 - D31 - - - - D16 - D31 - -
AO/NBSO AO - NLB - DQMO AO -
A1/NWR2/NBS2 A1 A0 A0 A0 DQM2 A1 -
A2 - A9 A2 - A9 Al -A8 A1-A8 A1 -A8 AO - A7 A2 - A9 -
A10 A10 A9 A9 A9 A8 A10 -
A1 A1 A10 A10 A10 A9 - -
SDA10 - - - - A10 - -
A12 A12 A1 A1 A1 - - -
A13-A14 A13-A14 | A12-A13 | A12-A13 A12-A13 | A11-A12 - -
A15 A15 A14 A4 Al4 - - _
A16/BA0 A16 A15 A15 A15 BAO - -
A17/BA1 A17 A16 A16 A16 BA1 - -
A18 - A20 A18-A20 | A17-A19 | A17-A19 A17 - A19 - - -
A21 A21 A20 A20 A20 - - CLE
A22 A22 A21 A21 A21 - REG® ALE
A23 - A24 A23-A24 | A22-A23 | A22-A23 A22 - A23 - - -
A25 A25 A24 A24 A24 - CFRNW(® -
NCSO0/BFCS Cs Cs cs Cs - - -
NCS1/SDCS cs cs cs - cs - -
NCS2 cs cs cs - - - -
NCS3/SMCS cs Cs CSs - - - -
NCS4/CFCS cs CS cs - - CFCcs -
NCS5/CFCE1 CS cs Cs - - CE1 -
NCS6/CFCE2 cs cs cs - - CE2 -
NRD/NOE/CFOE OE OE OE - - OE
NWRO/NWE/CFWE WE WE®) WE - - WE
] AImEl 137
Y 5

1768I-ATARM-09-Jul-09

ATMEL

Table 17-3. EBI Pins and External Device Connections (Continued)
Pins of the Interfaced Device
2 x 8-bit
8-bit Static Static 16-bit Static | Burst Flash NAND Flash/
Pin Device Devices Device Device SDRAM CompactFlash SmartMedia
Controller SMC BFC SDRAMC SMC
NWR1/NBS1/CFIOR - WE® NUB - DQM1 IOR -
NWR3/NBS3/CFIOW - - - - DQM3 (o) -
BFCK - - - CK - - -
BFAVD - - - AVD - - -
BFBAA/SMWE - - - BAA - - WE
BFOE - - - OE - - -
BFRDY/SMOE - - - RDY - - OE
BFWE - - - WE - - -
SDCK - - - - CLK - -
SDCKE - - - - CKE - -
RAS - - - - RAS - -
CAS - - - - CAS - -
SDWE - - - - WE - -
NWAIT - - - - - WAIT -
Pxx@ - - - - - CD1 or CD2 -
Pxx® - - - - - - CE
Pxx@ - - - - - - RDY
Notes: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer between the EBI data bus and

the CompactFlash slot.

2. Any PIO line.

3. The REG signal of the CompactFlash can be driven by any of the following address bits: A24, A22 to A11. For details, see
Section 17.6.6 “CompactFlash Support” on page 141.

4. NWR1 enables upper byte writes. NWRO enables lower byte writes.

138

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

17.4.2

Connection Examples

Figure 17-2 below shows an example of connections between the EBI and external devices.

Figure 17-2. EBI Connections to Memory Devices

EBI

DO0-D31

RAS

CAS

SDCK
SDCKE
SDWE
AO0/NBSO
NWR1/NBS1
A1/NWR2/NBS2
NWR3/NBS3
NRD/NOE
NWRO/NWE

SDA10

A2-A15
A16/BA0
A17/BA1
A18-A25

NCS0/BFCS
NCS1/SDCS
NCS2
NCS3
NCS4
NCS5
NCS6
NCS7

BFCLK
BFOE
BFWE

BFAVD

BFRDY

AT91RM9200

1768I-ATARM-09-Jul-09

ATMEL

N
2M x 8 2M x 8
SDRAM SDRAM
DO-D7 D8-D15
D0-D7 Do-D7
cs s
CLK CLK
CKE A0-A9, A11| A2-A11,A13 P A0-A9, A11] A2-A11, A13
SDWE| WE A10 SOWE] e A10| _SDA10
RAS BA0 [AT6/BA0 RAS BAO [_A16/BA0
CAS BA1 [_AT7/BAT oAS BA1 [_A17/BA1
DQM DaM
NBSO NBS1
— [\
N\
\| /
_\\ / N
2M x 8 2M x 8
\D16-D23 |, D7SDRAM D24-D31 SDRAM
- DO-D7
cs cs
CLK CLK
A2-A11,A13
CKE A0-A9, A11 CKE A0-A9, A11
SDWE \vE A10 i?ééio SDWEL e A10 A2-A11,A13
RAS BAo [0 BAC RAS BAO SDA10
CAS BA1 CAS BA1 A16/BAO
DQM DQM A17/BA1
NBS3
NBS2
>
/ /
W N
V4
N
2M x 16
Burst Flash
po-D15 | 0P8 A0-A20 A1-A21
CE
CLK
OE
WE
AVD
RDY
/
((/
128K x 8 128K x 8
SRAM SRAM
A1-A17 A1-A17
D0-D7 D0-D7 AO-A16 D8-D12 D0-D7 A0-A16
cs cs
N—] OE
_NRD/NOE WE WE
AO/NWRO/NBSO NWR1/NBS1
\

139

ATMEL

17.5 Product Dependencies

17.5.1 I/O Lines
The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If I/O lines of the External Bus Interface are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

17.6 Functional Description

The EBI transfers data between the internal ASB Bus (handled by the Memory Controller) and
the external memories or peripheral devices. It controls the waveforms and the parameters of
the external address, data and control busses and is composed of the following elements:

¢ The Static Memory Controller (SMC)

* The SDRAM Controller (SDRAMC)

¢ The Burst Flash Controller (BFC)

* A chip select assignment feature that assigns an ASB address space to the external devices.
¢ A multiplex controller circuit that shares the pins between the different Memory Controllers.

¢ Programmable CompactFlash support logic

* Programmable NAND Flash /SmartMedia and support logic

17.6.1 Bus Multiplexing
The EBI offers a complete set of control signals that share the 32-bit data lines, the address
lines of up to 26 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses. Lastly, it prevents burst accesses on
the same page of a burst Flash from being interrupted which avoids the need to restart a high-
latency first access.

17.6.2 Pull-up Control
The EBI permits enabling of on-chip pull-up resistors on the data bus lines not multiplexed with
the P10 Controller lines. The pull-up resistors are enabled after reset. Setting the DBPUC bit dis-
ables the pull-up resistors on the DO to D15 lines. Enabling the pull-up resistor on the D16 - D31
lines can be performed by programming the appropriate PIO controller.

17.6.3 Static Memory Controller
For information on the Static Memory Controller, refer to the SMC Section 18.1 “Description” on
page 155.

17.6.4 SDRAM Controller
For information on the SDRAM Controller, refer to the SDRAMC description on Section 19.1
“Overview” on page 193.

140 AT91RM9200 messssssss—

17.6.5 Burst Flash Controller

For information on the Burst Flash Controller, refer to the BFC Section 20.1 “Overview” on page
215.

17.6.6 CompactFlash Support

The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 address
space. Programming the CS4A field of the Chip Select Assignment Register (See Section 17.8.1
"EBI Chip Select Assignment Register” on page 152.) to the appropriate value enables this logic.
Access to an external CompactFlash device is then made by accessing the address space
reserved to NCS4 (i.e., between 0x5000 0000 and Ox5FFF FFFF).

When multiplexed with CFCE1 and CFCEZ2 signals, the NCS5 and NCS6 signals become
unavailable. Performing an access within the address space reserved to NCS5 and NCSE6 (i.e.,
between 0x6000 0000 and 0x7FFF FFFF) may lead to an unpredictable outcome.

The True IDE Mode is not supported and in I/O Mode, the signal _IOIS16 is not managed.

17.6.6.1 I/O Mode, Common Memory Mode and Attribute Memory Mode

Within the NCS4 address space, the current transfer address is used to distinguish I/O mode,
common memory mode and attribute memory mode. More precisely, the A23 bit of the transfer
address is used to select I/O Mode. Any EBI address bit not required by the CompactFlash
device (i.e., bit A24 or bits A22 to A11) can be used to separate common memory mode and
attribute memory mode. Using the A22 bit, for example, leads to the address map in Figure 17-3
below. In this figure, “i” stands for any hexadecimal digit.

Figure 17-3. Address Map Example

0x5iBF FFFF A

A23 =1

A22 =0 I/0 Mode
0x5i80 0000 \4
OX5i7F FFFF & 230

A2D = 1 Common Memory Mode
0x5i40.0000 Y
0x5i3F FFFF

A23=0 i

A22 = 0 Attribute Memory Mode
0x5i00.0000 Y

Note: In the above example, the A22 pin of the EBI can be used to drive the REG signal of the Compact-
Flash Device.

17.6.6.2 Read/Write Signals

1768I-ATARM-09-Jul-09

In I/0O mode, the CompactFlash logic drives the read and write command signals of the SMC on
CFIOR and CFIOW signals, while the CFOE and CFWE signals are deactivated. Likewise, in
common memory mode and attribute memory mode, the SMC signals are driven on the CFOE
and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure 17-4 on page 142
demonstrates a schematic representation of this logic.

Attribute memory mode, common memory mode and I/O mode are supported by setting the
address setup and hold time on the NCS4 chip select to the appropriate values. For details on
these signal waveforms, please refer to: Section 18.6.5 “Setup and Hold Cycles” on page 168 of
the Static Memory Controller documentation.

AImEl@ 141

ATMEL

Figure 17-4. CompactFlash Read/Write Control Signals

External Bus Interface
SMC CompactFlash Logic
A23 °
1—»N
11— » CFIOR
» CFIOW
Ll
NRD_NOE » 4
NWRO_NWE | » » CFOE
11— » CFWE
1—»/

17.6.6.3 Access Type

The CFCE1 and CFCE2 signals enable upper- and lower-byte access on the data bus of the
CompactFlash device in accordance with Table 17-4 below. The odd byte access on the D[7:0]
bus is only possible when the SMC is configured to drive 8-bit memory devices on the NCS4 pin.
The Chip Select Register (DBW field in Section 18.7.1 “SMC Chip Select Registers” on page
190) of the NCS4 address space must be set as shown in Table 17-4 to enable the required
access type. The CFCE1 and CFCE2 waveforms are identical to the NCS4 waveform. For
details on these waveforms and timings, refer to the Static Memory Controller Section 18.1
“Description” on page 155.

Table 17-4. Upper- and Lower-byte Access

Access CFCE2 CFCEA1 A0 D[15:8] D[7:0] SMC_CSR4 (DBW)
1 0 0 Don’t Care/High Z Even Byte 8-bit or 16-bit

Byte R/W Access
1 0 1 Don’t Care/High Z Odd Byte 8-bit

Odd Byte R/W Access 0 1 X Odd Byte Don’t Care/High Z 16-bit

Half-word R/W Access 0 0 X Odd Byte Even Byte 16-bit

17.6.6.4 Multiplexing of CompactFlash Signals on EBI Pins

Table 17-5 below and Table 17-6 on page 143 illustrate the multiplexing of the CompactFlash
logic signals with other EBI signals on the EBI pins. The EBI pins in Table 17-5 are strictly dedi-
cated to the CompactFlash interface as soon as the CS4A field of the Chip Select Assignment
Register is set (See Section 17.8.1 "EBI Chip Select Assignment Register” on page 152.) These
pins must not be used to drive any other memory devices.

142 AT91RM9200 mes—

1768I-ATARM-09-Jul-09

The EBI pins in Table 17-6 on page 143 remain shared between all memory areas when the
CompactFlash interface is enabled (CS4A = 1).

Table 17-5. Dedicated CompactFlash Interface Multiplexing

CS4A =1 CS4A =0
Pins CompactFlash Signals EBI Signals
NCS4/CFCS CFCS NCS4
NCS5/CFCE1 CFCE1 NCS5
NCS6/CFCE2 CFCE2 NCS6

Table 17-6. Shared CompactFlash Interface Multiplexing

Access to CompactFlash Device Access to Other EBI Devices
Pins CompactFlash Signals EBI Signals
NOE/NRD/CFOE CFOE NRD/NOE
NWRO/NWE/CFWE CFWE NWRO/NWE
NWR1/NBS1/CFIOR CFIOR NWR1/NBS1
NWR3/NBS3/CFIOW CFIOW NWR3/NBS3
A25/CFRNW CFRNW A25

17.6.6.5 CompactFlash Application Example

1768I-ATARM-09-Jul-09

Figure 17-5 below illustrates an example of a CompactFlash application. CFCS and CFRNW
signals are not directly connected to the CompactFlash slot, but do control the direction and the
output enable of the buffers between the EBI and the CompactFlash Device. The timing of the
CFCS signal is identical to the NCS4 signal. Moreover, the CFRNW signal remains valid
throughout the transfer, as does the address bus. The CompactFlash _WAIT signal is con-
nected to the NWAIT input of the Static Memory Controller. For details on these waveforms and
timings, refer to the Static Memory Controller Section 18.1 “Description” on page 155.

AImEl@ 143

ATMEL

Figure 17-5. CompactFlash Application Example

EBI CompactFlash Connector
D[15:0] r(>‘|| | D[15:0]
DIR /OE
A25/CFRNW !
NCS4/CFCS ﬁ
CD (PIO) ((-1
l N\ _CD2
JOE
A[10:0] 'l> A[10:0]
A22/REG > _REG
NOE/CFOE ll> _OE
NWE/CFWE > _WE
NWR1/CFIOR > _IORD
NWRS/CFIOW > _IOWR
NCS5/CFE1 ll> _CE1
NCS6/CFE2 > _CE2
NWAIT <} _WAIT

17.6.7 NAND Flash/ SmartMedia Support
The EBI integrates circuitry that interfaces to NAND Flash/SmartMedia devices.

The NAND Flash/SmartMedia logic is driven by the Static Memory Controller on the NCS3
address space. Programming the CS3A field in the Chip Select Assignment Register to the
appropriate value enables the NAND Flash/SmartMedia logic (See Section 17.8.1 "EBI Chip
Select Assignment Register” on page 152.) Access to an external NAND Flash/SmartMedia
device is then made by accessing the address space reserved to NCSS3 (i.e., between 0x4000
0000 and Ox4FFF FFFF).

The NAND Flash/SmartMedia Logic drives the read and write command signals of the SMC on
the SMOE and SMWE signals when the NCS3 signal is active. SMOE and SMWE are invali-
dated as soon as the transfer address fails to lie in the NCS3 address space. For details on
these waveforms, refer to the Static Memory Controller Section 18.1 “Description” on page 155.

The SMWE and SMOE signals are multiplexed with BFRDY and BFBAA signals of the Burst
Flash Controller. This multiplexing is controlled in the MUX logic part of the EBI by the CS3A
field of the Chip Select Assignment Register (See Section 17.8.1 "EBI Chip Select Assignment
Register” on page 152.) This logic also controls the direction of the BFRDY/SMOE pad.

144 AT91RM9200 messsssss—

AT91RM9200

Figure 17-6. NAND Flash/SmartMedia Signal Multiplexing on EBI Pins

BFC MUX Logic
y
BFRDY 1« - BFRDY_SMOE
BFBAA J\
|) > BFBAA_SMWE
A
SMC NAND Flash/Smart Media
Logic
NCS3 ‘] ™~ SMOE
NRD_NOE) J
{\ SMWE
NWRO_NWE 4

1768I-ATARM-09-Jul-09

EBI User Interface
| CS3A I

The address latch enable and command latch enable signals on the NAND Flash/SmartMedia
device are driven by address bits A22 and A21 of the EBI address bus. The user should note
that any bit on the EBI address bus can also be used for this purpose. The command, address or
data words on the data bus of the NAND Flash/SmartMedia device are distinguished by using
their address within the NCS3 address space. The chip enable (CE) signal of the device and the
ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains asserted even
when NCS3 is not selected, preventing the device from returning to standby mode. Some func-
tional limitation with the supported burst Flash device will occur when the NAND
Flash/SmartMedia device is activated due to the fact that the SMOE and SMWE signals are mul-
tiplexed with BFRDY and BFBAA signals respectively.

AImEl@ 145

ATMEL

Figure 17-7. NAND Flash/SmartMedia Application Example

D[7:0
L [7:0] P AD[7:0]
A[22:21
!] P| ALE
» CLE
NCS3/SMCS Not Connected
EBI
NAND Flash/SmartMedia

BFBAA/SMWE »| NWE

BFRDY/SMOE »| NOE
P1O »| CE
PIO |« R/B

146 AT91RM9200 messs—

17.7 Implementation Examples
17.7.1 16-bit SDRAM

17.7.1.1 Hardware Configuration

EBI SDRAM INTERFACE
ApD.25] [
) I

e

SOWE (i——
SDAID
SDCKE

SDCK

CFICR_MBS1_NWR*
CFIOW_NBE3_MWR

13

SDCEC

o Rhradl VEF ol

SDCKE a7

SDCK 5T
AD HESD 15
CFIOR MBS1 MWR1 33 LA

1]

LT

CIE O C4s
i0aNF 130
41

CAS 17

BA3 13RS

SDWE i -
i

- 19 ==

Cd5

C33 4 (
100MF 100NF 10ONF 100MF

128 Mbits =

17.7.1.2 Software Configuration
The following configuration has to be performed:

* Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip
Select Assignment Register located in the bus matrix memory space
* Initialize the SDRAM Controller accordingly to SDRAM device and system bus frequency.
The Data Bus Width is to be programmed to 16 bits.

The SDRAM initialization sequence is described in the “SDRAM Device Initialization” part of the
SDRAM controller.

AImEl@ 147

1768I-ATARM-09-Jul-09

17.7.2 32-bit SDRAM

17.7.2.1 Hardware Configuration

i
1 EBI SDRAM INTERFACE
i
H RN ,
i
' o3 <>
1 - i
' %
i iy i
1 1
[N I
i 3 i
i SOAT I
1 DCK]
i i
1 - i
[;
[’ i
) Lo ¥ i u200
— Az 2 =] Az
1 spc 2 2 e H—sr—— x A apemcmnag DO
I .2} 28— A1 oo H—p " A
________________________________ 4 - 2 az oo —r = A2
X =2 Az a3 H— T A2
cul] se: F—m, Al
rm 005 =T—F . AL
A ag B - A%
3 ral a7 [HA—gs a7
or AR Soa -4 AL
T oca - 5 A3
Ay = A paio 2% A0
il AN1 oan - w AN
5 BAD s oaiz HA—2e y
s e pans [-40—23 40
AT B 21 ey pas + 841
A4 2w e o
LS ; s
b L= voo L - N2
SOCKE 37 o0 =7
e o cxE
— vopg -2
e ST vooa [ek
s N]
0 NEISO 4 = Las .
D o0a 1=l=l% soL
LECR NBLT WNRL 33 poum - - - = - =
CAS 12 | e b J—
= 1] T T T T el
BA 1 IEE -2 1 W5
SOWE 18 | o = cM oo cas W
10| 5 - 100MF 100N 1DONF =
= V=5 €3 Ca C41 48 =
T00NF 100N 100NF 100NF
128 Mbits =

128 Mbits

17.7.2.2 Software Configuration
The following configuration has to be performed:

* Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip
Select Assignment Register located in the bus matrix memory space
¢ |nitialize the SDRAM Controller accordingly to SDRAM device and system bus frequency.

The Data Bus Width is to be programmed to 32 bits. The data lines D[16..31] are multiplexed
with PIO lines and thus the dedicated PIOs must be programmed in peripheral mode in the PIO
controller.

The SDRAM initialization sequence is described in the “SDRAM Device Initialization” part of the
SDRAM controller.

146 AT91RM9200 messs—

1768I-ATARM-09-Jul-09

17.7.3

17.7.3.1

17.7.3.2

1768I-ATARM-09-Jul-09

NOR Flash on NCSO

Hardware Configuration

oE.31] <
AD..25] — -
A1 = [22 Do
A2 o | A9 oac =, D
A3 o3 :4 gg‘ - 2
AL 22 13 a3 | D
- R-TH by pad |2 —o
A5 20 | e Do |42 DS
AT e Dae 2 D/
N TN par [2—2I
A9 3 bas 2 G
A T las pas (-2 3
S Ao 0Qid S —
= A11 DQ11 _H___z_
T A2 5o FE—p—
- 2 A13 oot P
= Z - =
Py Atd pais M —pg—
PEE — ats nais PE————
w3 NAIE | e
A9 1E) A1E ATAIEVEALE
W - e
o I
B2 90 |00
R32 A22 CH s "y
47K NI
o)
- -
NRST 2 REsET veea L
CEWE_NWE_NWRD e it
W20 . VP . -
R32 OR o BT 1K 4 ,‘ETDF =cz8 ca7
R, SR o | WE 4 100N® | 100NF
SFCS_NCS0 2— " £ CE enp 2
CFOE_NCE_NRD o= GND =

Software Configuration

The default configuration for the Static Memory Controller, byte select mode, 16-bit data bus,
Read/Write controlled by Chip Select, allows boot on a 16-bit non-volatile memory at slow clock.

For other configurations, configure Static Memory Controller CS0 Setup, Pulse, Cycle and Mode
accordingly to Flash timings and system bus frequency.

AI“IE'.@ 149

17.74 Compact Flash

17.7.4.1 Hardware Configuration

DBO. 31
AB{0..25]
Fe[0.15] [fe— ;

b e s e

COMPACT FLASH CONNECTOR

W

c132
100NF

TT

00NF

21 pig GHD
ooa GHD

e fn 5

MNTEA
TALVC22A

WE# CsELs

IOWR# INPACKS

BVD2
cezs BVD1

R141
47K

[38 5
42 5
la5 o
[an =
2 A0
[2a O
o |z

BR R
o

PS[0..29]
COMPACTFLASH
CARD DETECT

17.7.4.2 Software Configuration
The following configuration has to be performed:

* Assign the EBI CS4 to the CompactFlash slot by setting the bit EBI_CS4A in the EBI Chip
Select Assignment Register located in the Bus Matrix memory space.

* The address line A23 is to select I/0 (A23=1) or Memory mode (A23=0) and the address line
A22 for REG function.

* A23, CFRNW, CFCSO0, CFCE1 and CFCEZ2 signals are multiplexed with PIO lines and thus
the dedicated PIOs must be programmed in peripheral mode in the PIO controller

* Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and
CARD DETECT functions respectively.

¢ Configure SMC CS4 Setup, Pulse, Cycle and Mode accordingly to Compact Flash timings
and system bus frequency.

150 A T91 RIVI'O:2 0 () 50000000

17.8 External Bus Interface (EBI) User Interface
AT91RM9200 EBI User Interface Base Address: OxFFFF FF60

Table 17-7. External Bus Interface Memory Map

Offset Register Name Access Reset State
0x00 Chip Select Assignment Register EBI_CSA Read/Write 0x0
0x04 Configuration Register EBI_CFGR Read/Write 0x0
0x08 Reserved -
0x0C Reserved -
0x10 - 0x2C SMC User Interface (See Section 18.7 "Static Memory Cicggt;oller (SMC) User Interface” on page
0x30 - 0x5C SDRAMC User Interface (See Section 19.7 "SDRAM Controller (SDRAMC) User Interface” on page 205.)
0x60 BFC User Interface (See Section 20.7 "Burst Flash Controller (BFC) User Interface” on page 227.)

0x64 - 0x9C Reserved

AImEl@ 151

1768I-ATARM-09-Jul-09

17.8.1

EBI Chip Select Assignment Register

ATMEL

Register Name: EBI_CSA

Access Type: Read/Write

Reset Value: 0x0

Offset: 0x0

Absolute Address: OxFFFF FF60
31 30 29 28 27 26 25 24

I - I - I - I - I - - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | CS4A | CS3A - | CS1A | CSO0A |

e CSOA: Chip Select 0 Assignment

0 = Chip Select 0 is assigned to the Static Memory Controller.

e CS1A: Chip Select 1 Assignment

0 = Chip Select 1 is assigned to the Static Memory Controller.
1 = Chip Select 1 is assigned to the SDRAM Controller.

e CS3A: Chip Select 3 Assignment

0 = Chip Select 3 is only assigned to the Static Memory Controller and NCS3 behaves as defined by the SMC.

1 = Chip Select 0 is assigned to the Burst Flash Controller.

1 = Chip Select 3 is assigned to the Static Memory Controller and the NAND Flash/SmartMedia Logic is activated.

e CS4A: Chip Select 4 Assignment
0 = Chip Select 4 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6 behave as defined by the SMC.

1 = Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic is activated.

Accessing the address space reserved to NCS5 and NCS6 may lead to an unpredictable outcome.

152

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

17.8.2 EBI Configuration Register

Register Name: EBI_CFGR

Access Type: Read/Write

Reset Value: 0x0

Offset: 0x04

Absolute Address: OxFFFF FF64
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | | DBPUC |

e DBPUC: Data Bus Pull-Up Configuration
0 = [D15:0] Data Bus bits are internally pulled-up to the VDDIOM power supply.

1 =[D15:0] Data Bus bits are not internally pulled-up.

AImEl@ 153

1768I-ATARM-09-Jul-09

ATMEL

154 AT91RM9200 messsssss—

18. Static Memory Controller (SMC)

18.1 Description

The Static Memory Controller (SMC) generates the signals that control the access to external
static memory or peripheral devices. The SMC is fully programmabile. It has eight chip selects
and a 23-bit address bus. The 16-bit data bus can be configured to interface with 8- or 16-bit
external devices. Separate read and write control signals allow for direct memory and peripheral
interfacing. The SMC supports different access protocols allowing single clock cycle memory
accesses. It also provides an external wait request capability.

18.2 Block Diagram

Figure 18-1. Static Memory Controller Block Diagram

PIO
SMC Controller

Memory SMc

Controller Chip Select —D NCS[7:0]
—>|:| NWRO/NWE
—>|:| NWR1/NUB
—>|:| AO/NLB
PMC MCK —D A[22:1]
R
«—D NWAIT

User Interface
APB l

AImEl@ 155

1768I-ATARM-09-Jul-09

18.3 /O Lines Description

Table 18-1. I/O Lines Description

Name Description Type Active Level
NCSJ[7:0] Static Memory Controller Chip Select Lines Output Low
NRD Read Signal Output Low
NWRO/NWE Write O/Write Enable Signal Output Low
NWR1/NUB Write 1/Upper Byte Select Signal Output Low
AO/NLB Address Bit 0/Lower Byte Select Signal Output Low
A[22:1] Address Bus Output

D[15:0] Data Bus I/0

NWAIT External Wait Signal Input Low

18.4 Multiplexed Signals

Table 18-2. Static Memory Controller Multiplexed Signals

Multiplexed Signals Related Function
A0 NLB 8-bit or 16-bit data bus, see 18.6.1.3 “Data Bus Width” on page 158.
NWRO NWE Byte-write or byte-select access, see 18.6.2.1 “Write Access Type” on page 159.
NWR1 NUB Byte-write or byte-select access, see 18.6.2.1 “Write Access Type” on page 159.

AImEl@ 156

1768I-ATARM-09-Jul-09

18.5 Product Dependencies

18.5.1 I/O Lines
The pins used for interfacing the Static Memory Controller may be multiplexed with the PI1O
lines. The programmer must first program the PIO controller to assign the Static Memory Con-
troller pins to their peripheral function. If I/O lines of the Static Memory Controller are not used by
the application, they can be used for other purposes by the PIO Controller.

18.6 Functional Description
18.6.1 External Memory Interface

18.6.1.1 External Memory Mapping
The memory map is defined by hardware and associates the internal 32-bit address space with
the external 23-bit address bus. Note that A[22:0] is only significant for 8-bit memory. A[22:1] is
used for 16-bit memory. If the physical memory device is smaller than the page size, it wraps
around and appears to be repeated within the page. The SMC correctly handles any valid
access to the memory device within the page. See Figure 18-2.

Figure 18-2. Case of an External Memory Smaller than Page Size

A < Base + 4M Bytes
Hi
1M Byte Device Repeat 3
Low
< Base + 3M Bytes
Hi
1M Byte Device Repeat 2
Low
Memory < Base + 2M Bytes
Map Hi
1M Byte Device Repeat 1
Low
< Base + 1M Byte
Hi
1M Byte Device
Low
v < Base

18.6.1.2 Chip Select Lines
The Static Memory Controller provides up to eight chip select lines: NCS0 to NCS7.

AImEl@ 157

1768I-ATARM-09-Jul-09

Figure 18-3. Memory Connections for Eight External Devices

NCSI[7:0] N NS I Memory Enable
NRD N\ NCS6 I Memory Enable
SMC NWR[1:0] N NCSS I Memory Enable
giizi t NCS'\;CSA'I I Memory Enable
{ Memory Enable
N\ NCS2 I Memory Enable [~
N\ NCST I Memory Enable —
N NCSO Memory Enable [
N\ Output Enable —
N\ Write Enable —
N A[22:0] —
N 8018 | pis:0jorDi7:0] |

Note: 1. The maximum address space per device is 8 Mbytes.

18.6.1.3 Data Bus Width
A data bus width of 8 or 16 bits can be selected for each chip select. This option is controlled by
the DBW field in the SMC_CSR for the corresponding chip select. See “SMC Chip Select Regis-
ters” on page 190.

Figure 18-4 shows how to connect a 512K x 8-bit memory on NCS2 (DBW = 10).

Figure 18-4. Memory Connection for an 8-bit Data Path Device

D[7:0] D[7:0]

D[15:8] |—

A[22:1] A[22:1]

SMC AL | Ao
NWR1 | —
NWRO Write Enable
NRD Output Enable

NCS2 Memory Enable

Figure 18-5 shows how to connect a 512K x 16-bit memory on NCS2 (DBW = 01).

158 A T91 RIVI'O:2 0 () 50000000

Figure 18-5. Memory Connection for a 16-bit Data Path Device

D[7:0] D[7:0]
D[15:8] D[15:8]
Al22:1] A[22:0]
SMC NLB Low Byte Enable
NUB High Byte Enable
NWE Write Enable
NRD Output Enable
NCS2 Memory Enable

18.6.2 Write Access

18.6.2.1 Write Access Type
Each chip select with a 16-bit data bus can operate with one of two different types of write

access:
* Byte Write Access supports two byte write and a single read signal.

¢ Byte Select Access selects upper and/or lower byte with two byte select lines, and separate
read and write signals.

This option is controlled by the BAT field in the SMC_CSR for the corresponding chip select.
See “SMC Chip Select Registers” on page 190.

Byte Write Access
Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory page.

* The signal AO/NLB is not used.
* The signal NWR1/NUB is used as NWR1 and enables upper byte writes.
* The signal NWRO/NWE is used as NWRO and enables lower byte writes.
* The signal NRD enables half-word and byte reads.
Figure 18-6 shows how to connect two 512K x 8-bit devices in parallel on NCS2 (BAT = 0)

AImEl@ 159

1768I-ATARM-09-Jul-09

ATMEL

Figure 18-6. Memory Connection for 2 x 8-bit Data Path Devices

D[7:0] D[7:0]
D[15:8]
Al22:1] A[18:0]
SMC A0 —
NWR1
NWRO Write Enable
NRD Read Enable
NCS2 Memory Enable
D[15:8]
A[18:0]
Write Enable
Read Enable
| Memory Enable

18.6.2.2 Byte Select Access
Byte Select Access is used to connect 16-bit devices in a memory page.

* The signal AO/NLB is used as NLB and enables the lower byte for both read and write
operations.

¢ The signal NWR1/NUB is used as NUB and enables the upper byte for both read and write
operations.

¢ The signal NWRO/NWE is used as NWE and enables writing for byte or half-word.
* The signal NRD enables reading for byte or half-word.

Figure 18-7 shows how to connect a 16-bit device with byte and half-word access (e.g., SRAM
device type) on NCS2 (BAT = 1).

Figure 18-7. Connection to a 16-bit Data Path Device with Byte and Half-word Access

D[7:0] D[7:0]
D[15:8] D[15:8]
A[19:1] A[18:0]
SMC NLB Low Byte Enable
NUB High Byte Enable
NWE Write Enable
NRD Output Enable
NCS2 Memory Enable

Figure 18-8 shows how to connect a 16-bit device without byte access (e.g., Flash device type)
on NCS2 (BAT = 1).

160 A T91 RIVI'O:2 0 () 50000000

Figure 18-8. Connection to a 16-bit Data Path Device without Byte Write Capability

D[7:0] D[7:0]
D[15:8] D[15:8]
A[19:1] A[18:0]
SMC NLB |—
NUB |—
NWE Write Enable
NRD Output Enable
NCS2 Memory Enable

18.6.2.3 Write Data Hold Time
During write cycles, data output becomes valid after the rising edge of MCK and remains valid
after the rising edge of NWE. During a write access, the data remain on the bus 1/2 period of
MCK after the rising edge of NWE. See Figure 18-9 and Figure 18-10.

Figure 18-9. Write Access with 0 Wait State

MCK
: | : |
| T T
A[22:0] ‘ | X |
: | : :
| | |
NCS ‘ : / |
| | : :
L 1 | +
NWE : \I\ / :
l | l l
| | !]
D[15:0] : ; } |
| | 1 |

Figure 18-10. Write Access with 1 Wait State

|
| |
A[22:0] | !
: | | ! |
| ! | | |
|
NCS) | ! | / |
| + + T | |
NN S
N
|
I e
D[15:0] — , ! ! ! ,
I |] X I |

AImEl@ 161

1768I-ATARM-09-Jul-09

18.6.3

18.6.3.1

18.6.3.2

Read Access

ATMEL

Read Protocols

The SMC provides two alternative protocols for external memory read accesses: standard and
early read. The difference between the two protocols lies in the behavior of the NRD signal.

For write accesses, in both protocols, NWE has the same behavior. In the second half of the
master clock cycle, NWE always goes low (see Figure 18-18 on page 167).

The protocol is selected by the DRP field in SMC_CSR (See “SMC Chip Select Registers” on
page 190.). Standard read protocol is the default protocol after reset.

Note: In the following waveforms and descriptions NWE represents NWE, NWRO and NWR1 unless
NWRO0 and NWR1 are otherwise represented. In addition, NCS represents NCS[7:0] (see 18.5.1
“I/O Lines” on page 157, Table 18-1 and Table 18-2).

Standard Read Protocol

Standard read protocol implements a read cycle during which NRD and NWE are similar. Both
are active during the second half of the clock cycle. The first half of the clock cycle allows time to
ensure completion of the previous access as well as the output of address lines and NCS before
the read cycle begins.

During a standard read protocol, NCS is set low and address lines are valid at the beginning of
the external memory access, while NRD goes low only in the second half of the master clock
cycle to avoid bus conflict. See Figure 18-11.

Figure 18-11. Standard Read Protocol

18.6.3.3

162

MCK | |
| | |
| | |
Al22:0] D:(i):C
| ; |
| | |
| | |
NCS . ! /
: : :
L | |
NRD ! N\ 4
I	
D[15:0] : : L)	

Early Read Protocol

Early read protocol provides more time for a read access from the memory by asserting NRD at
the beginning of the clock cycle. In the case of successive read cycles in the same memory,
NRD remains active continuously. Since a read cycle normally limits the speed of operation of
the external memory system, early read protocol can allow a faster clock frequency to be used.
However, an extra wait state is required in some cases to avoid contentions on the external bus.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

AT91RM9200

Figure 18-12. Early Read Protocol

L |
MCK [
A[22:0] Di()ic
- =
| |
NRD j\ /':/_
s — >
i |

18.6.4 Wait State Management
The SMC can automatically insert wait states. The different types of wait states managed are
listed below:
» Standard wait states
¢ External wait states
* Data float wait states
* Chip select change wait states
* Early Read wait states

18.6.4.1 Standard Wait States
Each chip select can be programmed to insert one or more wait states during an access on the
corresponding memory area. This is done by setting the WSEN field in the corresponding
SMC_CSR (“SMC Chip Select Registers” on page 190). The number of cycles to insert is pro-
grammed in the NWS field in the same register.

Below is the correspondence between the number of standard wait states programmed and the
number of clock cycles during which the NWE pulse is held low:

0 wait states 1/2 clock cycle
1 wait state 1 clock cycle

For each additional wait state programmed, an additional cycle is added.

AImEl@ 163

1768I-ATARM-09-Jul-09

ATMEL

Figure 18-13. One Standard Wait State Access

18.6.4.2

164

1 Wait State Access R
T
MCK
| | | |
| | | |
A[22:0] }{ i | i X |
I l I I
| | | Z_|_
Nes kL | L |
| | | |
| | | |
— I I I "
we TN L |
| | | |
| | | |
— | | | —————
NRD (1) | 2) : : :
| | | |

Notes: 1. Early Read Protocol
2. Standard Read Protocol

External Wait States

The NWAIT input pin is used to insert wait states beyond the maximum standard wait states pro-
grammable or in addition to. If NWAIT is asserted low, then the SMC adds a wait state and no
changes are made to the output signals, the internal counters or the state. When NWAIT is de-
asserted, the SMC completes the access sequence.

WARNING: Asserting NWAIT low stops the core’s clock and thus stops program execution.

The input of the NWAIT signal is an asynchronous input. To avoid any metastability problems,
NWAIT is synchronized before using it. This operation results in a two-cycle delay.

NWS must be programmed as a function of synchronization time and delay between NWAIT fall-
ing and control signals falling (NRD/NWE), otherwise SMC will not function correctly.

NWS > Wait Delay from nrd/nwe + external_nwait Synchronization Delay + 1

Note: Where external NWAIT synchronization is equal to 2 cycles.
The minimum value for NWS if NWAIT is used, is 3.

WARNING: If NWAIT is asserted during a setup or hold timing, the SMC does not function
correctly.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

AT91RM9200

Figure 18-14. NWAIT Behavior in Read Access [NWS = 3]

MCK [] L1 N
A[22:0] }(X
NWAIT _ /
internally synch:\cl)z\ilﬁercli- \ /

NRD

NeS N\
&)

(1) NWAIT
Wait Delay from NRD Synchronization Delay

Notes: 1. Early Read Protocol
2. Standard Read Protocol

Figure 18-15. NWAIT Behavior in Write Access [NWS = 3]

vek |] I 1 1 |

NWAIT _ /

NWAIT
internally synchronized L/
NWE AN /

D[15:0] X X

Wait Delay NWAIT
from NWE Synchronization Delay

18.6.4.3 Data Float Wait States
Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access before starting a write access or a
read access to a different external memory.

The Data Float Output Time (tpg) for each external memory device is programmed in the TDF
field of the SMC_CSR register for the corresponding chip select (“SMC Chip Select Registers”

AI“IE'.@ 165

1768I-ATARM-09-Jul-09

ATMEL

on page 190). The value of TDF indicates the number of data float wait cycles (between 0 and
15) to be inserted and represents the time allowed for the data output to go to high impedance
after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tpe will not slow down the execution of a program from internal
memory.

To ensure that the external memory system is not accessed while it is still busy, the SMC keeps
track of the programmed external data float time during internal accesses.

Internal memory accesses and consecutive read accesses to the same external memory do not
add data float wait states.

Figure 18-16. Data Float Output Delay

MCK |

|
|
|
NRD AN @

D[15:0] i { >

Notes: 1. Early Read Protocol
2. Standard Read Protocol

18.6.4.4 Chip Select Change Wait State
A chip select wait state is automatically inserted when consecutive accesses are made to two
different external memories (if no other type of wait state has already been inserted). If a wait
state has already been inserted (e.g., data float wait state), then no more wait states are added.

166 A T91 RIVI'O:2 0 () 50000000

AT91RM9200

Figure 18-17. Chip Select Wait State

Mem 1 . Chip Select Wait_| Mem 2

vew | [[L[]
A[2210]>‘< addr Mem 1 X addr Mem 2 ><

—

NCS1 N /
NCS2 x< /
NeD L) N\ @ A
NWE N /

Notes: 1. Early Read Protocol
2. Standard Read Protocol

18.6.4.5 Early Read Wait State
In early read protocol, an early read wait state is automatically inserted when an external write
cycle is followed by a read cycle to allow time for the write cycle to end before the subsequent
read cycle begins (see Figure 18-18). This wait state is generated in addition to any other pro-
grammed wait states (i.e., data float wait state).

No wait state is added when a read cycle is followed by a write cycle, between consecutive
accesses of the same type, or between external and internal memory accesses.

Figure 18-18. Early Read Wait States

| Write Cycle | Early Read Wait | Read Cycle
vk 1 L L[]
A[22:0] >< X){

NRD \
NWE _j_71

AImEl@ 167

1768I-ATARM-09-Jul-09

ATMEL

18.6.5 Setup and Hold Cycles
The SMC allows some memory devices to be interfaced with different setup, hold and pulse
delays. These parameters are programmable and define the timing of each portion of the read
and write cycles. However, it is not possible to use this feature in early read protocol.

If an attempt is made to program the setup parameter as not equal to zero and the hold parame-
ter as equal to zero with WSEN = 0 (0 standard wait state), the SMC does not operate correctly.

If consecutive accesses are made to two different external memories and the second memory is
programmed with setup cycles, then no chip select change wait state is inserted (see Figure 18-
23 on page 170).

When a data float wait state (tpg) is programmed on the first memory bank and when the second
memory bank is programmed with setup cycles, the SMC behaves as follows:

* If the number of t5¢ is higher or equal to the number of setup cycles, the number of setup
cycles inserted is equal to 0 (see Figure 18-24 on page 170).

* If the number of the setup cycle is higher than the number of t the number of tye inserted is
0 (see Figure 18-25 on page 171).

18.6.5.1 Read Access
The read cycle can be divided into a setup, a pulse length and a hold. The setup parameter can
have a value between 1.5 and 7.5 clock cycles, the hold parameter between 0 and 7 clock
cycles and the pulse length between 1.5 and 128.5 clock cycles, by increments of one.

Figure 18-19. Read Access with Setup and Hold

MCK
A[22:0] >< ><
N 4
NRD < 7
NRD Setup Pulse Length NRD Hold
Figure 18-20. Read Access with Setup
MCK
A[22:0] >(><
NRD NS '
NRD Setup P Pulse Length _

168 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

18.6.5.2 Write Access

The write cycle can be divided into a setup, a pulse length and a hold. The setup parameter can
have a value between 1.5 and 7.5 clock cycles, the hold parameter between 0.5 and 7 clock
cycles and the pulse length between 1 and 128 clock cycles by increments of one.

Figure 18-21. Write Access with Setup and Hold

(LS N I [A s B O

A[22:0] X ><

NWE N 4

D[15:0] >

NWR Setup Pulse Length _ NWR Hold

A
A
A

Figure 18-22. Write Access with Setup

e I s B

NWE NS 71_ —
D[15:0]
= NWR Setup ST Pulse Length “NWR
Hold

AImEl@ 169

1768I-ATARM-09-Jul-09

ATMEL

18.6.5.3 Data Float Wait States with Setup Cycles

Figure 18-23. Consecutive Accesses with Setup Programmed on the Second Access
Setup R

we« || | L1 {1 LI l_1 L

A[22:0] X }{
Nest o N A

NCS2
NWE N\
a N
NRD N\
a N

Figure 18-24. First Access with Data Float Wait States (TDF = 2) and Second Access with Setup (NRDSETUP = 1)
Setup

MCK | L | | |
A[22:0] X >
NCSH1 Lé

NCS2

NRD ﬂ_ o
PO < >—

Data Float Time

D[15:0]

A T91 RIVI'O:2 0 () 50000000

170

Figure 18-25. First Access with Data Float Wait States (TDF = 2) and Second Access with Setup (NRDSETUP = 3)
Setup

< >
- e

vew [L[L[L[L[[L[

ez K e
oo ——_ |
o ———__y \l
o5 S5 D

Data Float Time

-

18.6.6 LCD Interface Mode
The SMC can be configured to work with an external liquid crystal display (LCD) controller by
setting the ACSS (Address to Chip Select Setup) bit in the SMC_CSR registers (“SMC Chip
Select Registers” on page 190).

In LCD mode, NCS is shortened by one/two/three clock cycles at the leading and trailing edges,
providing positive address setup and hold. For read accesses, the data is latched in the SMC
when NCS is raised at the end of the access.

Additionally, WSEN must be set and NWS programmed with a value of two or more superior to
ACSS. In LCD mode, it is not recommended to use RWHOLD or RWSETUP. If the above condi-
tions are not satisfied, SMC does not operate correctly.

AImEl@ 171

1768I-ATARM-09-Jul-09

Figure 18-26. Read Access in LCD Interface Mode

vew [L L L L 0 L o0 L L o L L
A[22:0] ﬁ(9{
NRD AN /

/
NCS X(/
ACSS _ - ACSS

4 N\
Data from LCD Controller N\ /
ACSS = 3, NWEN = 1, NWS = 10

Figure 18-27. Write Access in LCD Interface Mode

vee [0 L LT LT L L L
A[22:0] }k X
NWE \ /_ -

NCS N ¢
ACCS ACCS

B .

D[15:0] < H

ACCS =2, NWEN =1, NWS =10

y4
AN|

18.6.7 Memory Access Waveforms

18.6.7.1 Read Accesses in Standard and Early Protocols

Figure 18-28 on page 173 through Figure 18-31 on page 176 show examples of the alternatives
for external memory read protocol.

172 A T91 RIVI'O:2 0 () 50000000

AT91RM9200

Figure 18-28. Standard Read Protocol without t¢

Read Mem1 Write Mem 1 Read Mem 1 Read Mem 2 Write Mem 2 Read Mem 2

- > | - |«

mek || | | | | | |
20 XK X X X X X

L N AN N N
NWE A T

NCS1 X< 7£ Chip Select
/ Change Wait
>
NCS2 NG
D[15:0] (Mem 1) ——C> < >

D[15:0] (to write) | <g

—>'| twHpx | — twhpx

D[15:0] (Mem 2)

)
()
2

AIMEL 173

1768I-ATARM-09-Jul-09

ATMEL

Figure 18-29. Early Read Protocol without tpe

Read Write Early Read Read Read Write Early Read Read
~ Mem1 - Mem 1 - L/Vait Cyclg B Mem 1 L Mem 2 ~ Mem 2 !Vait Cycle, Mem 2
MCK
| | | | | | | | -
NS G G 4 X XX X
™\ / N / N 4 N -
NRD "N/ N N N
NWE AN AN \
NCST N /
N —7 Chip Select
Change Wait
NCS2 (AN
D[15:0] (Mem 1) —< > \ < > \
D[15:0] (to write) < g < g
— <« twhox — <— Long twipy
D[15:0] (Mem 2) < > < >

172 AT91RM9200 messsss—

1768I-ATARM-09-Jul-09

Figure 18-30. Standard Read Protocol with tye

Write Read Write Write
Read Mem 1 Mem 1 Read Mem 1 Mem 2 Read Mem 2 Mem 2 Mem 2
Data | b Data | b Data - b -

Float Wait Float Wait Float Wait

S e e e e Y Y O e I e B
e D XX XX XX
o | N\ % N\ A
one \f\ NN

NCS2 5‘

tor

—_— -
. (tor=|1) (tor 5 1)
D[15:0] /—EE
N

(Mem 1) \
D[15:0] /Z R ’
(to write) < ><

t

l

1
WHDX (tor 4 2)

Qs XSS

AI“]EL@ 175

1768I-ATARM-09-Jul-09

ATMEL

Figure 18-31. Early Read Protocol with tye

Write Early Read Write Write
Read Mem 1 Mem 1 Read Wait Read Mem 1 Mem 2 Read Mem 2 Mem 2 Mem 2
Data D Data | - Data B b -
Float Wait Float Wait Float Wait
MCK I I I I I I I I L I I

Az2:0] K X X X X X X X

NRD N /| N /| N /|

NWE _7[_7[_7/_

Nest Y

NCS2 (
D[15:0])
(Mem 1) _C \ — |
D[15:0] /< X
| <§7 A\

(to write)
| —| b (pF=2) |[—
. I
Memz) — < X DIIODDD |

18.6.7.2 Accesses with Setup and Hold
Figure 18-32 and Figure 18-33 show an example of read and write accesses with Setup and
Hold Cycles.

176 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

AT91RM9200

Figure 18-32. Read Accesses in Standard Read Protocol with Setup and Hold"

T S N N B S R i

A[22:1] 00d2b >L 00028 ><00d2c
AO/NLB N /
0/1 N 7
NRD\JZ N ¥ X A
NWRO/NWE
NWR1/NUB - - - - -) -
Setup " "~ Hold | Setup " "~ Hold

NCS \ /
D[15:0] {e59F) < 0001) @

Note: 1. Read access, memory data bus width = 8, RWSETUP = 1, RWHOLD = 1, WSEN= 1, NWS =0

Figure 18-33. Write Accesses with Setup and Hold"

wo L LT LT 1 LT L7 LI LI L] LI [
A[22:1] ><0080b >< 00082 >< 008cc

AO/NLB N 7Z

NRD T N\ A \

N
NWRO/NWE X 7 X /

NWR1/NUB

NCS \

01 3000\ o
D[15:0] 3000 \3_> 0605 0606

Setup . "~ Hold ~ Setup "~ Hold

A

Note: 1. Write access, memory data bus width = 8, RWSETUP = 1, RWHOLD =1, WSEN =1, NWS =0

AImEl@ 177

1768I-ATARM-09-Jul-09

ATMEL

18.6.7.3 Accesses Using NWAIT Input Signal
Figure 18-34 on page 178 through Figure 18-37 on page 181 show examples of accesses using
NWAIT.

Figure 18-34. Write Access using NWAIT in Byte Select Type Access'"

Chip Select
Wait
Mek_ [|| . - -1 - 1 1 I °[1 [
NWAIT RN
NWAIT
internally
synchronized
Al22:1] S 000008A X
NRD A
NWRO/NWE X
AO/NLB N /
NWR1/NUB 5(/
NCS NC /
D[15:0] (1312 >
Wait Delay Falling
from NWRO/NWE

Note: 1. Write access memory, data bus width = 16 bits, WSEN =1, NWS =6

178 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Figure 18-35. Write Access using NWAIT in Byte Write Type Access")

Chip Select
Wait
mek ||| L 0 = 4 L4 L4 L1 I
NWAIT BN
NWAIT
internally

synchronized

& 000008C X

A[22:1]

\l/

AO/NLB

NRD v

NWRO/NWE X
NWR1/NUB RN /

NCS

D[15:0] > {1716 >—

—

Wait Delay Falling from NWRO/NWE/NWR1/NUB

Note: 1. Write access memory, data bus width = 16 bits, WSEN = 1, NWS =5

AIMEL 179

1768I-ATARM-09-Jul-09

ATMEL

Figure 18-36. Write Access using NWAIT®)

Chip Select
Wait

wek 1 || o1 5 4 7 4 [1 1
NWAIT §</

NWAIT
internally
synchronized

A[22:1] > 0000033 4
—_ —
AO/NLB N
/
NRD A
NWRO/NWE N
NWR1/NUB
\)
NCS N
D[15:0] D———1—q 0403 >

Wait Delay Falling from NWRO/NWE

Note: 1. Write access memory, data bus width = 8 bits, WSEN = 1, NWS =4

180 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

Figure 18-37. Read Access in Standard Protocol using NWAIT()

MCK —l

NWAIT
NWAIT

internally
synchronized

A[22:1]

X 0002C44

AO/NLB

NRD / N

NWRO/NWE

NWR1/NUB

NCS

D[15:0] >——+< 0003

Note: 1. Read access, memory data bus width = 16, NWS =5, WSEN =1

18.6.7.4

1768I-ATARM-09-Jul-09

Wait Delay Falling from NRD/NOE

Memory Access Example Waveforms

Figure 18-38 on page 182 through Figure 18-44 on page 188 show the waveforms for read and
write accesses to the various associated external memory devices. The configurations
described are shown in Table 18-3.

Table 18-3. Memory Access Waveforms
Number of Wait
Figure Number States Bus Width Size of Data Transfer
Figure 18-38 0 16 Word
Figure 18-39 1 16 Word
Figure 18-40 1 16 Half-word
Figure 18-41 0 8 Word
Figure 18-42 1 8 Half-word
Figure 18-43 1 8 Byte
Figure 18-44 0 16 Byte

ATMEL

181

AIMEL

I)

Figure 18-38. 0 Wait State, 16-bit Bus Width, Word Transfer

MCK

addr+1

adbr

Read Access |

i AN Y I N 1__.|| ||||||||||||||||

+ Early Read Protocol

; I
;
. I

Write Access

Byte Select Option

+ Byte Write/

A T91 RIVI'O:2 0 () 50000000

182

1768I-ATARM-09-Jul-09

Figure 18-39. 1 Wait State, 16-bit Bus Width, Word Transfer

| / |
|:VA|:| TN TN T T A" 1.1 F =N "1~ H-—1-——"1"3"~
o
| g |
| | 5
N I A O N o S I IS S O N B
Il N I I
Il _ I
| [|
a - I [I
+
© 5 [[[
IS K]
22 I I I IR R R I L R VA _._--.\.-- VA
£ I _ [
T | [|
k \/ [_ [
VN N
| 5 [|
| @ | _ |
S 0 N (A R A [T B B 0 R 1N -1 I
| [|
| [|
H _ 1
ie)
H E I _ I
s I _ I N/
e N Al Rt R H---=ffrm == -- | EEh AaanEE H---/~---1
- | [|
k I _ I
} A H ¥ H
ﬂ ﬁ ﬂ | [ﬂ _ | _
X =) M us} o) =) | o =) [w =)
2 § ¢ =z 2 ez 3 2 & s 2
< __mv a | a | a
118 | I
< o c
& 1§ 1]
ge) paet
» I o o
a1 I 2|11 53
el | @ S| £3
< [o < =0
el ge) > (0]
s|1s (= glllge
o b7t _E = _BB

183

AIMEL

I)

1768I-ATARM-09-Jul-09

AIMEL

I)

Figure 18-40. 1 Wait State, 16-bit Bus Width, Half-Word Transfer

_
_
I !
- XK NN NN F- N T Rt (Y-~
I ! I
I _ I
I I
[i ! Sl N
I ! 1 i
I | I
1 _ 1
? I ! I
I ! I
2 I) ! I
e I ISR I SN TN VAN - N T . v
= I I
7 I I
))) J T
T e
= 8 S =z 2 £ = z © | 2 &
<€ o o o

+ Standard Read Protocol

| Read Access |

+ Early Read Protocol

Write Access

+ Byte Write/

Byte Select Option

A T91 RIVI'O:2 0 () 50000000

184

1768I-ATARM-09-Jul-09

Figure 18-41. 0 Wait State, 8-bit Bus Width, Word Transfer

S VN S W _f____] S S B oo~
\\ g r
g m —n
2 2 a <) o Q0 1<) oo S
(@] o [any
= gl 22 52 2 g 2 2 2
g g 5 & 5 |§n = = B
o o il %]
< - © <
=iz ’ S|
ke =
31 z S
(5}]
I X LI

185

I)

AIMEL

1768I-ATARM-09-Jul-09

AIMEL

I)

Figure 18-42. 1 Wait State, 8-bit Bus Width, Half-Word Transfer

SN . A N TR N Rt it el /\
I I
I ! I
S I () R SR I VA S S P T N N -
I _ < I s
- I I
: I |]
H) I'1 _ __
I
g I _ I y
o I I B R S - X lllmyﬁ
= I _ I
| I o I
AN 1 N X | |
I I
I ! I
ottt | _NN__ TR SR - L N /||||Dm|
I i =
I _ I
. I m I
H < I _ I
I I
5 |
& I N I | I ﬁ--------.---_r-- AN VA
‘©
: __ _ __
- I
k / - _ v/ 1
— O
x 5 % - s 1§ o NN T = 5
= &8 Z g1’ 2 2 12 2 Z|% E 2 £
- 1l - s|lgm = 28
slile 3 Ml
8|, 12 £
(g 2 £
L
e : 11l

/A T'91T R IVI'O:2 0/ () 5000000

186

1768I-ATARM-09-Jul-09

Figure 18-43. 1 Wait State, 8-bit Bus Width, Byte Transfer

I
I I
I 2 I
_ I I I h____]__| I I-I-I:I/II/-I:-
I 4_ I i
1 @ I &
I | S T)
1] " 1
I I
H I _ I
. _
5 Il | ﬁ I
n
ol b R R s B O O 2o 2
= I _ I
I I
& I | I
. MA / y _ % "
ﬁ L] _]
I I
_
X =) 9 g g | o 5z | 2 z =)
S § £ -z = 2 A L s]
<C (a) o o
I _ I
— 1§ 3 — I
g 8 I
2103 ¥ g
gl & Al
=i '3 s i
5|8 | 2
g Ie 2 =i
| e w i

187

AIMEL

I)

1768I-ATARM-09-Jul-09

AIMEL

I)

Figure 18-44. 0 Wait State, 16-bit Bus Width, Byte Transfer

MCK

|

|
A[22:1] X

|

>'< aderIXXO
|

adar XXx0 X
T |

/ ya
Z 4
7/ /

X

X

Internal Address Bus D‘(addr
|
|
|
|

Read Access

+ Early Read Protocol

Write Access

NWRO

* Byte Select Option

NWE

A T91 RIVI'O:2 0 () 50000000

188

1768I-ATARM-09-Jul-09

18.7 Static Memory Controller (SMC) User Interface

The Static Memory Controller is programmed using the registers listed in Table 18-4. Eight Chip Select Registers
(SMC_CSRO0 to SMC_CSRY7) are used to program the parameters for the individual external memories.

Table 18-4. Register Mapping

Offset Register Name Access Reset
0x00 SMC Chip Select Register 0 SMC_CSRO0 Read-write 0x00002000
0x04 SMC Chip Select Register 1 SMC_CSR1 Read-write 0x00002000
0x08 SMC Chip Select Register 2 SMC_CSR2 Read-write 0x00002000
0x0C SMC Chip Select Register 3 SMC_CSRS3 Read-write 0x00002000
0x10 SMC Chip Select Register 4 SMC_CSR4 Read-write 0x00002000
0x14 SMC Chip Select Register 5 SMC_CSR5 Read-write 0x00002000
0x18 SMC Chip Select Register 6 SMC_CSR6 Read-write 0x00002000
0x1C SMC Chip Select Register 7 SMC_CSRY7 Read-write 0x00002000

AImEl@ 189

1768I-ATARM-09-Jul-09

18.7.1 SMC Chip Select Registers
Register Name: SMC_CSRO0..SMC_CSRY7

Access Type: Read-write
Reset Value: See Table 18-4 on page 189
31 30 29 28 27 26 25 24
| - | RWHOLD | - | RWSETUP |
23 22 21 20 19 18 17 16
. - r - ¢ - - [- [- | ACSS |
15 14 13 12 11 10 9 8
| DRP | DBW | BAT | TDF |
7 6 5 4 3 2 1 0
| WSEN | NWS |
¢ NWS: Number of Wait States
This field defines the Read and Write signal pulse length from 1 cycle up to 128 cycles.
Note: When WSEN i 0, NWS will be read to 0 whichever the previous programmed value should be.
NRD Pulse Length NRD Pulse Length
Number of Wait States NWS Field Standard Read Protocol | Early Read Protocol NWR Pulse Length
o Don’t Care 5 cycle 1 cycle 1 cycle
1 0 1+ %2 cycles 2 cycles 1 cycle
2 1 2 + Y2 cycles 3 cycles 2 cycles
X+1 Upto X =127 X + 1+ % cycles X + 2 cycles X + 1 cycle

Note: 1. Assuming WSEN Field = 0.
e WSEN: Wait State Enable

0: Wait states are disabled.

1: Wait states are enabled.

e TDF: Data Float Time

The external bus is marked occupied and cannot be used by another chip select during TDF cycles. Up to 15 cycles can be
defined and represents the time allowed for the data output to go to high impedance after the memory is disabled.

e BAT: Byte Access Type
This field is used only if DBW defines a 16-bit data bus.
0: Chip select line is connected to two 8-bit wide devices.

1: Chip select line is connected to a 16-bit wide device.

190 A T91 RIVI'O:2 0 () 50000000

 DBW: Data Bus Width

DBW Data Bus Width
0 0 Reserved
0 1 16-bit
1 0 8-bit
1 1 Reserved

e DRP: Data Read Protocol
0: Standard Read Protocol is used.

1: Early Read Protocol is used.

e ACSS: Address to Chip Select Setup

ACSS Chip Select Waveform
0 0 Standard, asserted at the beginning of the access and deasserted at the end.
0 1 One cycle less at the beginning and the end of the access.
1 0 Two cycles less at the beginning and the end of the access.
1 1 Three cycles less at the beginning and the end of the access.

* RWSETUP: Read and Write Signal Setup Time
See definition and description below.

¢ RWHOLD: Read and Write Signal Hold Time
See definition and description below.

RWSETUP() © NRD Setup NWR Setup RWHOLD™ ¢) NRD Hold NWR Hold

0 0 0 gzc‘“;fliz)c’ r ¥ cycle 0 0 0 % cycle

0 0 1 1+ %2 cycles 1 + % cycles 0 0 1 cycles 1 cycle

0 1 0 2 + Y2 cycles 2 + Y2 cycles 0 1 2 cycles 2 cycles
0 1 1 3 + Y2 cycles 3 + Y2 cycles 0 1 3 cycles 3 cycles
1 0 0 4 + %2 cycles 4 + Y2 cycles 1 0 4 cycles 4 cycles
1 0 1 5 + %% cycles 5 + % cycles 1 0 5 cycles 5 cycles
1 1 0 6 + 2 cycles 6 + 2 cycles 1 1 6 cycles 6 cycles
1 1 1 7 + Y2 cycles 7 + Y2 cycles 1 1 7 cycles 7 cycles

Notes: 1. For a visual description, please refer to “Setup and Hold Cycles” on page 168 and the diagrams in Figure 18-45 and Figure

18-46 and Figure 18-47 on page 192.
In Standard Read Protocol.
In Early Read Protocol. (It is not possible to use the parameters RWSETUP or RWHOLD in this mode.)
When the ECC Controller is used, RWHOLD must be programmed to 1 at least.
If an attempt is made to program the setup parameter as not equal to zero and the hold parameter as equal to zero, with

A A

WSEN = 0 (0 standard wait state), the SMC does not operate correctly.

1768I-ATARM-09-Jul-09

ATMEL

191

ATMEL

Figure 18-45. Read-write Setup

MCK | | ‘ |
A[22:0] X
NRD N
NWE N
RWSETUP
Figure 18-46. Read Hold
MCK | | |
A[22:0] X
NRD /
—
RWHOLD

Figure 18-47. Write Hold

MCK I [I | |
A[22:0] x:

NWE 4

D[15:0] X

RWHOLD

192 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

19. SDRAM Controller (SDRAMC)

19.1 Overview

1768I-ATARM-09-Jul-09

The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing
the interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges
from 2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit),
half-word (16-bit) and word (32-bit) accesses.

The SDRAM Controller supports a read or write burst length of one location. It does not
support byte Read/Write bursts or half-word write bursts. It keeps track of the active row
in each bank, thus maximizing SDRAM performance, e.g., the application may be placed
in one bank and data in the other banks. So as to optimize performance, it is advisable to
avoid accessing different rows in the same bank.

Features of the SDRAMC are:

¢ Numerous Configurations Supported
- 2K, 4K, 8K Row Address Memory Parts
— SDRAM with Two or Four Internal Banks
— SDRAM with 16- or 32-bit Data Path
* Programming Facilities
— Word, Half-word, Byte Access
— Automatic Page Break When Memory Boundary Has Been Reached
— Multibank Ping-pong Access
— Timing Parameters Specified by Software
— Automatic Refresh Operation, Refresh Rate is Programmable
* Energy-saving Capabilities
— Self-refresh and Low-power Modes Supported
¢ Error Detection
— Refresh Error Interrupt
* SDRAM Power-up Initialization by Software
e Latency is Set to Two Clocks (CAS Latency of 1, 3 Not Supported)
e Auto Precharge Command Not Used

AImEl@ 193

19.2 Block Diagram

ATMEL

Figure 19-1. SDRAM Controller Block Diagram
SDRAMC PIO
Controller
SDRAMC
Chip Select —’D SDCK
Memory _>| | SDCKE
Controller
SDRAMC —>| | SDCS
Interrupt
_>|:| BA[1:0]
_>|:| RAS
PMC MCK [] ons
_>|:| SDWE
_>|:| NBS[3:0]
L[z
<_.|:| D[31:0]
User Interface
A
APB v
<
19.3 1/0 Lines Description
Table 19-1. 1/O Line Description
Name Description Type Active Level
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Output Low
BA[1:0] Bank Select Signals Output
RAS Row Signal Output Low
CAS Column Signal Output Low
SDWE SDRAM Write Enable Output Low
NBS[3:0] Data Mask Enable Signals Output Low
A[12:0] Address Bus Output
D[31:0] Data Bus I/0

1768I-ATARM-09-Jul-09

19.4 Software Interface

The SDRAM Controller’s function is to make the SDRAM device access protocol transparent to
the user. Table 19-2 to Table 19-7 illustrate the SDRAM device memory mapping therefore seen
by the user in correlation with the device structure. Various configurations are illustrated.

19.4.1 32-bit Memory Data Bus Width

Table 19-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns
CPU Address Line

27 |26 |25 |24 |23 [22 |21 [20 [19 |18 [17 [16 [15 |14 [13[12 |11 [10]9 |8 |7 |6 |5 |4 [3 [2 |1 |0
Bk[1:0] Row([10:0] Column([7:0] M[1:0]

BK[1:0] \ Row[10:0] ‘ Column(8:0] M[1:0]

BK[1:0] \ Row[10:0] \ Column([9:0] M[1:0]

BK[1:0] \ Row[10:0] \ Column([10:0] M[1:0]

Table 19-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line

27 |26 |25 |24 [23 [22 [21 20 [19 (18 [17 |16 |15 [14 (13 [12 [11 (10]9 [8 [7 [6 [5 a3 |2 |1 |0
Bk[1:0] Row[11:0] Column([7:0] M[1:0]

BK[1:0] \ Row[11:0] \ Column(8:0] M[1:0]

BK[1:0] \ Row[11:0] \ Column([9:0] M[1:0]

BK[1:0] | Row[11:0] | Column([10:0] M[1:0]

Table 19-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line

27 |26 [25 |24 [23 [22 |21 [20 [19 |18 [17 [16 [15 [14 [13[12 |11 [10]9 |8 |7 |6 |5 [4a [3 [2 |1 |0
BK[1:0] Row[12:0] Column(7:0] M[1:0]

BK[1:0] \ Row[12:0] ‘ Column(8:0] M[1:0]

BK[1:0] \ Row[12:0] \ Column([9:0] M[1:0]
BK[1:0] \ Row[12:0] \ Column([10:0] M[1:0]

Notes: 1. M[1:0] is the byte address inside a 32-bit word.
2. BK[1] = BA1, BKk[0] = BAO.

AImEl@ 195

1768I-ATARM-09-Jul-09

ATMEL

19.4.2 16-bit Memory Data Bus Width

Table 19-5. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line
27 |26 |25 |24 | 23 | 22 21‘20 19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 8‘7‘6‘5‘4‘3‘2‘1 0
Bk[1:0] Row[10:0] Column([7:0] ::\)/I
M
Bk[1:0] Row[10:0] Column[8:0] 0
M
Bk[1:0] Row[10:0] Column[9:0] 0
M
Bk[1:0] Row[10:0] Column[10:0] 0
Table 19-6. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line
27 |26 |25 |24 |23 22‘21 20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 8‘7‘6‘5‘4‘3‘2‘1 0
Bk[1:0] Row[11:0] Column([7:0] I(\)/I
M
Bk[1:0] Row[11:0] Column[8:0] 0
M
Bk[1:0] Row[11:0] Column([9:0] 0
M
Bk[1:0] Row[11:0] Column[10:0] 0
Table 19-7. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line
27 |26 |25 | 24 23‘22 21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 8‘7‘6‘5‘4‘3‘2‘1 0
Bk[1:0] Row[12:0] Column[7:0] ('\)/I
M
Bk[1:0] Row[12:0] Column[8:0] 0
M
Bk[1:0] Row[12:0] Columnl[9:0] 0
M
Bk[1:0] Row[12:0] Column[10:0] 0

Notes: 1. MO is the byte address inside a 16-bit half-word.
2. BK[1] = BA1, BKk[0] = BAO.

196 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

19.5 Product Dependencies

19.5.1 SDRAM Device Initialization
The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

A minimum pause of 200 ps is provided to precede any signal toggle.
An All Banks Precharge command is issued to the SDRAM devices.
Eight auto-refresh (CBR) cycles are provided.

A mode register set (MRS) cycle is issued to program the parameters of the SDRAM
devices, in particular CAS latency and burst length.

A Normal Mode command is provided, 3 clocks after ty,5p is met.

6. Write refresh rate into the count field in the SDRAMC Refresh Timer register. (Refresh
rate = delay between refresh cycles).

After these six steps, the SDRAM devices are fully functional.

w0 Dbd -

o

The commands (NOP, MRS, CBR, normal mode) are generated by programming the command
field in the SDRAMC Mode register

Figure 19-2. SDRAM Device Initialization Sequence

sooKke e T el o T
seo LML L L L L L L L L L L LY
e EEemm el
S r—— Va N N DN TN AN
e e==m== s ENPENpES
swos T N I T TN N
NN NN
o T N I TN AN
N =N

19.5.2 I/O Lines
The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The
programmer must first program the PIO controller to assign the SDRAM Controller pins to their
peripheral function. If I/O lines of the SDRAM Controller are not used by the application, they
can be used for other purposes by the PIO Controller.

AI“IE'.@ 197

1768I-ATARM-09-Jul-09

ATMEL

19.5.3 Interrupt

The SDRAM Controller interrupt (Refresh Error notification) is connected to the Memory Control-
ler. This interrupt may be ORed with other System Peripheral interrupt lines and is finally
provided as the System Interrupt Source (Source 1) to the AIC (Advanced Interrupt Controller).

Using the SDRAM Controller interrupt requires the AIC to be programmed first.

198 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

19.6 Functional Description

19.6.1 SDRAM Controller Write Cycle

The SDRAM Controller allows burst access or single access. To initiate a burst access, the
SDRAM Controller uses the transfer type signal provided by the master requesting the access. If
the next access is a sequential write access, writing to the SDRAM device is carried out. If the
next access is a write-sequential access, but the current access is to a boundary page, or if the
next access is in another row, then the SDRAM Controller generates a precharge command,
activates the new row and initiates a write command. To comply with SDRAM timing parame-
ters, additional clock cycles are inserted between precharge/active (tgp) commands and
active/write (tgcp) commands. For definition of these timing parameters, refer to the Section
19.7.3 “SDRAMC Configuration Register’ on page 208. This is described in Figure 19-3 below.

Figure 19-3. Write Burst, 32-bit SDRAM Access

SDCS |

1
trep =3

>

~

A[12:0]

X

Row n X col g Xcol choI cXcoI choI eX col choI choI hX col choI choI kX col IX:

RAS | I

CAS

=

SDWE

D[31:0]

=

1768I-ATARM-09-Jul-09

4
\ D

na X Dnb X Dnc X Dnd X Dne X Dnf X Dng X Dnh X Dni X Dnj X Dnk X Dnl }—

AImEl@ 199

ATMEL

19.6.2 SDRAM Controller Read Cycle

The SDRAM Controller allows burst access or single access. To initiate a burst access, the
SDRAM Controller uses the transfer type signal provided by the master requesting the access. If
the next access is a sequential read access, reading to the SDRAM device is carried out. If the
next access is a sequential read access, but the current access is to a boundary page, or if the
next access is in another row, then the SDRAM Controller generates a precharge command,
activates the new row and initiates a read command. To comply with SDRAM timing parameters,
an additional clock cycle is inserted between the precharge/active (tgp) command and the
active/read (tgcp) command, After a read command, additional wait states are generated to
comply with cas latency. The SDRAM Controller supports a cas latency of two. For definition of
these timing parameters, referto 19.7.3 “SDRAMC Configuration Register” on page 208. This is
described in Figure 19-4 below.

Figure 19-4. Read Burst, 32-bit SDRAM access

trep =3 CAS=2

Y

1
I
1
sDCS | |
1
1

Xcol bX céol cXcoI choI eX col fX

A[12:0] XE Rown X cola

RAS |,|

CAS

{{ona Y Db} Dnc XX Dnd) DneX Dnf }—

D[31:0]
(Input)

I
I
L
I
I
:
I
SDWE L
I
I
I
I
I
I
I

200 A T91 RIVI'O:2 0 () 50000000

19.6.3 Border Management
When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAM controller generates a precharge command, activates the new row and initi-
ates a read or write command. To comply with SDRAM timing parameters, an additional clock
cycle is inserted between the precharge/active (tgp) command and the active/read (tgcp) com-
mand. This is described in Figure 19-5 below.

Figure 19-5. Read Burst with Boundary Row Access

Trp =3

Row n

A12:0 X col aXcol bX col cXcol dX !
RAS : !

Xcol ch I cXcoI choI eX

CAS |

—

1
1
1
1
1
1
:
SDWE !
:
1
1
1
1
1
1

B el e S R ol ta

bt X XonaXXono XX Dnc)%(Dndi}

«D ma.X(D m bX(D mc)«D m dX(D m e>—

AImEl@ 201

1768I-ATARM-09-Jul-09

ATMEL

19.6.4 SDRAM Controller Refresh Cycles
An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto-refresh automatically.
The SDRAM Controller generates these auto-refresh commands periodically. A timer is loaded
with the value in the register SDRAMC_TR that indicates the number of clock cycles between
refresh cycles.

A refresh error interrupt is generated when the previous auto-refresh command did not perform.
It will be acknowledged by reading the Interrupt Status Register (SDRAMC_ISR).

When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses
are not delayed. However, if the CPU tries to access the SDRAM, the slave will indicate that the
device is busy and the ARM BWAIT signal will be asserted. See Figure 19-6 below.

Figure 19-6. Refresh Cycle Followed by a Read Access

trp =3 thc =8

|

l

|
sbcs

|

|

|

I
I
Row n I
I

A2:0] Xeol cXcoldX X1 X
RAS L]
CAS l

SDWE L

D[31:0] N/ \ /A VY,
I

]
-

202 A T91 RIVI'O:2 0 () 50000000

19.6.5 Power Management

19.6.5.1 Self-refresh Mode

Self-refresh mode is used in power-down mode, i.e., when no access to the SDRAM device is
possible. In this case, power consumption is very low. The mode is activated by programming
the self-refresh command bit (SRCB) in SDRAMC_SRR. In self-refresh mode, the SDRAM
device retains data without external clocking and provides its own internal clocking, thus per-
forming its own auto-refresh cycles. All the inputs to the SDRAM device become “don’t care”
except SDCKE, which remains low. As soon as the SDRAM device is selected, the SDRAM
Controller provides a sequence of commands and exits self-refresh mode, so the self-refresh
command bit is disabled.

To re-activate this mode, the self-refresh command bit must be re-programmed.
The SDRAM device must remain in self-refresh mode for a minimum period of tgag and may
remain in self-refresh mode for an indefinite period. This is described in Figure 19-7 below.

Figure 19-7. Self-refresh Mode Behavior

} Self Refresh Mode : Txsr=3 :
SRCB =1 ! g w
Write T : LG : :
SDRAMC_SRR | > 1 |
| 1 ‘
A[12:0] ! . l X RowX

! 1 1
I I I

soek [[LI LI LI B ML L L

In
~

SDCKE

SDCS

RAS

LG
27

CAS

L L
L L

L

SDWE >

Access Request
to the SDRAM Controller

AImEl@ 203

1768I-ATARM-09-Jul-09

ATMEL

19.6.5.2 Low-power Mode

Low-power mode is used in power-down mode, i.e., when no access to the SDRAM device is
possible. In this mode, power consumption is greater than in self-refresh mode. This state is sim-
ilar to normal mode (No low-power mode/No self-refresh mode), but the SDCKE pin is low and
the input and output buffers are deactivated as soon as the SDRAM device is no longer accessi-
ble. In contrast to self-refresh mode, the SDRAM device cannot remain in low-power mode
longer than the refresh period (64 ms for a whole device refresh operation). As no auto-refresh
operations are performed in this mode, the SDRAM Controller carries out the refresh operation.
In order to exit low-power mode, a NOP command is required. The exit procedure is faster than
in self-refresh mode.

When self-refresh mode is enabled, it is recommended to avoid enabling low-power mode.
When low-power mode is enabled, it is recommended to avoid enabling self-refresh mode.

This is described in Figure 19-8 below.

Figure 19-8. Low-power Mode Behavior

\Low Power Mode
— >
L

TRCD = 3 CAS = 2

A\

A/

sSDCS | |

1

I
SDCK||||'|||||'|||'||—||_||—||—||—||—||—|I—||—

Xcol chipI cXcoI choI eX col fX

A[12:0] ' Rown X cola

RAS

CAS

SDCKE J

D[31:0]
(input)

«Dnai X(Dnb»(Dnc)«Dnd»(Dne»(an>
1

204 AT91RM9200 mess——

19.7 SDRAM Controller (SDRAMC) User Interface

Table 19-8. SDRAM Controller Memory Map

Offset Register Name Access Reset State
0x00 SDRAMC Mode Register SDRAMC_MR Read/Write 0x00000010
0x04 SDRAMC Refresh Timer Register SDRAMC_TR Read/Write 0x00000800
0x08 SDRAMC Configuration Register SDRAMC_CR Read/Write 0x2A99C140
0x0C SDRAMC Self Refresh Register SDRAMC_SRR Write-only -

0x10 SDRAMC Low Power Register SDRAMC_LPR Read/Write 0x0
0x14 SDRAMC Interrupt Enable Register SDRAMC_IER Write-only -

0x18 SDRAMC Interrupt Disable Register SDRAMC_IDR Write-only -
0x1C SDRAMC Interrupt Mask Register SDRAMC_IMR Read-only 0x0
0x20 SDRAMC Interrupt Status Register SDRAMC_ISR Read-only 0x0

AImEl@ 205

1768I-ATARM-09-Jul-09

19.7.1 SDRAMC Mode Register

Register Name: SDRAMC_MR

Access Type: Read/Write

Reset Value: 0x00000010
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | DBW | MODE |

e MODE: SDRAMC Command Mode
This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed.

MODE Description

0 0 0 0 Normal mode. Any access to the SDRAM is decoded normally.

The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the

0 0 0 1
cycle.

The SDRAM Controller issues an “All Banks Precharge” command when the SDRAM device is accessed
regardless of the cycle.

The SDRAM Controller issues a “Load Mode Register” command when the SDRAM device is accessed
regardless of the cycle. The address offset with respect to the SDRAM device base address is used to

0 0 1 1 program the Mode Register. For instance, when this mode is activated, an access to the “SDRAM_Base +
offset” address generates a “Load Mode Register” command with the value “offset” written to the SDRAM
device Mode Register.

The SDRAM Controller issues a “Refresh” Command when the SDRAM device is accessed regardless of
the cycle. Previously, an “All Banks Precharge” command must be issued.

e DBW: Data Bus Width
0: Data bus width is 32 bits.

1: Data bus width is 16 bits.

206 A T91 RIVI'O:2 0 () 50000000

19.7.2 SDRAMC Refresh Timer Register

Register Name: SDRAMC_TR

Access Type: Read/Write

Reset Value: 0x00000800
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I COUNT |
7 6 5 4 3 2 1 0

| COUNT |

e COUNT: SDRAMC Refresh Timer Count

This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh
burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate
of the SDRAM device and the refresh burst length where 15.6 ps per row is a typical value for a burst of length one.

To refresh the SDRAM device even if the reset value is not equal to 0, this 12-bit field must be written. If this condition is not
satisfied, no refresh command is issued and no refresh of the SDRAM device is carried out.

AImEl@ 207

1768I-ATARM-09-Jul-09

19.7.3 SDRAMC Configuration Register

Register Name: SDRAMC_CR
Access Type: Read/Write
Reset Value: 0x2A99C140
31 30 29 28 27 26 25 24
| — | TXSR | TRAS |
23 22 21 20 19 18 17 16
| TRAS | TRCD | TRP |
15 14 13 12 11 10 9 8
| TRP | TRC | TWR |
7 6 5 4 3 2 1 0
| TWR | CAS NB NR NC |
¢ NC: Number of Column Bits
Reset value is 8 column bits.
NC Column Bits
0 0 8
0 1 9
1 0 10
1 1 11
¢ NR: Number of Row Bits
Reset value is 11 row bits.
NR Row Bits
0 0 11
0 1 12
1 0 13
1 1 Reserved
e NB: Number of Banks
Reset value is two banks.
NB Number of Banks
0 2
1 4

e CAS: CAS Latency
Reset value is two cycles.

208 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

In the SDRAMC, only a CAS latency of two cycles is managed. In any case, another value must be programmed.

CAS CAS Latency (Cycles)
0 0 Reserved
0 1 Reserved
1 0 2
1 1 Reserved

e TWR: Write Recovery Delay
Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 2 and 15.
If TWR is less than or equal to 2, two clock periods are inserted by default.

¢ TRC: Row Cycle Delay

Reset value is eight cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is
between 2 and 15.

If TRC is less than or equal to 2, two clock periods are inserted by default.
¢ TRP: Row Precharge Delay
Reset value is three cycles.

This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles
is between 2 and 15.

If TRP is less than or equal to 2, two clock periods are inserted by default.
e TRCD: Row to Column Delay
Reset value is three cycles.

This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of
cycles is between 2 and 15.

If TRCD is less than or equal to 2, two clock periods are inserted by default.
¢ TRAS: Active to Precharge Delay
Reset value is five cycles.

This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of
cycles is between 2 and 15.

If TRAS is less than or equal to 2, two clock periods are inserted by default.
¢ TXSR: Exit Self Refresh to Active Delay
Reset value is five cycles.

This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is
between 1/2 and 15.5.

If TXSR is equal to 0, 1/2 clock period is inserted by default.

AImEl@ 209

1768I-ATARM-09-Jul-09

19.7.4 SDRAMC Self-refresh Register

Register Name: SDRAMC_SRR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - - ¢ - - [- [- /| S
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | S
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- | i
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | SRCB |

e SRCB: Self-refresh Command Bit
0: No effect.

1: The SDRAM Controller issues a self-refresh command to the SDRAM device, the SDCK clock is inactivated and the
SDCKE signal is set low. The SDRAM device leaves self-refresh mode when accessed again.

19.75 SDRAMC Low-power Register

Register Name: SDRAMC_LPR

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

. - r - - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ = [= 1]
15 14 13 12 11 10

. - r - - - - rr - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | tPcB |

e LPCB: Low-power Command Bit
0: The SDRAM Controller low-power feature is inhibited: no low-power command is issued to the SDRAM device.

1: The SDRAM Controller issues a low-power command to the SDRAM device after each burst access, the SDCKE signal
is set low. The SDRAM device will leave low-power mode when accessed and enter it after the access.

210 A T91 RIVI'O:2 0 () 50000000

19.7.6 SDRAMC Interrupt Enable Register

Register Name: SDRAMC_IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10

I - I - I - I - I - I - I - I - |

6 5 3 0

I - I - I - I - I - I - I - | RES |

¢ RES: Refresh Error Status

0: No effect.

1: Enables the refresh error interrupt.

19.7.7 SDRAMC Interrupt Disable Register

Register Name: SDRAMC_IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I = I - I = I - I = I - I = I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10

I - I - I - I - I - I - I - I - |
7 4 2 1 0

I - I - I - I - I - I - I - | RES |

¢ RES: Refresh Error Status
0: No effect.

1: Disables the refresh error interrupt.

AImEl@ 211

1768I-ATARM-09-Jul-09

19.7.8 SDRAMC Interrupt Mask Register

Register Name: SDRAMC_IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10

I - I - I - I - I - I - I - I - |

6 5 4 3 0

[- | - | - | - | - | - | - | RES |

¢ RES: Refresh Error Status
0: The refresh error interrupt is disabled.

1: The refresh error interrupt is enabled.

212 A T91 RIVI'O:2 0 () 50000000

19.7.9 SDRAMC Interrupt Status Register

Register Name: SDRAMC_ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10

I - I - I - I - I - I - I - - |

6 5 4 3 0

[- | - | - | - | - | - | - | RES |

* RES: Refresh Error Status
0: No refresh error has been detected since the register was last read.

1: A refresh error has been detected since the register was last read.

AImEl@ 213

1768I-ATARM-09-Jul-09

ATMEL

214 AT91RM9200 messssss—

20. Burst Flash Controller (BFC)

20.1 Overview

1768I-ATARM-09-Jul-09

The Burst Flash Controller (BFC) provides an interface for external 16-bit Burst Flash devices
and handles an address space of 256M bytes. It supports byte, half-word and word aligned
accesses and can access up to 32M bytes of Burst Flash devices. The BFC also supports data
bus and address bus multiplexing. The Burst Flash interface supports only continuous burst
reads. Programmable burst lengths of four or eight words are not possible. The BFC never gen-
erates an abort signal, regardless of the requested address within the 256M bytes of address
space.

The BFC can operate with two burst read protocols depending on whether or not the address
increment of the Burst Flash device is signal controlled. The Burst Flash Controller Mode Regis-
ter (BFC_MR) located in the BFC user interface is used in programming Asynchronous or Burst
Operating Modes. In Burst Mode, the read protocol, Clock Controlled Address Advance, auto-
matically increments the address at each clock cycle. Whereas in Signal Controlled Address
Advance protocol the address is incremented only when the Burst Address Advance signal is
active. When Address and Data Bus Multiplexing Mode is chosen, the sixteen lowest address
bits are multiplexed with the data bus.

The BFC clock speed is programmable to be either master clock or master clock divided by 2 or
4. Page size handling (16 bytes to 1024 bytes) is required by some Burst Flash devices unable
to handle continuous burst read. The number of latency cycles after address valid goes up to
sixteen cycles. The number of latency cycles after output enable runs between one and three
cycles. The Burst Flash Controller can also be programmed to suspend and maintain the current
burst. This attribute gives other devices the possibility to share the BFC busses without any loss
of efficiency. In Burst Mode, the BFC can restart a sequential access without any additional
latency.

Features of the Burst Flash Controller are:

¢ Multiple Access Modes Supported
— Asynchronous or Burst Mode Byte, Half-word or Word Read Accesses
— Asynchronous Mode Half-word Write Accesses
¢ Adaptability to Different Device Speed Grades
— Programmable Burst Flash Clock Rate
— Programmable Data Access Time
— Programmable Latency after Output Enable
» Adaptability to Different Device Access Protocols and Bus Interfaces

— Two Burst Read Protocols: Clock Control Address Advance or Signal Controlled
Address Advance

— Multiplexed or Separate Address and Data Busses
— Continuous Burst and Page Mode Accesses Supported

AImEl@ 215

20.2 Block Diagram

Figure 20-1. Burst Flash Controller Block Diagram

PIO
BFC Controller|
BFC
Memory . —’| |
Controller Chip Select BFCK
—D BFCS
—D BFAVD
—D BFBAA
—D BFOE
PMC MCK , —>| | BFWE
. <—|:| BFRDY
—D A[24:0]
‘] ousal
User Interface
APB i
< >
20.3 1/O Lines Description
Table 20-1. 1/O Lines Description
Name Description Type Active Level
BFCK Burst Flash Clock Output
BFCS Burst Flash Chip Select Output Low
BFAVD Burst Flash Address Valid Output Low
BFBAA Burst Flash Address Advance Output Low
BFOE Burst Flash Output Enable Output Low
BFWE Burst Flash Write Enable Output Low
BFRDY Burst Flash Ready Input High
A[24:0] Address Bus Output
D[15:0] Data Bus 1/0

216 A T91 RIVI'O:2 0 () 50000000

20.4 Application Example

20.41 Burst Flash Interface
The Burst Flash Interface provides control, address and data signals to the Burst Flash Memory.
These signals are detailed in Section 20.6 “Functional Description” on page 218 which describes
the BFC functionality and operating modes. Figure 20-2 below presents an illustration of the

possible connections of the BFC to some popular Burst Flash Memories.

Figure 20-2. Burst Flash Controller Connection Example

Burst Flash Burst Flash

BFC BFC
[DO:D15] {m==p{ [DO:D15] [D0:D15] |€===={ [ADO:AD15]
[A0:A22] »| [A0:A22] [A16:A21] >| [A16:A21]

BFCK clk BFCK clk

BFAVD > avd/adv BFAVD avd

BFCS ce BFCS ce

BFOE oe BFOE oe

BFWE we BFWE we

BFRDY rdy/wait BFRDY rdy

Clock Controlled Address Advance
Multiplexed Bus Disabled

Clock Controlled Address Advance
Multiplexed Bus Enabled

Burst Flash Burst Flash
BFC BFC
[DO:D15] [« »{ [D0:D15] [DO:D15] |« »| [AD0:AD15]
[AO:A19] > [A0:A19] [A16:A19] »| [A16:A19]
BFCK clk BFCK clk
BFCS ce BFCS ce
BFAVD avd/lba BFAVD avd
BFBAA baa BFBAA baa
BFOE oe BFOE oe
BFWE we BFWE we
BFRDY rdy/ind BFRDY rdy

1768I-ATARM-09-Jul-09

Signal Controlled Address Advance
Multiplexed Bus Disabled

ATMEL

Signal Controlled Address Advance
Multiplexed Bus Enabled

217

ATMEL

20.5 Product Dependencies

20.5.1 I/O Lines
The pins used for interfacing the Burst Flash Controller may be multiplexed with the PIO lines.
The programmer must first program the PlO controller to assign the Burst Flash Controller pins
to their peripheral function. If I/O lines of the Burst Flash Controller are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

20.6 Functional Description
The Burst Flash Controller drives the following signals:

* Address Valid (BFAVD), to latch the addresses
¢ Clock (BFCK), to supply the burst clock
¢ Burst Advance Address (BFBAA), to control the Burst Flash memory address advance when
programmed to operate in signal controlled burst advance
¢ Write Enable (BFWE), to write to the Burst Flash device
¢ Output Enable (BFOE), to enable the external device data drive on the data bus
When enabled, the BFC also drives the address bus, the data bus and the Chip Select (BFCS)

line. The Ready Signal (BFRDY) is taken as an input and used as an indicator for the next data
availability.

20.6.1 Burst Flash Controller Reset State
After reset, the BFC is disabled and, therefore, must be enabled by programming the field
BFCOM. See “Burst Flash Controller Mode Register” on page 227. At this time, the Burst Flash
Controller operates in Asynchronous Mode. The Burst Flash memory can be programmed by
writing and reading in Asynchronous Mode.

20.6.2 Burst Flash Controller Clock Selection
The BFC clock rate is programmable to be either Master Clock, Master Clock divided by 2 or
Master Clock divided by 4. The clock selection is necessary in Burst Mode as well as in Asyn-
chronous Mode. The latency fields in the mode register and all burst Flash control signal
waveforms are related to the Burst Flash Clock (BFCK) period.

The BFC clock rate is selected by the BFCC field. “Burst Flash Controller Mode Register” on
page 227

Figure 20-3. Burst Flash Clock Rates

vmek L] || mek | [[L vek | [LT LI LT 1]
BFC Clock | | | | BFC Clock | I | BFC Clock | I |

BFCC =1 BFCC =2 BFCC=3

20.6.3 Burst Flash Controller Asynchronous Mode
In Asynchronous Mode, the Burst Flash Controller clock is off. The BFCK signal is driven low.

The BFC performs read access to bytes (8-bits), half-words (16-bits), and words (32-bits). In the
last case, the BFC autonomously transforms the word read request into two separate half-word
reads. This is fully transparent to the user.

218 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

The BFC performs only half-word write requests. Write requests for bytes or words are ignored
by the BFC.

For any access in the address space, the address is driven on the address bus while a pulse is
driven on the BFAVD signal (see Figure 20-4 on page 220, and Figure 20-5 on page 221). The
Burst Flash address is also driven on the data bus if the multiplexed data and address bus
options are enabled. (Figure 20-4 on page 220).

* For write access, the signal BFWE is asserted in the following BFCK clock cycle.

* For read access, the signal BFOE is asserted one cycle later. This additional cycle in read
accesses has been inserted to switch the I/0O pad direction so as to avoid conflict on the Burst
Flash data bus when address and data busses are multiplexed.

The Address Valid Latency (AVL) determines the length of the pulses as a number of Master
Clock cycles. The AVL field See “Burst Flash Controller Mode Register” on page 227. is coded
as the Address Valid Latency minus 1. Waveforms in Figure 20-4 on page 220 and Figure 20-5
on page 221 show the AVL field definition in read and write accesses.

¢ In read access, the access finishes with the rising edge of BFOE.

* In write access, data and address lines are released one half cycle after the rising edge of
BFWE.

After a read access to the Burst Flash, it takes Output Enable Latency (OEL) cycles for the Burst
Flash device to release the data bus. The OEL field See “Burst Flash Controller Mode Register”
on page 227. gives the OEL expressed in BFCK Clock cycles. This prevents other memory con-
trollers from using the Data Bus until it is released by the Burst Flash device.

In Figure 20-4 on page 220 (multiplexed address and data busses), one idle cycle (OEL = 1) is
inserted between the read and write accesses. The Burst Flash device must release the data
bus before the BFC can drive the address. As shown in Figure 20-5 on page 221, where busses
are not multiplexed, the write access can start as soon as the read access ends. In the same
way, the OEL has no impact when a read follows a write access.

Waveforms in Figure 20-4 on page 220 below and Figure 20-5 on page 221 are related to the
Burst Flash Controller Clock even though the BFCK pin is driven low in Asynchronous Mode.
The BFCC field See “Burst Flash Controller Mode Register” on page 227.is used as a measure
of the burst Flash speed and must also be programmed in Asynchronous Mode.

AImEl@ 219

ATMEL

Figure 20-4. Asynchronous Read and Write Accesses with Multiplexed Address and Data Buses

BFCS _|

ek | L[L U LYY YLUUL
A[24:0] >< Read|Address >< Write| Addreps
BFAVD |_J |_J
AVL
BFOE
AVL
BFWE
E())[thsp(lﬂ _<Read Addre s> Write| Addre: ;s>< Data >——
oot EEIN
OEL|=1
Asynchronous Asynchronous
Read Access Write Access

Address Valid Latency = 4 BFCK cycles (AVL field = 3)
Output Enable Latency (OEL) = 1 BFCK cycle

220 A T91 RIVI'O:2 0 () 50000000

AT91RM9200

Figure 20-5. Asynchronous Read and Write Accesses with Non-multiplexed Address and Data

BFCS |

ek _[L LYY UYWL L
A[24:0] >< Read|Address >< Write| Address
BFAVD LJ I_J
AVL
BFOE
AVL
BFWE
e CENETENDS e
Pl |
OEl=1
Asynchronous Asynchronous
Read Access Write Access

Address Valid Latency = 4 BFCK cycles (AVL field = 3)
Output Enable Latency (OEL) = 1 BFCK cycle

20.6.4 Burst Flash Controller Synchronous Mode

Writing the Burst Flash Controller Operating Mode field (BFCOM) to 2 See “Burst Flash Control-
ler Mode Register” on page 227. puts the BFC in Burst Mode. The BFC Clock is driven on the
BFCK pin. Only read accesses are treated and write accesses are ignored. The BFC supports
read access of bytes, half-words or words.

20.6.4.1 Burst Read Protocols
The BFC supports two burst read protocols:

* Clock Controlled Address Advance, the internal address of the burst Flash is automatically
incremented at each BFCK cycle.

» Signal Controlled Address Advance, the internal address of the burst Flash is incremented
only when the BFBAA signal is active.

20.6.4.2 Read Access in Burst Mode
When a read access is requested in Burst Mode, the requested address is registered in the
BFC. For subsequent read accesses, the address is compared to the previous one. Then the
two following cases are considered:

1. In case of a non-sequential access, the current burst is broken and the BFC launches a
new burst by performing an address latch cycle. The address is presented on the
address bus in any case and on the data bus if the multiplexed bus option is enabled.

AI“IE'.@ 221

1768I-ATARM-09-Jul-09

ATMEL

This new address is registered in the BFC and is then used as reference for further
accesses.

2. In case of sequential access, and provided that the BFOEH mode is selected in the
mode register See “Burst Flash Controller Mode Register’ on page 227., the internal
burst address is incremented:

— Through the BFBAA pin, if the Signal Controlled Address Advance is enabled.

— By enabling the clock during one clock cycle in Clock Controlled Address Advance
Mode.

These protocols are illustrated in Figure 20-6 below and Figure 20-7 on page 223. The Address
Valid Latency AVL+1 See “Burst Flash Controller Mode Register” on page 227. gives the num-
ber of cycles from the first rising clock edge when BFAVD is asserted to the rising edge that
causes the read of data D1.

Note: This rising edge is also used to latch DO in the BFC.

Figure 20-6. Burst Suspend and Resume with Signal Control Address Advance

222

BFCS |

Internal BFC | |
Selection Signal

e LUy yyyy oy

A[24:0] >< Afidress|(D0)

BFAVD L]

AVL OEL=2
BFOE
BFWE
Burst Suspend Burst Resume
BFBAA |__
D[15:0] \
A 1
Output < ddress ()

> nput CE GO (L (O

DO D2 D5
Sampling | Sampling Sampling

A
D1 D3 D4
Sampling Sampling Sampling
Burst Suspend and Resume (BFOEH = 1) Address Valid Latency = 4 BFCK cycles (AVL field = 3)
Signal Control Address Advance (BAAEN = 1) Output Enable Latency (OEL) = 2 BFCK cycles
(1) Only if Multiplexed Address & Data Buses

A T91 RIVI'O:2 0 () 50000000

AT91RM9200

Figure 20-7. Burst Suspend and Resume with Clock Control Address Advance
BrCS —l Burst Suspend Burst Resume

Internal BFC |
Selection Signal

sroc _[L L L L L LML LY

AN
>

Al24:0]) Hdress|(DO)

BFAVD |_J

AVL OELE2
BFOE
BFWE
D50l Vgt
Output Addrpss (D])

DI15:0) @A EEMNN)) (L (DO

Input
DO D2 D5
Sampling | Sampling Sampling
D1 D3 D4
Sampling Sampling Sampling
Burst Suspend and Resume (BFOEH = 1) Address Valid Latency = 4 BFCK cycles (AVL = 3)
Clock Control Address Advance (BAAEN = 0) Output Enable Latency (OEL) = 2 BFCK cycles

(1) Only if Multiplexed Address & Data Buses

20.6.4.3 Burst Suspension for Transfer Enabling
The BFC can suspend a burst to enable other internal transfers, or other memory controllers to
use the memory address and data busses if they are shared. Two modes are provided on the
BFOEH bit (Burst Flash Output Enable Handling, See “Burst Flash Controller Mode Register” on
page 227.):

* BFOEH = 1: the BFC suspends the burst when it is no longer selected and the BFOE pin is
deasserted. When a new sequential access on the Burst Flash device is requested, the burst
is resumed and the BFOE pin is asserted again. The data is available on the data bus after
OEL cycles. This mode provides a minimal access latency. (Refer to Figure 20-6 on page 222
and Figure 20-7 above).

* BFOEH = 0: the BFC suspends the burst when it is no longer selected and the BFOE pin is
deasserted. When a new access to the Burst Flash device is requested, either sequential or
not, a new burst is initialized and the next data is available as defined by the AVL latency field
in the Mode Register. This mode is provided for Burst Flash devices for which the deassertion
of the BFOE signal causes an irreversible break of the burst. Figure 20-8 on page 224 shows
the access request to the BFC and the deassertion of the BFOE signal due to a deselection

AI“IE'.@ 223

1768I-ATARM-09-Jul-09

ATMEL

of the BFC (Suspend). When the BFC is requested again, a new burst is started even though
the requested address is sequential to the previously requested address.

Figure 20-8. Burst Flash Controller with No Burst Enable Handling

oeeey LU L L L L L
A0 XA

JESSESEEEERE RN pE RN

A2 >< A3

Internal
Address Bus

&

Burst|Suspend Begin New Burgt

Internal BFC
Selection Signal

BFCS

BFCK

é_||_><

Uy ey ey

A[24:0] X Addresd (D0) X Address (D2
BFAVD
L] L]
AVL OEL 4 1 AVL

BFOE

BFWE
D[15:0] N\ \

Output <Addness ., Address (1) >

> nput Koo Kooz R o2 X5 (or

BFBAA | | |
DO D3
Sampling Sampling
Address Valid Latency = 4 BFCK cycles
D1 Output Enable Latency (OEL) = 1 BFCK cycle D2
Sampling Sampling
(1) Only if Multiplexed Address & Data Busses No Burst Output Enable Handling (BFOEH = 0)
(2) Master Clock Mode (BFCC =1) Signal Control Advance Address (BAAEN = 1)

20.6.4.4 Continuous Burst Reads
The BFC performs continuous burst reads. It is also possible to program page sizes from 16
bytes up to 1024 bytes. This is done by setting the appropriate value in the PAGES field of the
“Burst Flash Controller Mode Register” on page 227.

Page Mode

224 AT91RM9200 ms—

In Page Mode, the BFC stops the current burst and starts a new burst each time the requested
address matches a page boundary. Figure 20-9 on page 225 illustrates a 16-byte page size.
Data DO to D10 belong to two separate pages and are accessed through two burst accesses.
This mode is provided for Burst Flash devices that cannot handle continuous burst read (in
which case, a continuous burst access to address DO would cause the Burst Flash internal
address to wrap around address DO0). Page Mode can be disabled by programming a null value
in the PAGES field of the “Burst Flash Controller Mode Register’ on page 227.

Figure 20-9. Burst Read in Page Mode

BFCS |

16-byte Page Boundary M

o L[LT L L L T L L L L L L
A[24:0] >< Address| (DO) >< Alddress| (D8)
BFAVD | | |_J
AVL| AVL @
BFOE
BFWE
D[15:0]
Output
D[15:0] B
oot (<o [X D1 X D6 X b7 [Do (P8} D9 XD1q
BFBAA | | |
DO D7 D8 (1)
Sampling Sampling Sampling
16-byte Page 16-byte Page
(8 Accesses of 2 Bytes Each) (8 Accesses of 2 Bytes Each)
Burst Read in Page Mode (16 Bytes) Address Valid Latency = 3 BFCK cycles (AVL field = 2)
Signal Control Advance Address (BAAEN = 1) Output Enable Latency (OEL) = 1 BFCK cycle
(1) A New Page Begins at D8 Page Size = 16 Bytes
Ready Enable Mode

In Ready Enable Mode (bit RDYEN in the “Burst Flash Controller Mode Register” on page 227),
the BFC uses the Ready Signal (BFRDY) from the burst Flash device as an indicator of the next
data availability. The BFRDY signal must be asserted one BFCK cycle before data is valid. In
Figure 20-10 on page 226 below, the BFRDY signal indicates on edge (A) that the expected D4
data will not be available on the next rising BFCK edge. The BFRDY signal remains low until ris-
ing at edge (B). D4 is then sampled on edge (C).

AI“IE'.@ 225

1768I-ATARM-09-Jul-09

ATMEL

When the RDYEN mode is disabled (RDYEN = 0), the BFRDY signal at the BFC input interface
is ignored. This mode is provided for Burst Flash devices that do not handle the BFRDY signal.

Figure 20-10. Burst Read Using BFRDY Signal

BFCS_l
o | LI LT L L L L L L L L L L L L e

A[24:0] X Address (DO)

BFAVD
|_J AVL

BFOE
D[15:0]
Input & ob X 01 Xob X | ps X b4 XD X Db XDF)
BFBAA |
BFRDY |
Sampling DO D1 D2 D3 D4 D5 D6 D7

Burst Read Address Valid Latency = 4 BFCK cycles (AVL field = 3)
Signal Control Advance Address (BAAEN = 1) Output Enable Latency (OEL) = 1 BFCK cycle

226 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM—-09-Jul-09

20.7 Burst Flash Controller (BFC) User Interface

20.7.1 Burst Flash Controller Mode Register

Register Name: BFC_MR

Access Type: Read/Write

Reset Value :0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | RDYEN | MUXEN | BFOEH | BAAEN |
15 14 13 12 11 10 9 8

| - | - | OEL | | PAGES |
7 6 5 4 3 2 1 0

| AVL | BFCC BFCOM |

* BFCOM: Burst Flash Controller Operating Mode

BFCOM BFC Operating Mode
0 0 Disabled.
0 1 Asynchronous
1 0 Burst Read
1 1 Reserved
e BFCC: Burst Flash Controller Clock

BFCC BFC Clock
0 0 Reserved
0 1 Master Clock
1 0 Master Clock divided by 2
1 1 Master Clock divided by 4

e AVL: Address Valid Latency

The Address Valid Latency is defined as the number of BFC Clock Cycles from the first BFCK rising edge when BFAVD is
asserted to the BFCK rising edge that samples read data. The Latency is equal to AVL + 1.

1768I-ATARM-09-Jul-09

ATMEL

227

ATMEL

* PAGES: Page Size
This field defines the page size handling and the page size.

Pages Page Size
0 0 0 No page he_lndling. The Ready Signal (BFRDY) is sampled to check if the next
data is available.
0 0 1 16 bytes page size
0 1 0 32 bytes page size
0 1 1 64 bytes page size
1 0 0 128 bytes page size
1 0 1 256 bytes page size
1 1 0 512 bytes page size
1 1 1 1024 bytes page size

e OEL: Output Enable Latency
This field defines the number of idle cycles inserted after each level change on the BFOE output enable signal. OEL range
is 1to 3.

e BAAEN: Burst Address Advance Enable

0: The burst clock is enabled to increment the burst address or, disabled to remain at the same address.
1: The burst clock is continuous and the burst address advance is controlled with the BFBAA pin.

e BFOEH: Burst Flash Output Enable Handling

0: No burst resume in Burst Mode. When the BFC is deselected, this causes an irreversible break of the burst. A new burst
will be initiated for the next access.

1: Burst resume. When the BFC is deselected, the burst is suspended. It will be resumed if the next access is sequential to
the last one.

¢ MUXEN: Multiplexed Bus Enable

0: The address and data busses operate independently.

1: The address and data busses are multiplexed. Actually, the address is presented on both the data bus and the address
bus when the BFAVD signal is asserted.

e RDYEN: Ready Enable Mode

0: The BFRDY input signal at the BFC input interface is ignored.

1: The BFRDY input signal is used as an indicator of data availability in the next cycle.

228 A T91 RIVI'O:2 0 () 50000000

21. Peripheral DMA Controller (PDC)

21.1 Overview

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals such as
the UART, USART, SSC, SPI, MCI and the on- and off-chip memories. Using the Peripheral
DMA Controller avoids processor intervention and removes the processor interrupt-handling
overhead.This significantly reduces the number of clock cycles required for a data transfer and,
as a result, improves the performance of the microcontroller and makes it more power efficient.

The PDC channels are implemented in pairs, each pair being dedicated to a particular periph-
eral. One channel in the pair is dedicated to the receiving channel and one to the transmitting
channel of each UART, USART, SSC and SPI.

The user interface of a PDC channel is integrated in the memory space of each peripheral. It
contains:

¢ A 32-bit memory pointer register

* A 16-bit transfer count register

* A 32-bit register for next memory pointer

* A 16-bit register for next transfer count

The peripheral triggers PDC transfers using transmit and receive signals. When the pro-
grammed data is transferred, an end of transfer interrupt is generated by the corresponding
peripheral.

Important features of the PDC are:
¢ Generates Transfers to/from Peripherals Such as DBGU, USART, SSC, SPI and MCI
e Supports Up to Twenty Channels (Product Dependent)

* One Master Clock Cycle Needed for a Transfer from Memory to Peripheral
¢ Two Master Clock Cycles Needed for a Transfer from Peripheral to Memory

21.2 Block Diagram

1768I-ATARM-09-Jul-09

Figure 21-1. Block Diagram

Peripheral Peripheral DMA Controller
THR PDC Channel 0 [«
RHR PDC Channel 1 |«—| Control p| Memory
Controller
Status & Control
Control < >

AImEl@ 229

ATMEL

21.3 Functional Description

21.3.1 Configuration
The PDC channels user interface enables the user to configure and control the data transfers for
each channel. The user interface of a PDC channel is integrated into the user interface of the
peripheral (offset 0x100), which it is related to.

Per peripheral, it contains four 32-bit Pointer Registers (RPR, RNPR, TPR, and TNPR) and four
16-bit Counter Registers (RCR, RNCR, TCR, and TNCR).

The size of the buffer (number of transfers) is configured in an internal 16-bit transfer counter
register, and it is possible, at any moment, to read the number of transfers left for each channel.

The memory base address is configured in a 32-bit memory pointer by defining the location of
the first address to access in the memory. It is possible, at any moment, to read the location in
memory of the next transfer and the number of remaining transfers. The PDC has dedicated sta-
tus registers which indicate if the transfer is enabled or disabled for each channel. The status for
each channel is located in the peripheral status register. Transfers can be enabled and/or dis-
abled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC Transfer Control Register. These
control bits enable reading the pointer and counter registers safely without any risk of their
changing between both reads.

The PDC sends status flags to the peripheral visible in its status-register (ENDRX, ENDTX,
RXBUFF, and TXBUFE).

ENDRX flag is set when the PERIPH_RCR register reaches zero.
RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.
ENDTX flag is set when the PERIPH_TCR register reaches zero.
TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.
These status flags are described in the peripheral status register.
21.3.2 Memory Pointers
Each peripheral is connected to the PDC by a receiver data channel and a transmitter data

channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to a
location anywhere in the memory space (on-chip memory or external bus interface memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
by 1, 2 or 4, respectively for peripheral transfers.

If a memory pointer is reprogrammed while the PDC is in operation, the transfer address is
changed, and the PDC performs transfers using the new address.

21.3.3 Transfer Counters
There is one internal 16-bit transfer counter for each channel used to count the size of the block
already transferred by its associated channel. These counters are decremented after each data
transfer. When the counter reaches zero, the transfer is complete and the PDC stops transfer-
ring data.

If the Next Counter Register is equal to zero, the PDC disables the trigger while activating the
related peripheral end flag.

If the counter is reprogrammed while the PDC is operating, the number of transfers is updated
and the PDC counts transfers from the new value.

230 A T91 RIVI'O:2 0 () 50000000

21.34 Data Transfers

Programming the Next Counter/Pointer registers chains the buffers. The counters are decre-
mented after each data transfer as stated above, but when the transfer counter reaches zero,
the values of the Next Counter/Pointer are loaded into the Counter/Pointer registers in order to
re-enable the triggers.

For each channel, two status bits indicate the end of the current buffer (ENDRX, ENTX) and the
end of both current and next buffer (RXBUFF, TXBUFE). These bits are directly mapped to the
peripheral status register and can trigger an interrupt request to the AIC.

The peripheral end flag is automatically cleared when one of the counter-registers (Counter or
Next Counter Register) is written.

Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

The peripheral triggers PDC transfers using transmit (TXRDY) and receive (RXRDY) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the PDC
which then requests access to the system bus. When access is granted, the PDC starts a read
of the peripheral Receive Holding Register (RHR) and then triggers a write in the memory.

After each transfer, the relevant PDC memory pointer is incremented and the number of trans-
fers left is decremented. When the memory block size is reached, a signal is sent to the
peripheral and the transfer stops.

The same procedure is followed, in reverse, for transmit transfers.

2135 Priority of PDC Transfer Requests

1768I-ATARM-09-Jul-09

The Peripheral DMA Controller handles prioritized transfer requests from the channel.

If simultaneous requests of the same type (receiver or transmitter) occur on identical peripher-
als, the priority is determined by the numbering of the peripherals.

If transfer requests are not simultaneous, they are treated in the order they occurred. Requests
from the receivers are handled first and then followed by transmitter requests.

AImEl@ 231

ATMEL

21.4 Peripheral DMA Controller (PDC) User Interface

Table 21-1. Peripheral DMA Controller (PDC) Register Mapping
Offset Register Register Name Read/Write Reset
0x100 PDC Receive Pointer Register PERIPH"_RPR Read/Write 0x0
0x104 PDC Receive Counter Register PERIPH_RCR Read/Write 0x0
0x108 PDC Transmit Pointer Register PERIPH_TPR Read/Write 0x0
0x10C PDC Transmit Counter Register PERIPH_TCR Read/Write 0x0
0x110 PDC Receive Next Pointer Register PERIPH_RNPR Read/Write 0x0
0x114 PDC Receive Next Counter Register PERIPH_RNCR Read/Write 0x0
0x118 PDC Transmit Next Pointer Register PERIPH_TNPR Read/Write 0x0
0x11C PDC Transmit Next Counter Register PERIPH_TNCR Read/Write 0x0
0x120 PDC Transfer Control Register PERIPH_PTCR Write-only -
0x124 PDC Transfer Status Register PERIPH_PTSR Read-only 0x0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user

232

according to the function and the peripheral desired (DBGU, USART, SSC, SPI, MCI etc).

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

21.41 PDC Receive Pointer Register

Register Name: PERIPH_RPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

| RXPTR |

* RXPTR: Receive Pointer Address

Address of the next receive transfer.

21.4.2 PDC Receive Counter Register

Register Name: PERIPH_RCR

Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| RXCTR |
7 6 5 4 3 2 1 0

[RXCTR |

¢ RXCTR: Receive Counter Value
Number of receive transfers to be performed.

1768I-ATARM-09-Jul-09

ATMEL

233

A IIIIEI% O

2143 PDC Transmit Pointer Register

Register Name: PERIPH_TPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

| TXPTR |

e TXPTR: Transmit Pointer Address

Address of the transmit buffer.

2144 PDC Transmit Counter Register

Register Name: PERIPH_TCR

Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| TXCTR |
7 6 5 4 3 2 1 0

| TXCTR |

e TXCTR: Transmit Counter Value
-TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral DMA transfer is stopped.

232 AT91RM9200 mes—

1768I-ATARM-09-Jul-09

2145 PDC Receive Next Pointer Register

Register Name: PERIPH_RNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

* RXNPTR: Receive Next Pointer Address

RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

21.4.6 PDC Receive Next Counter Register

Register Name: PERIPH_RNCR

Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| RXNCR |
7 6 5 4 3 2 1 0

| RXNCR |

e RXNCR: Receive Next Counter Value
-RXNCR is the size of the next buffer to receive.

ATMEL

1768I-ATARM-09-Jul-09

235

A IIIIEI% O

21.4.7 PDC Transmit Next Pointer Register

Register Name: PERIPH_TNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

| TXNPTR |

¢ TXNPTR: Transmit Next Pointer Address
TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

21.4.8 PDC Transmit Next Counter Register

Register Name: PERIPH_TNCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXNCR |
7 6 5 4 3 2 1 0
| TXNCR |

¢ TXNCR: Transmit Next Counter Value
TXNCR is the size of the next buffer to transmit.

236 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

21.4.9 PDC Transfer Control Register

Register Name: PERIPH_PTCR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - [- [- [_ [txmis | TXTEN]
7 6 5 4 3 2 1 0

| - | - | - [- [— [- [RxtDiIs | RBXTEN]

e RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables the receiver PDC transfer requests if RXTDIS is not set.

¢ RXTDIS: Receiver Transfer Disable

0 = No effect.

1 = Disables the receiver PDC transfer requests.

e TXTEN: Transmitter Transfer Enable

0 = No effect.

1 = Enables the transmitter PDC transfer requests.
¢ TXTDIS: Transmitter Transfer Disable

0 = No effect.

1 = Disables the transmitter PDC transfer requests

AImEl@ 237

1768I-ATARM-09-Jul-09

21.4.10 PDC Transfer Status Register

Register Name: PERIPH_PTSR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - | TXTEN |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | RXTEN |

¢ RXTEN: Receiver Transfer Enable
0 = Receiver PDC transfer requests are disabled.

1 = Receiver PDC transfer requests are enabled.
e TXTEN: Transmitter Transfer Enable
0 = Transmitter PDC transfer requests are disabled.

1 = Transmitter PDC transfer requests are enabled.

238 A T91 RIVI'O:2 0 () 50000000

22. Advanced Interrupt Controller (AIC)

22.1

Overview

1768I-ATARM-09-Jul-09

The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored
interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to sub-
stantially reduce the software and real-time overhead in handling internal and external
interrupts.

The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs
of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or external inter-
rupts coming from the product's pins.

The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus
permitting higher priority interrupts to be serviced even if a lower priority interrupt is being
treated.

Internal interrupt sources can be programmed to be level sensitive or edge triggered. External
interrupt sources can be programmed to be positive-edge or negative-edge triggered or high-
level or low-level sensitive.

Important Features of the AIC are:

e Controls the Interrupt Lines (nIRQ and nFIQ) of an ARM Processor
¢ Thirty-two Individually Maskable and Vectored Interrupt Sources
— Source 0 is Reserved for the Fast Interrupt Input (FIQ)
— Source 1 is Reserved for System Peripherals (ST, RTC, PMC, DBGU...)

— Source 2 to Source 31 Control up to Thirty Embedded Peripheral Interrupts or
External Interrupts

— Programmable Edge-triggered or Level-sensitive Internal Sources

— Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
External Sources

* 8-level Priority Controller

— Drives the Normal Interrupt of the Processor

— Handles Priority of the Interrupt Sources 1 to 31

— Higher Priority Interrupts Can Be Served During Service of Lower Priority Interrupt
* Vectoring

— Optimizes Interrupt Service Routine Branch and Execution

— One 32-bit Vector Register per Interrupt Source

— Interrupt Vector Register Reads the Corresponding Current Interrupt Vector
* Protect Mode

— Easy Debugging by Preventing Automatic Operations when Protect Models Are
Enabled

¢ General Interrupt Mask
— Provides Processor Synchronization on Events Without Triggering an Interrupt

AImEl@ 239

ATMEL

22.2 Block Diagram

Figure 22-1. Block Diagram

FIQ AIC
| I > ARM
IRQO-IRQN Processor
Up to
Thirty-two »| nFIlQ
~._Embedded | Sources
“.._Embedded | »| nIRQ
i Embedded g
Peripheral
4
) J ApB

22.3 Application Block Diagram

Figure 22-2. Description of the Application Block

OS-based Applications

Standalone
Applications OS Drivers RTOS Drivers

Hard Real Time Tasks

General OS Interrupt Handler

Advanced Interrupt Controller

External Peripherals

Embedded Peripherals (External Interrupts)

22.4 AIC Detailed Block Diagram

Figure 22-3. AIC Detailed Block Diagram

Advanced Interrupt Controller ARM
DFIQ Processor
PO] - Int'!:.-}arrslfl t > nF1Q
Controller External Source pi
Input Stage Controller
D‘ > »| nIRQ
RQ0-RAN Interrupt /
PIOIRQ - Priority Processor
Internal Source Controller Clock
Input Stage
> Power
Embedded Management
Peripherals Controller
User Interface Wake Up
A
_ Y APB

20 AT91RM9200 msss—

22.5 1/0 Line Description

Table 22-1. I/O Line Description

Pin Name Pin Description Type
FIQ Fast Interrupt Input
IRQO - IRQN Interrupt O - Interrupt n Input

22.6 Product Dependencies

22.6.1 I/O Lines
The interrupt signals FIQ and IRQO to IRQn are normally multiplexed through the PIO control-
lers. Depending on the features of the PIO controller used in the product, the pins must be
programmed in accordance with their assigned interrupt function. This is not applicable when
the PIO controller used in the product is transparent on the input path.

22.6.2 Power Management

The Advanced Interrupt Controller is continuously clocked. The Power Management Controller
has no effect on the Advanced Interrupt Controller behavior.

The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the
ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to
wake up the processor without asserting the interrupt line of the processor, thus providing syn-
chronization of the processor on an event.

22.6.3 Interrupt Sources
The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the
Interrupt Source 0 cannot be used.

The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring
of the system peripheral interrupt lines, such as the System Timer, the Real Time Clock, the
Power Management Controller and the Memory Controller. When a system interrupt occurs, the
service routine must first distinguish the cause of the interrupt. This is performed by reading suc-
cessively the status registers of the above mentioned system peripherals.

The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded
user peripheral or to external interrupt lines. The external interrupt lines can be connected
directly, or through the PIO Controller.

The PIO Controllers are considered as user peripherals in the scope of interrupt handling.
Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31.

The peripheral identification defined at the product level corresponds to the interrupt source
number (as well as the bit number controlling the clock of the peripheral). Consequently, to sim-
plify the description of the functional operations and the user interface, the interrupt sources are
named FIQ, SYS, and PID2 to PID31.

AImEl@ 241

1768I-ATARM-09-Jul-09

ATMEL

22.7 Functional Description

22.71

22.7.1.1

22.7.1.2

22.7.1.3

22.7.1.4

242

Interrupt Source Control

Interrupt Source Mode

The Advanced Interrupt Controller independently programs each interrupt source. The SRC-
TYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.

The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be
programmed either in level-sensitive mode or in edge-triggered mode. The active level of the
internal interrupts is not important for the user.

The external interrupt sources can be programmed either in high level-sensitive or low level-sen-
sitive modes, or in positive edge-triggered or negative edge-triggered modes.

Interrupt Source Enabling

Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register). This set of registers conducts enabling or disabling in one instruc-
tion. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does not affect
servicing of other interrupts.

Interrupt Clearing and Setting

All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clear-
ing or setting interrupt sources programmed in level-sensitive mode has no effect.

The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also be
used to execute an AIC-implementation of a software interrupt.

The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector
Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is
affected by this operation. (See Section 22.7.3.1 "Priority Controller” on page 245.) The auto-
matic clear reduces the operations required by the interrupt service routine entry code to reading
the AIC_IVR.)

The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.

Interrupt Status

For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its
mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources,
whether masked or not.

The AIC_ISR register reads the number of the current interrupt (See Section 22.7.3.1 "Priority
Controller” on page 245.) and the register AIC_CISR gives an image of the signals nIRQ and
nF1Q driven on the processor.

Each status referred to above can be used to optimize the interrupt handling of the systems.

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

22.7.1.5 Internal Interrupt Source Input Stage

Figure 22-4. Internal Interrupt Source Input Stage

MCK

nIRQ

- - - >

1
1
1
> |

e e

A
1
1
1
1
1
1
1
1
1

1 '
i Maximum IRQ Latency = 3.5 Cycles

Peripheral Interrupt
Becomes Active

22.7.1.6 External Interrupt Source Input Stage

Figure 22-5. External Interrupt Source Input Stage

AIC_SMRi
High/Lo w SRCTYPE
Level/ | AIC_IPR
Edge
. AIC_IMR
Source i
I | R E?St Interrupt Controller
D Priority Controller
Pos./Neg. AIC_IECR
I
— Edge
Detector FF
Set Clear
[
AIC_ISCR AIC_IDCR

AIC_ICCR

1768I-ATARM-09-Jul-09

ATMEL

243

ATMEL

22.7.2 Interrupt Latencies
Global interrupt latencies depend on several parameters, including:
¢ The time the software masks the interrupts.
* Occurrence, either at the processor level or at the AIC level.
* The execution time of the instruction in progress when the interrupt occurs.
* The treatment of higher priority interrupts and the resynchronization of the hardware signals.

This section addresses only the hardware resynchronizations. It gives details of the latency
times between the event on an external interrupt leading in a valid interrupt (edge or level) or the
assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the pro-
cessor. The resynchronization time depends on the programming of the interrupt source and on
its type (internal or external). For the standard interrupt, resynchronization times are given
assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt
sources.

22.7.2.1 External Interrupt Edge Triggered Source

Figure 22-6. External Interrupt Edge Triggered Source

IRQ or FIQ
(Positive Edge)

|
|
|
I
l
IRQ or FIQ !
(Negative Edge) I
!
niRQ <
| Maximum IRQ Latency = 4 Cycles |
| 3
nFlQ }
; Maximum FIQ Latency = 4 Cycles]
22722 External Interrupt Level Sensitive Source

Figure 22-7. External Interrupt Level Sensitive Source

MCK I l I I l

| |
| |
IRQ or FIQ l | | '
(High Level) ! !
| |
IRQ or FIQ ! | | :
(Low Level) | :
: 1
nIRQ |
' Maximum IRQ
| Latency = 3 Cycles]
|
. |
nFQ <
| Maximum FIQ
|

Latency = 3 cycles

244 AT91RM9200 messs—

22.7.2.3 Internal Interrupt Edge Triggered Source

Figure 22-8. Internal Interrupt Edge Triggered Source

MCK
LA A A !
wRQ L1
L | 1
I 1 1 1 1
I 1 1 1 1
2 >
. 1 'Maximum IRQ Latency = 4.5 Cycles '
1 1 1
Peripheral Interrupt
Becomes Active
22.7.2.4 Internal Interrupt Level Sensitive Source

Figure 22-9. Internal Interrupt Level Sensitive Source

MCK |

nIRQ

» |

Maximum IRQ Latency = 3.5 Cycles

e e
e e
---=--=-=-4>

Peripheral Interrupt
Becomes Active

22.7.3 Normal Interrupt

22.7.3.1 Priority Controller
An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt
conditions occurring on the interrupt sources 1 to 31.

Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by writ-
ing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the
highest priority and level 0 the lowest.

As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SVR
(Source Vector Register), the nIRQ line is asserted. As a new interrupt condition might have
happened on other interrupt sources since the nIRQ has been asserted, the priority controller
determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read. The
read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to consider
that the interrupt has been taken into account by the software.

The current priority level is defined as the priority level of the current interrupt.

If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read,
the interrupt with the lowest interrupt source number is serviced first.

AImEl@ 245

1768I-ATARM-09-Jul-09

ATMEL

The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a
higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment in
progress, it is delayed until the software indicates to the AIC the end of the current service by
writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is the
exit point of the interrupt handling.

22.7.3.2 Interrupt Nesting
The priority controller utilizes interrupt nesting in order for the highest priority interrupt to be han-
dled during the service of lower priority interrupts. This requires the interrupt service routines of
the lower interrupts to re-enable the interrupt at the processor level.

When an interrupt of a higher priority happens during an already occurring interrupt service rou-
tine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current
execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this
time, the current interrupt number and its priority level are pushed into an embedded hardware
stack, so that they are saved and restored when the higher priority interrupt servicing is finished
and the AIC_EOICR is written.

The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt
nestings pursuant to having eight priority levels.

22.7.3.3 Interrupt Vectoring
The interrupt handler addresses corresponding to each interrupt source can be stored in the reg-
isters AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads
AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to the cur-
rent interrupt is returned.

This feature offers a way to branch in one single instruction to the handler corresponding to the
current interrupt, as AIC_IVR is mapped at the absolute address OxFFFF F100 and thus acces-
sible from the ARM interrupt vector at address 0x0000 0018 through the following instruction:

LDR PC, [PC,# -&F20]

When the processor executes this instruction, it loads the read value in AIC_IVR in its program
counter, thus branching the execution on the correct interrupt handler.

This feature is often not used when the application is based on an operating system (either real
time or not). Operating systems often have a single entry point for all the interrupts and the first
task performed is to discern the source of the interrupt.

However, it is strongly recommended to port the operating system on AT91 products by support-
ing the interrupt vectoring. This can be performed by defining all the AIC_SVR of the interrupt
source to be handled by the operating system at the address of its interrupt handler. When doing
s0, the interrupt vectoring permits a critical interrupt to transfer the execution on a specific very
fast handler and not onto the operating system’s general interrupt handler. This facilitates the
support of hard real-time tasks (input/outputs of voice/audio buffers and software peripheral han-
dling) to be handled efficiently and independently of the application running under an operating
system.

22.7.3.4 Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and the associated status bits.

226 AT91RM9200 me—

It is assumed that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR registers are
loaded with corresponding interrupt service routine addresses and interrupts are
enabled.

2. The instruction at the ARM interrupt exception vector address is required to work with
the vectoring

LDR PC, [PC, # -&F20]
When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:

1. The CPSRis stored in SPSR_irq, the current value of the Program Counter is loaded in
the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with 0x18.
In the following cycle during fetch at address 0x1C, the ARM core adjusts R14_irq, dec-
rementing it by four.

2. The ARM core enters Interrupt mode, if it has not already done so.

3. When the instruction loaded at address 0x18 is executed, the program counter is
loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects:

a. Sets the current interrupt to be the pending and enabled interrupt with the highest
priority. The current level is the priority level of the current interrupt.

b. De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR
must be read in order to de-assert nIRQ.

c. Automatically clears the interrupt, if it has been programmed to be edge-triggered.
d. Pushes the current level and the current interrupt number on to the stack.
e. Returns the value written in the AIC_SVR corresponding to the current interrupt.

4. The previous step has the effect of branching to the corresponding interrupt service
routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link
register must be decremented by four when it is saved if it is to be restored directly into
the program counter at the end of the interrupt. For example, the instruction SuB Ppc,
LR, #4 may be used.

5. Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-
assertion of the nIRQ to be taken into account by the core. This can happen if an inter-
rupt with a higher priority than the current interrupt occurs.

6. The interrupt handler can then proceed as required, saving the registers that will be
used and restoring them at the end. During this phase, an interrupt of higher priority
than the current level will restart the sequence from step 1.
Note: If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared dur-
ing this phase.
7. The “I” bitin CPSR must be set in order to mask interrupts before exiting to ensure that
the interrupt is completed in an orderly manner.

8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indi-
cate to the AIC that the current interrupt is finished. This causes the current level to be
popped from the stack, restoring the previous current level if one exists on the stack. If
another interrupt is pending, with lower or equal priority than the old current level but
with higher priority than the new current level, the nIRQ line is re-asserted, but the inter-
rupt sequence does not immediately start because the “I” bit is set in the core.
SPSR_irq is restored. Finally, the saved value of the link register is restored directly into
the PC. This has effect of returning from the interrupt to whatever was being executed
before, and of loading the CPSR with the stored SPSR, masking or unmasking the
interrupts depending on the state saved in SPSR_irq.

AImEl@ 247

1768I-ATARM-09-Jul-09

22,74

22.7.4.1

22.74.2

22.7.4.3

22.7.4.4

248

ATMEL

Note: The “I” bitin SPSR is significant. If it is set, it indicates that the ARM core was on the verge of
masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is restored,
the mask instruction is completed (interrupt is masked).

Fast Interrupt

Fast Interrupt Source
The interrupt source 0 is the only source which can raise a fast interrupt request to the proces-
sor. The interrupt source 0 is generally connected to an FIQ pin of the product, either directly or
through a P10 Controller.

Fast Interrupt Control
The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is
programmed with the AIC_SMRO and the field PRIOR of this register is not used even if it reads
what has been written. The field SRCTYPE of AIC_SMRO enables programming the fast inter-
rupt source to be positive-edge triggered or negative-edge triggered or high-level sensitive or
low-level sensitive

Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register) respectively enables and disables the fast interrupt. The bit 0 of
AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled.

Fast Interrupt Vectoring

The fast interrupt handler address can be stored in AIC_SVRO (Source Vector Register 0). The
value written into this register is returned when the processor reads AIC_FVR (Fast Vector Reg-
ister). This offers a way to branch in one single instruction to the interrupt handler, as AIC_FVR
is mapped at the absolute address OxFFFF F104 and thus accessible from the ARM fast inter-
rupt vector at address 0x0000 001C through the following instruction:

LDR PC, [PC,# -&F20]

When the processor executes this instruction it loads the value read in AIC_FVR in its program
counter, thus branching the execution on the fast interrupt handler. It also automatically per-
forms the clear of the fast interrupt source if it is programmed in edge-triggered mode.

Fast Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and associated status bits.

Assuming that:
1. The Advanced Interrupt Controller has been programmed, AIC_SVRO is loaded with

the fast interrupt service routine address, and the interrupt source 0 is enabled.

2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector
the fast interrupt:

LDR PC, [PC, # -&F20]
3. The user does not need nested fast interrupts.
When nFIQ is asserted if the bit “F” of CPSR is 0, the sequence is:

1. The CPSR is stored in SPSR_{fiq, the current value of the program counter is loaded in
the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with 0x1C. In

A T91 RIVI'O:2 0 () 50000000

the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decre-
menting it by four.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is executed, the program counter is
loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automati-
cally clearing the fast interrupt, if it has been programmed to be edge triggered. In this
case only, it de-asserts the nFIQ line on the processor.

4. The previous step enables branching to the corresponding interrupt service routine. It is
not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts
are not needed.

5. The Interrupt Handler can then proceed as required. It is not necessary to save regis-
ters R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, RO to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.

6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four
(with instruction sUB PC, LR, #4 for example). This has the effect of returning from
the interrupt to whatever was being executed before, loading the CPSR with the SPSR
and masking or unmasking the fast interrupt depending on the state saved in the
SPSR.

Note: The “F” bitin SPSR is significant. If it is set, it indicates that the ARM core was just about to mask
FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is restored, the
interrupted instruction is completed (FIQ is masked).

Another way to handle the fast interrupt is to map the interrupt service routine at the address of

the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR must

be performed at the very beginning of the handler operation. However, this method saves the
execution of a branch instruction.

22.7.5 Protect Mode
The Protect Mode permits reading the Interrupt Vector Register without performing the associ-
ated automatic operations. This is necessary when working with a debug system. When a
debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applica-
tions and updates the opened windows, it might read the AIC User Interface and thus the IVR.
This has undesirable consequences:

¢ If an enabled interrupt with a higher priority than the current one is pending, it is stacked.
* If there is no enabled pending interrupt, the spurious vector is returned.

In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC. This operation is generally not performed by the debug system as the debug
system would become strongly intrusive and cause the application to enter an undesired state.

This is avoided by using the Protect Mode. Writing DBGM in AIC_DCR (Debug Control Register)
at Ox1 enables the Protect Mode.

When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access
is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary
data) to the AIC_IVR just after reading it. The new context of the AIC, including the value of the
Interrupt Status Register (AIC_ISR), is updated with the current interrupt only when AIC_IVR is
written.

AImEl@ 249

1768I-ATARM-09-Jul-09

ATMEL

An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the
AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to
not stop the processor between the read and the write of AIC_IVR of the interrupt service routine
to make sure the debugger does not modify the AIC context.

To summarize, in normal operating mode, the read of AIC_IVR performs the following opera-
tions within the AIC:

Calculates active interrupt (higher than current or spurious).
2. Determines and returns the vector of the active interrupt.
Memorizes the interrupt.

Pushes the current priority level onto the internal stack.

5. Acknowledges the interrupt.

However, while the Protect Mode is activated, only operations 1 to 3 are performed when
AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.

O Dbd -

Software that has been written and debugged using the Protect Mode runs correctly in Normal
Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can
be removed to optimize the code.

22.7.6 Spurious Interrupt
The Advanced Interrupt Controller features protection against spurious interrupts. A spurious
interrupt is defined as being the assertion of an interrupt source long enough for the AIC to
assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur when:

* An external interrupt source is programmed in level-sensitive mode and an active level occurs
for only a short time.

¢ An internal interrupt source is programmed in level sensitive and the output signal of the
corresponding embedded peripheral is activated for a short time. (As in the case for the
Watchdog.)

¢ An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a
pulse on the interrupt source.

The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt
source is pending. When this happens, the AIC returns the value stored by the programmer in
AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious
interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return to
the normal execution flow. This handler writes in AIC_EOICR and performs a return from
interrupt.

22.7.7 General Interrupt Mask
The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor.
Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR
(Debug Control Register) is set. However, this mask does not prevent waking up the processor if
it has entered Idle Mode. This function facilitates synchronizing the processor on a next event
and, as soon as the event occurs, performs subsequent operations without having to handle an
interrupt. It is strongly recommended to use this mask with caution.

250 A T91 RIVI'O:2 0 () 50000000

22.8 Advanced Interrupt Controller (AIC) User Interface

22.8.1 Base Address
The AIC is mapped at the address O0xFFFF F000. It has a total 4-Kbyte addressing space. This
permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor
supports only an + 4-Kbyte offset.

Table 22-2. Register Mapping
Offset Register Name Access Reset Value
0000 Source Mode Register 0 AIC_SMRO Read/Write 0x0
0x04 Source Mode Register 1 AIC_SMR1 Read/Write 0x0
0x7C Source Mode Register 31 AIC_SMR31 Read/Write 0x0
0x80 Source Vector Register 0 AIC_SVRO Read/Write 0x0
0x84 Source Vector Register 1 AIC_SVR1 Read/Write 0x0
O0xFC Source Vector Register 31 AIC_SVR31 Read/Write 0x0
0x100 Interrupt Vector Register AIC_IVR Read-only 0x0
0x104 Fast Interrupt Vector Register AIC_FVR Read-only 0x0
0x108 Interrupt Status Register AIC_ISR Read-only 0x0
0x10C Interrupt Pending Register AIC_IPR Read-only oxo™"
0x110 Interrupt Mask Register AIC_IMR Read-only 0x0
0x114 Core Interrupt Status Register AIC_CISR Read-only 0x0
0x118 Reserved - - -
0x11C Reserved - - -
0x120 Interrupt Enable Command Register AIC_IECR Write-only -
0x124 Interrupt Disable Command Register AIC_IDCR Write-only -
0x128 Interrupt Clear Command Register AIC_ICCR Write-only -
0x12C Interrupt Set Command Register AIC_ISCR Write-only -
0x130 End of Interrupt Command Register AIC_EOICR Write-only -
0x134 Spurious Interrupt Vector Register AIC_SPU Read/Write 0x0
0x138 Debug Control Register AIC_DCR Read/Write 0x0
0x13C Reserved - - -

Note: 1. The reset value of the Interrupt Pending Register depends on the level of the external interrupt source. All other sources are

cleared at reset, thus not pending.

1768I-ATARM-09-Jul-09

ATMEL

251

22.8.2 AIC Source Mode Register
Register Name: AIC_SMRO..AIC_SMR31

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | SRCTYPE | - | - | PRIOR |

¢ PRIOR: Priority Level
Programs the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 (lowest) and 7 (highest).
The priority level is not used for the FIQ in the related SMR register AIC_SMRXx.

e SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.

SRCTYPE Internal Interrupt Sources External Interrupt Sources
0 0 High-level Sensitive Low-level Sensitive
0 1 Positive-edge Triggered Negative-edge Triggered
1 0 High-level Sensitive High-level Sensitive
1 1 Positive-edge Triggered Positive-edge Triggered

252 A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

22.8.3 AIC Source Vector Register

Register Name: AIC_SVRO0..AIC_SVR31

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

| VECTOR |
23 22 21 20 19 18 17 16

| VECTOR |
15 14 13 12 11 10 9 8

| VECTOR |
7 6 5 4 3 2 1 0

| VECTOR |

e VECTOR: Source Vector
The user may store in these registers the addresses of the corresponding handler for each interrupt source.

2284 AIC Interrupt Vector Register

Register Name: AIC_IVR

Access Type: Read-only

Reset Value: 0
31 30 29 28 27 26 25 24

| IRQV |
23 22 21 20 19 18 17 16

| IRQV |
15 14 13 12 11 10 9 8

| IRQV |
7 6 5 4 3 2 1 0

| IRQV |

¢ IRQV: Interrupt Vector Register
The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.

The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.

When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.

AImEl@ 253

1768I-ATARM-09-Jul-09

ATMEL

22.8.5 AIC FIQ Vector Register
Register Name: AIC_FVR
Access Type: Read-only
Reset Value: 0

31 30 29 28 27 26 25 24
| FIQV

23 22 21 20 19 18 17 16
| FIQV

15 14 13 12 11 10 9 8
| FIQV

7 6 5 4 3 2 1 0
| FIQV

¢ FIQV: FIQ Vector Register

The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no
fast interrupt, the Fast Interrupt Vector Register reads the value stored in AIC_SPU.

22.8.6 AIC Interrupt Status Register
Register Name: AIC_ISR
Access Type: Read-only
Reset Value: 0
31 30 29 28 27 26 25 24
I S R - 1 - - - -
23 22 21 20 19 18 17 16
I N R - 1 - - S
15 14 13 12 11 10 9 8
1T 71 — S - — 1 -
7 6 5 4 3 2 1 0
| - | - | - IRQID

¢ IRQID: Current Interrupt Identifier

The Interrupt Status Register returns the current interrupt source number.

254

A T91 RIVI'O:2 0 () 50000000

1768I-ATARM-09-Jul-09

22.8.7 AIC Interrupt Pending Register

Register Name: AIC_IPR

Access Type: Read-only

Reset Value: 0
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID