Features
e Core
— ARM® Cortex®-M3 revision 2.0 running at up to 96 MHz
— Memory Protection Unit (MPU)
— Thumb®-2 instruction set
* Memories
— From 64 to 256 Kbytes embedded Flash, 128-bit wide access, memory accelerator,
dual bank
— From 16 to 48 Kbytes embedded SRAM with dual banks
— 16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines
— Static Memory Controller (SMC): SRAM, NOR, NAND support. NAND Flash
controller with 4 Kbytes RAM buffer and ECC
¢ System
— Embedded voltage regulator for single supply operation
— POR, BOD and Watchdog for safe reset
— Quartz or resonator oscillators: 3 to 20 MHz main and optional low power 32.768
kHz for RTC or device clock.
— High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz Default
Frequency for fast device startup
— Slow Clock Internal RC oscillator as permanent clock for device clock in low power
mode
— One PLL for device clock and one dedicated PLL for USB 2.0 High Speed Device
— Up to 17 peripheral DMA (PDC) channels and 4-channel central DMA
* Low Power Modes
— Sleep and Backup modes, down to 2.5 pyA in Backup mode
— Backup domain: VDDBU pin, RTC, 32 backup registers
— Ultra low power RTC: 0.6 pA
* Peripherals
— USB 2.0 Device: 480 Mbps, 4-kbyte FIFO, up to 7 bidirectional Endpoints,
dedicated DMA
- Up to 4 USARTSs (ISO7816, IrDA®, Flow Control, SPI, Manchester support) and one
UART
— Up to 2 TWI (I12C compatible), 1 SPI, 1 SSC (12S), 1 HSMCI (SDIO/SD/MMC)
— 3-Channel 16-bit Timer/Counter (TC) for capture, compare and PWM
— 4-channel 16-bit PWM (PWMC)
— 32-bit Real Time Timer (RTT) and RTC with calendar and alarm features
— 8-channel 12-bit 1IMSPS ADC with differential input mode and programmable gain
stage, 8-channel 10-bit ADC
e 1/0
— Up to 96 /O lines with external interrupt capability (edge or level sensitivity),
debouncing, glitch filtering and on-die Series Resistor Termination
— Three 32-bit Parallel Input/Outputs (PI1O)
* Packages
— 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm
— 100-ball TFBGA, 9 x 9 mm, pitch 0.8 mm
— 144-lead LQFP, 20 x 20 mm, pitch 0.5 mm
— 144-ball LFBGA, 10 x 10 mm, pitch 0.8 mm

ATMEL

Y ()

AT91SAM
ARM-based
Flash MCU

SAM3U Series

6430F-ATARM-21-Feb-12

ATMEL

1. ATSAM3U4/2/1 Description

Atmel's SAM3U series is a member of a family of Flash microcontrollers based on the high per-
formance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 96 MHz
and features up to 256 Kbytes of Flash and up to 52 Kbytes of SRAM. The peripheral set
includes a High Speed USB Device port with embedded transceiver, a High Speed MCI for
SDIO/SD/MMC, an External Bus Interface with NAND Flash controller, up to 4xUSARTSs
(SAM3U1C/2C/4C have 3), up to 2xTWIs (SAM3U1C/2C/4C have 1), up to 5xSPIs
SAM3U1C/2C/4C have 4), as well as 4xPWM timers, 3xgeneral purpose 16-bit timers, an RTC,
a 12-bit ADC and a 10-bit ADC.

The SAMB3U architecture is specifically designed to sustain high speed data transfers. It includes
a multi-layer bus matrix as well as multiple SRAM banks, PDC and DMA channels that enable it
to run tasks in parallel and maximize data throughput.

It can operate from 1.62V to 3.6V and comes in 100-pin and 144-pin LQFP and BGA packages.

The SAM3U device is particularly well suited for USB applications: data loggers, PC peripherals
and any high speed bridge (USB to SDIO, USB to SPI, USB to External Bus Interface).

1.1 Configuration Summary

The ATSAM3U4/2/1 series differ in memory sizes, package and features list. Table 1-1 summa-
rizes the configurations of the six devices.

Table 1-1. Configuration Summary
Number FWUP, HSMCI
Flash Number | of Number | SHDN External Bus data
Device Flash | Organization | SRAM |of PIOs |USARTs |of TWI pins Interface size Package ADC
8 or 16 bits
’ LQFP144
SAMBU4E i)g i?s dual plane izb tes 96 4 2 Yes 4 chip selects, 8 bits BGA ih(::n?als)
Y Y 24-bit address GA144
8 or 16 bits
’ LQFP144
SAM3U2E I1(l2381es single plane ie’b s |9 4 2 Yes 4chipselects |8 bits | ih(::nils)
4 Y 24-bit address GA144
8 or 16 bits
’ LQFP144
SAM3U1E ﬁ‘é s | SNGle plane iob s |9 4 2 Yes 4 chip selects, |8 bits | ih(::nils)
v Y 24-bit address GA144
8 bits
’ LQFP100
SAM3U4C it))(26238 dual plane ii tes 57 3 1 FWUP 2 chip selects, 4 bits BGA ih(::ntls)
4 Y 8-bit address GA100
8 bits
’ LQFP100
SAM3U2C I1(i81es single plane iﬁ tes 57 3 1 FWUP 2 chip selects, 8- | 4 bits BGA ih(::ntls)
Y Y bit address GA100
8 bits
LQFP100
SAM3U1C ﬁ?} tes single plane i?) tes 57 3 1 FWUP 2 chip selects, 4 bits BGA ih(::ntls)
Y Y 8-bit address GA100

Note: 1. The SRAM size takes into account the 4-Kbyte RAM buffer of the NAND Flash Controller (NFC) which can be used by the
core if not used by the NFC.

2 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

2. ATSAM3U4/2/1 Block Diagram

Figure 2-1. 144-pin SAM3U4/2/1E Block Diagram
$O
D,
LO¥
O N
SN & & 9 v & S
L E & D PSS S
PRI N CLFFRF RS
B 5 T R £ 1T Y
A
System Controller JTAG & Serial Wire HS UTMI }
TST—3] =Y I | I_ Transceiver J Vol EBI
o0 vivyl] e
-PCK2 PLLA In-Circuit Emulator USB qu
|SysTick Counter| N Device
UPLL |V HS
:_) PMC Cortex-M3 Processor | NAND Flash
XIN—3»] OSC Fmax 96 MHz c Cgrgrgger
XOUT <€—_3-20 M| DMA
MPU
RC Osc. D s €
12/8/4 M [<—
Fiash NAND Flash| [|
IM‘. Un?qsue 5-layer AHB Bus Matrix > (4?(%/;"\25) _—
VDDUTMI | SM Identifier]
:| | A Y N A v t —
FLASH SRAMO SRAM1 ROM Peripheral Peripheral 4-Channel |
||RC k|| 8 2x128 KBytes || 32 KBytes| | 16 KBytes|| 16 kBytes| DMA Bridge DMA]
|| GPBREGS 1x128 KBytes || 16 KBytes| | 16 KBytes Controller St —
0SC 1x64 KBytes 8 KB
XIN32—3{ OSC y ytes APB | ¢ v Memory | [
XOUT32 <— RTT 2
ontroller | >
sone o) T 3 7 A T S
FWUP —>> PDC PDC PDC PDC PDC
— >
vbDBU —[POR] e-channel USARTO TCO
NRSTB — otal N il B IUCY USART1 PWM || TC1 SPI §SC HSMCI —>
ERASE —>] RSTC || . ™wit USART2 TC2
P — 10-bit ADC
NRST <€ > USART3 RN
PIOA PIOB AA
A% 1T 1T O] 1T 01 (171 000 [T
| PIOCI l 2

l€>> NANDRDY
—> D0-D15
—> AO/NBSO
—> A1

—> A2-A20
—> NCS0
—> NCS1

—> NRD
—>» NWRO/NWE
—>» NWR1/NBS1

<€« NWAIT
[€>» A23

<> RaNpace
<> {&bcLe
| «> NCS3
> NCS2

PRY NANDOE,
NANDWE

W

IR

E P LD S AU RIEOR®
& @é‘ogx&,\‘b S 0“0‘0,6;0@3_25&2{*‘00 N S KORC”
ST YT O LN O LXRF &
PN PN GRS RK SO
& &F VAR RN
SUSEENE <
R

6430F-ATARM-21-Feb-12

ATMEL

X

VIV ST 3

S S RS HEORE Fis
f S0 S

'

ATMEL

Figure 2-2. 100-pin SAM3U4/2/1C Block Diagram

o
OQ’%jood- S
SO & S Qe FOENS
NS & O, ST S Q
N O9 & ACH=I NN IO
QRO S LRI EFRY AN
MASTER — se—)y SLAVE ¢T¢¢ i li ¢¢¢
A
TST — System Controller | JTAG & Serial Wire | HS UTMI)
Transceiver EBI
PCKO vivv? — Voltage
-POK2 PLLA In-Circuit Emulator USB Regulator
| SysTick Counter] N Device
UPLL |—) | v HS
PMC Cortex-M3 Processor | NAND Flash
XIN—>] OSC Fmax 96 MHz c Controter
XOUT<€—_3-20 M vy DVA (\/
RC Osc. [€<—| |<> NANDRDY
12/8/4 M l'/ b lS l «—{ |—> D007
NAND Flash| 1 [~ A0
WDT Flash . || srav [[—1 —=>A1
| Unque 5-layer AHB Bus Matrix > (4KBytes) | 1 > \0.A7
VDDUTMI | SM | Identifier| NGSO
VDDCORE—|[BOD l l l l l T l T — > nest
—— |—> NRD
| FLASH sraMo | [sRAM1 rom [Peripheral | [Peripheral 4-Channel — [\WE
RC 32K 8 2x128 KBytes || 32 KBytes| | 16 KBytes DMA Bridge DMA
I_I GPBREG 1x128 KBytes | | 16 kytes| | 16 kytes || '€ KEY'®S|| controlier s
3 0SC 1x64 KBytes 8 KBytes
onLI#gge 32K RTT . APB \ ¢ ¢ Memory
| ¢ * * * * * * + Controller | > [€> NANDALE
SHON<«—]| surc || RTC 2 EN D P
FWUP —>>| PDC eoc| Poc PDC PDC NANDCLE
VDDBU — TCO
4-channel USARTO
NRSTB —>> 1201t ADG wi | luart USARTH pwm || TC1 SPI SSC HSMCI
ERASE —>] RSTC) TC2
~ — - 10-bit ADC USART2 NANDOE,
NRST <€ > N NANDOE,
PIOA || PiOB A \J
[Fron] [eice] AT TT IT [T TT [T [T [T T

4

[TT 88§30 30883400 34§80 3995 $43434 H{

4 X LoD OO0 O VAU SUIORD® D2 B 2o¥ Pk MO &ALt w2 Xt
S ¥ L PP P A0, SUFHATURVRE R ¥V Pk D0 LRI & KT
@ioov,@é\oo’\;o@ S OQ\)/;Q«Cgo@?\’gQ%&OO 3 NS (ORKE” (W < 2@9 ©
O vy KOK BRSAIRSACS R

ST e ENOTIRE I EFRF &

S & S SV &C &

< 3 N ANIEN Q
& §& © Q\$Q <=

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

3. Signal Description
Table 3-1 gives details on the signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference |Comments
Power Supplies
VvDDIO Peripherals I/O Lines Power Supply Power 1.62V to 3.6V
VDDIN Voltage Regulator Input Power 1.8V to 3.6V
VDDOUT Voltage Regulator Output Power 1.8V
VDDUTMII USB UTMI+ Interface Power Supply Power 3.0V to 3.6V
GNDUTMII USB UTMI+ Interface Ground Ground
VDDBU Backup I/O Lines Power Supply Power 1.62V to 3.6V
GNDBU Backup Ground Ground
VDDPLL PLL A, UPLL and OSC 3-20 MHz Power Supply Power 1.62 V to 1.95V
GNDPLL PLL A, UPLL and OSC 3-20 MHz Ground Ground
VDDANA ADC Analog Power Supply Power 2.0V to 3.6V
GNDANA ADC Analog Ground Ground
VDDCORE gSIrD%I)II\/Iemories and Peripherals Chip Power Power 1.62V 0 1.95V
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input VDDPLL
XOuT Main Oscillator Output Output
XIN32 Slow Clock Oscillator Input Input VDDBU
X0UT32 Slow Clock Oscillator Output Output
VBG Bias Voltage Reference Analog
PCKO - PCK2 Programmable Clock Output Output VDDIO
Shutdown, Wakeup Logic

push/pull

0: The device is in
SHDN Shut-Down Control Output backup mode

VDDBU 1: The device is running

(not in backup mode)

FWUP Force Wake-Up Input Input Low Needs external pull-up
Serial Wire/JTAG Debug Port (SWJ-DP)

TCK/SWCLK Test Clock/Serial Wire Clock Input No pull-up resistor
TDI Test Data In Input VDDIO No pull-up resistor
TDO/TRACESWO | Test Data Out/Trace Asynchronous Data Out | Output®
TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input No pull-up resistor
JTAGSEL JTAG Selection Input High VDDBU L”Jﬁ_rgg\'lvﬁerma“e”t

6430F-ATARM-21-Feb-12

ATMEL

ATMEL

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference |Comments
Flash Memory
ERASE Flash and NVM Configuration Bits Erase Input High VDDBU |Internal permanent 15K
Command pulldown
Reset/Test
NRST Microcontroller Reset 1/0 Low VvDDIO Lnjﬁl:r;al permanent
NRSTB Asynchronous Microcontroller Reset Input Low Lnljﬁ;r;al permanent
VDDBU
TST Test Select Input IantIﬁ(rjr;il\lmpermanent
Universal Asynchronous Receiver Transceiver - UART
URXD UART Receive Data Input
UTXD UART Transmit Data Output
PIO Controller - PIOA - PIOB - PIOC
*Schmitt Trigger ("
PAO - PA31 Parallel 10 Controller A Vo .Rpelzetlnsgjtte:
eInternal pullup enabled
*Schmitt Trigger @
PBO - PB31 Parallel 10 Controller B Vo VDDIO f{PeI?:tlnSptjtte:
eInternal pullup enabled
*Schmitt Trigger®
PCO - PC31 Parallel IO Controller C I/O I.:{Pels(,)etlnsptjtte:
eInternal pullup enabled
External Bus Interface
DO - D15 Data Bus I/0
AO - A23 Address Bus Output
NWAIT External Wait Signal Input Low
Static Memory Controller - SMC
NCSO0 - NCS3 Chip Select Lines Output Low
NWRO - NWR1 Write Signal Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NBSO - NBS1 Byte Mask Signal Output Low
NAND Flash Controller - NFC
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NANDRDY NAND Ready Input
6 SAM3U Series m——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

Table 3-1. Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level Reference |Comments
High Speed Multimedia Card Interface - HSMCI
CK Multimedia Card Clock I/0
CDA Multimedia Card Slot A Command I/0
DAO - DA7 Multimedia Card Slot A Data I/0
Universal Synchronous Asynchronous Receiver Transmitter - USARTx
SCKx USARTX Serial Clock IO
TXDx USARTX Transmit Data I/0
RXDx USARTx Receive Data Input
RTSx USARTXx Request To Send Output
CTSx USARTX Clear To Send Input
DTRO USARTO Data Terminal Ready /0
DSRO USARTO Data Set Ready Input
DCDO USARTO Data Carrier Detect Input
RIO USARTO Ring Indicator Input
Synchronous Serial Controller - SSC
TD SSC Transmit Data Output
RD SSC Receive Data Input
TK SSC Transmit Clock I/0
RK SSC Receive Clock I/0
TF SSC Transmit Frame Sync I/0
RF SSC Receive Frame Sync I/0
Timer/Counter - TC

TCLKXx TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A I/0
TIOBx TC Channel x I/O Line B I/0

Pulse Width Modulation Controller- PWMC
PWMHXx PWM Waveform Output High for channel x Output

PWM Waveform Output Low for channel x only output in
P ol moce
insertion is enabled
PWMFI10-2 PWM Fault Input Input
Serial Peripheral Interface - SPI

MISO Master In Slave Out IO
MOSI Master Out Slave In I/0
SPCK SPI Serial Clock I/0
NPCS0 SPI Peripheral Chip Select 0 I/0 Low
NPCS1 - NPCS3 SPI Peripheral Chip Select Output Low

ATMEL 7

6430F-ATARM-21-Feb-12

ATMEL

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference |Comments
Two-Wire Interface - TWI
TWDx TWIx Two-wire Serial Data I/O
TWCKXx TWIx Two-wire Serial Clock 1/0
12-bit Analog-to-Digital Converter - ADC12B
AD12Bx Analog Inputs Analog
AD12BTRG ADC Trigger Input
AD12BVREF ADC Reference Analog
10-bit Analog-to-Digital Converter - ADC
ADx Analog Inputs Analog
ADTRG ADC Trigger Input
ADVREF ADC Reference Analog
Fast Flash Programming Interface - FFPI
PGMENO-PGMEN2 |Programming Enabling Input
PGMMO-PGMM3 Programming Mode Input
PGMDO-PGMD15 |Programming Data IO
PGMRDY Programming Ready Output High
PGMNVALID Dati Directic?n Output Logw vbpio
PGMNOE Programming Read Input Low
PGMCK Programming Clock Input
PGMNCMD Programming Command Input Low
USB High Speed Device - UDPHS
DFSDM USB Device Full Speed Data - Analog
DFSDP USB Device Full Speed Data + Analog
DHSDM USB Device High Speed Data - Analog VDDUTMI
DHSDP USB Device High Speed Data + Analog
Notes: 1. PIOA: Schmitt Trigger on all except PA14 on 100 and 144 packages.
2. PIOB: Schmitt Trigger on all except PB9 to PB16, PB25 to PB31 on 100 and 144 packages.
3. PIOC: Schmitt Trigger on all except PC20 to PC27 on 144 package.
4. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus an external pull-up (100 k&) must be
added to avoid current consumption due to floating input.
3.1 Design Considerations

In order to facilitate schematic capture when using a SAM3U design, Atmel provides a “Sche-
matics Checklist” Application note.

Please visit http://www.atmel.com/products/AT91/ for additional documentation.

8 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

http://www.atmel.com/products/AT91/

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

4. Package and Pinout
The SAM3U4/2/1E is available in 144-lead LQFP and 144-ball LFBGA packages.

The SAM3U4/2/1C is available in 100-lead LQFP and 100-ball TFBGA packages.

41 SAM3U4/2/1E Package and Pinout

411 144-ball LFBGA Package Outline
The 144-Ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimen-
sions are 10 x 10 x 1.4 mm.

Figure 4-1. Orientation of the 144-ball LFBGA Package
TOP VIEW

Q00000000000
Q00000000000
Q00000000000
Q00000000000
Q000000000
Q000000000
Q000000000
Q000000000
[eXe]

[e}e]

o

o =N

Q0000000

Q0000000

Q00000000
oOOOOOOOOOO

“NWh,HrOTON ©©O©

[e}e]
[e}e]
[e}e]
[e}e]
[e}e]
[eXe}
[e}e]
[eXe}

M

ABCDEFGHJ KL
BALLAT1 /

41.2 144-lead LQFP Package Outline

Figure 4-2. Orientation of the 144-lead LQFP Package

108 73

0 0
1095 b 72
144+ P 37

u u

1 36

ATMEL ;

6430F-ATARM-21-Feb-12

ATMEL

413 144-lead LQFP Pinout

Table 4-1. 144-pin SAM3U4/2/1E Pinout
1 TDI 37 DHSDP 73 VDDANA 109 PAO/PGMNCMD
2 VDDOUT 38 DHSDM 74 ADVREF 110 PCO
3 VDDIN 39 VBG 75 GNDANA 111 PA1/PGMRDY
4 TDO/TRACESWO 40 VDDUTMI 76 AD12BVREF 112 PC1
5 PB31 41 DFSDM 77 PA22/PGMD14 113 PA2/PGMNOE
6 PB30 42 DFSDP 78 PA30 114 PC2
7 TMS/SWDIO 43 GNDUTMI 79 PB3 115 PA3/PGMNVALID
8 PB29 44 VDDCORE 80 PB4 116 PC3
9 TCK/SWCLK 45 PA28 81 PC15 117 PA4/PGMMO
10 PB28 46 PA29 82 PC16 118 PC4
1 NRST 47 PC22 83 PC17 119 PA5/PGMM1
12 PB27 48 PA31 84 PC18 120 PC5
13 PB26 49 PC23 85 VDDIO 121 PA6/PGMM2
14 PB25 50 VDDCORE 86 VDDCORE 122 PC6
15 PB24 51 VDDIO 87 PA13/PGMD5 123 PA7/PGMM3
16 VDDCORE 52 GND 88 PA14/PGMD6 124 PC7
17 VDDIO 53 PBO 89 PC10 125 VDDCORE
18 GND 54 PC24 90 GND 126 GND
19 PB23 55 PB1 91 PA15/PGMD7 127 VDDIO
20 PB22 56 PC25 92 PC11 128 PA8/PGMDO
21 PB21 57 PB2 93 PA16/PGMDS8 129 PC8
22 PC21 58 PC26 94 PC12 130 PA9/PGMD1
23 PB20 59 PB11 95 PA17/PGMD9 131 PC9
24 PB19 60 GND 96 PB16 132 PA10/PGMD2
25 PB18 61 PB12 97 PB15 133 PA11/PGMD3
26 PB17 62 PB13 98 PC13 134 PA12/PGMD4
27 VDDCORE 63 PC27 99 PA18/PGMD10 135 FWUP
28 PC14 64 PA27 100 PA19/PGMD11 136 SHDN
29 PB14 65 PB5 101 PA20/PGMD12 137 ERASE
30 PB10 66 PB6 102 PA21/PGMD13 138 TST
31 PB9 67 PB7 103 PA23/PGMD15 139 VDDBU
32 PC19 68 PB8 104 VDDIO 140 GNDBU
33 GNDPLL 69 PC28 105 PA24 141 NRSTB
34 VDDPLL 70 PC29 106 PA25 142 JTAGSEL
35 XOouT 71 PC30 107 PA26 143 XOUT32
36 XIN 72 PC31 108 PC20 144 XIN32

10 SAM3U Series mmssse——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

41.4 144-ball LFBGA Pinout

Table 4-2. 144-ball SAM3U4/2/1E Pinout

A1l VBG D1 DFSDM G1 PBO K1 PB7

A2 VDDUTMI D2 DHSDM G2 PC26 K2 PC31

A3 PB9 D3 GNDPLL G3 PB2 K3 PC29

A4 PB10 D4 PC14 G4 PC25 K4 PB3

A5 PB19 D5 PB21 G5 PB1 K5 PB4

A6 PC21 D6 PB23 G6 GND K6 PA14/PGMD6
A7 PB26 D7 PB24 G7 GND K7 PA16/PGMD8
A8 TCK/SWCLK D8 PB28 G8 VDDCORE K8 PA18/PGMD10
A9 PB30 D9 TDI G9 PC4 K9 PC20

A10 TDO/TRACESWO D10 VDDBU G10 PA6/PGMM2 K10 PA1/PGMRDY
A11 XIN32 D11 PA10/PGMD2 G11 PA7/PGMM3 K11 PC1

A12 XOuUT32 D12 PA11/PGMD3 G12 PC6 K12 PC2

B1 VDDCORE E1 pC22 H1 PC24 L1 PC30

B2 GNDUTMI E2 PA28 H2 pPC27 L2 ADVREF
B3 XOuT E3 PC19 H3 PA27 L3 AD12BVREF
B4 PB14 E4 VDDCORE H4 PB12 L4 PA22/PGMD14
B5 PB17 E5 GND H5 PB11 L5 PC17

B6 PB22 E6 VDDIO H6 GND L6 PC10

B7 PB25 E7 GNDBU H7 VDDCORE L7 PC12

B8 PB29 E8 NRST H8 PB16 L8 PA19/PGMD11
B9 VDDIN E9 PB31 H9 PB15 L9 PA23/PGMD15
B10 JTAGSEL E10 PA12/PGMD4 H10 PC3 L10 PAO/PGMNCMD
B11 ERASE E11 PA8/PGMDO H11 PA5/PGMM1 L11 PA26

B12 SHDN E12 PC8 H12 PC5 L12 PCO

C1 DFSDP F1 PA31 J1 PB5 M1 VDDANA
Cc2 DHSDP F2 PA29 J2 PB6 M2 GNDANA
C3 XIN F3 PC23 J3 PC28 M3 PA30

C4 VDDPLL Fa VDDCORE J4 PB8 M4 PC15

C5 PB18 F5 VDDIO J5 PB13 M5 PC16

C6 PB20 F6 GND J6 VDDIO M6 PC18

C7 PB27 F7 GND J7 PA13/PGMD5 M7 PA15/PGMD7
C8 TMS/SWDIO F8 VDDIO J8 PA17/PGMD9 M8 PC11

C9 VDDOUT F9 PC9 J9 PC13 M9 PA20/PGMD12
C10 NRSTB F10 PA9/PGMD1 J10 PA2/PGMNOE M10 PA21/PGMD13
C11 TST F11 VDDCORE J11 PA3/PGMNVALID M11 PA24

Cc12 FWUP F12 PC7 J12 PA4/PGMMO M12 PA25

ATMEL Y

6430F-ATARM-21-Feb-12

ATMEL

4.2 SAM3U4/2/1C Package and Pinout
4.21 100-lead LQFP Package Outline

Figure 4-3. Orientation of the 100-lead LQFP Package

75 51
0 0
76 9 B 50
10049 P 26
U U
1 25

42.2 100-ball TFBGA Package Outline

Figure 4-4. Orientation of the 100-ball TFBGA Package

TOP VIEW
1234567

@

910

OO0OO0OO0OO0OO0OO0OO0OO0OOo
OO0OO0OO0O0OO0OO0OO0OO0Oo
OO0OO0OO0OO0OO0OO0OO0OO0OOo
OO0OO0OO0O0OO0OO0OO0OO0Oo
OO0OO0OO0OO0OO0OO0OO0OO0OOo
OO0OO0OO0O0OO0OO0OO0OO0Oo
OO0OO0OO0OO0OO0OO0OO0OO0OOo
OO0OO0OO0OO0OO0OO0OO0OO0Oo
OO0OO0OO0OO0OO0OO0OO0OO0OOo
OO0OO0OO0O0OO0OO0OO0OO0Oo

XCITOTMMOUOW>

12 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

4.2.3 100-lead LQFP Pinout

Table 4-3. 100-pin SAM3U4/2/1C1 Pinout

1 VDDANA 26 PAO/PGMNCMD 51 TDI 76 DHSDP
2 ADVREF 27 PA1/PGMRDY 52 VDDOUT 77 DHSDM
3 GNDANA 28 PA2/PGMNOE 53 VDDIN 78 VBG

4 AD12BVREF 29 PA3/PGMNVALID 54 TDO/TRACESWO 79 VDDUTMI
5 PA22/PGMD14 30 PA4/PGMMO 55 TMS/SWDIO 80 DFSDM
6 PA30 31 PA5/PGMM1 56 TCK/SWCLK 81 DFSDP
7 PB3 32 PA6/PGMM2 57 NRST 82 GNDUTMI
8 PB4 33 PA7/PGMM3 58 PB24 83 VDDCORE
9 VDDCORE 34 VDDCORE 59 VDDCORE 84 PA28
10 PA13/PGMD5 35 GND 60 VDDIO 85 PA29
11 PA14/PGMD6 36 VDDIO 61 GND 86 PA31
12 PA15/PGMD7 37 PA8/PGMDO 62 PB23 87 VDDCORE
13 PA16/PGMD8 38 PA9/PGMD1 63 PB22 88 VDDIO
14 PA17/PGMD9 39 PA10/PGMD2 64 PB21 89 GND
15 PB16 40 PA11/PGMD3 65 PB20 90 PBO
16 PB15 41 PA12/PGMD4 66 PB19 91 PB1

17 PA18/PGMD10 42 FWUP 67 PB18 92 PB2
18 PA19/PGMD11 43 ERASE 68 PB17 93 PB11
19 PA20/PGMD12 44 TST 69 PB14 94 PB12
20 PA21/PGMD13 45 VDDBU 70 PB10 95 PB13
21 PA23/PGMD15 46 GNDBU 71 PB9 96 PA27
22 VvDDIO 47 NRSTB 72 GNDPLL 97 PB5
23 PA24 48 JTAGSEL 73 VDDPLL 98 PB6
24 PA25 49 XOuT32 74 XOUT 99 PB7
25 PA26 50 XIN32 75 XIN 100 PB8

ATMEL 1

6430F-ATARM-21-Feb-12

ATMEL

4.24 100-ball TFBGA Pinout

Table 4-4. 100-ball SAM3U4/2/1C Pinout

A1 VBG C6 PB22 F1 PB1 He PA15/PGMD7
A2 XIN c7 | TMs/swpio F2 PB12 H7 | PA18/PGMD10
A3 XOUT cs NRSTB F3 VDDIO H8 PA24
A4 PB17 Co JTAGSEL F4 PA31 Ho | PA1/PGMRDY
A5 PB21 c10 VDDBU F5 VDDIO H10 | PA2/PGMNOE
A6 PB23 D1 DFSDM F6 GND 1 PB6
A7 TCK/SWCLK D2 DHSDM F7 PB16 J2 PB8
A8 VDDIN D3 VDDPLL F8 PA6/PGMM2 J3 ADVREF
A9 VDDOUT D4 VDDCORE Fo VDDCORE J4 PA30
A10 XING2 D5 PB20 F10 PA7/PGMM3 J5 PB3
B1 VDDCORE D6 ERASE G1 PB11 J6 PA16/PGMDS
B2 GNDUTMI D7 TST G2 PB2 J7 | PA19/PGMD11
B3 VDDUTMI D8 FWUP G3 PBO J8 | PA21/PGMD13
B4 PB10 D9 | PA11/PGMD3 G4 PB13 J9 PA26
B5 PB18 D10 | PA12/PGMD4 G5 VDDCORE J10 | PAO/PGMNCMD
B6 PB24 E1 PA29 G6 GND KA1 PB7
B7 NRST E2 GND G7 PB15 K2 VDDANA
B8 | TDO/TRACESWO E3 PA28 G8 | PA3/PGMNVALID K3 GNDANA
B9 TDI E4 PB9 Go PAS/PGMM1 K4 AD12BVREF
B10 XOUT32 E5 GNDBU G10 PA4/PGMMO K5 PB4
C1 DFSDP E6 VDDIO H1 VDDCORE K6 PA14/PGMD6
c2 DHSDP E7 VDDCORE H2 PBS5 K7 PA17/PGMD9
c3 GNDPLL E8 | PA10/PGMD2 H3 PA27 K8 | PA20/PGMD12
c4 PB14 E9 PA9/PGMD1 H4 PA22/PGMD14 K9 | PA23/PGMD15
cs PB19 E10 | PA8/PGMDO H5 PA13/PGMD5 K10 PA25

14 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

5. Power Considerations

5.1 Power Supplies
The ATSAM3U4/2/1 product has several types of power supply pins:
* VDDCORE pins: Power the core, the embedded memories and the peripherals; voltage
ranges from 1.62V to 1.95V.
* VDDIO pins: Power the Peripherals /O lines; voltage ranges from 1.62V to 3.6V.
¢ VDDIN pin: Powers the Voltage regulator
* VDDOUT pin: It is the output of the voltage regulator.

* VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage
ranges from 1.62V to 3.6V. VDDBU must be supplied before or at the same time than VDDIO
and VDDCORE.

¢ VDDPLL pin: Powers the PLL A, UPLL and 3-20 MHz Oscillator; voltage ranges from 1.62V
to 1.95V.
e VDDUTMI pin: Powers the UTMI+ interface; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
* VDDANA pin: Powers the ADC cells; voltage ranges from 2.0V to 3.6V.
Ground pins GND are common to VDDCORE and VDDIO pins power supplies.

Separated ground pins are provided for VDDBU, VDDPLL, VDDUTMI and VDDANA. These
ground pins are respectively GNDBU, GNDPLL, GNDUTMI and GNDANA.

5.2 Voltage Regulator
The ATSAM3U4/2/1 embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is intended to supply the internal core of ATSAM3U4/2/1 but can be used
to supply other parts in the application. It features two different operating modes:

* In Normal mode, the voltage regulator consumes less than 700 pA static current and draws
150 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current
depending on the required load current. In Wait Mode or when the output current is low,
quiescent current is only 7pA.

* In Shutdown mode, the voltage regulator consumes less than 1 pA while its output is driven
internally to GND. The default output voltage is 1.80V and the start-up time to reach Normal
mode is inferior to 400 ps.

For adequate input and output power supply decoupling/bypassing, refer to “Voltage Regulator”
in the “Electrical Characteristics” section of the product datasheet.

5.3 Typical Powering Schematics
The ATSAM3U4/2/1 supports a 1.8V-3.6V single supply mode. The internal regulator input con-
nected to the source and its output feed VDDCORE. Figure 5-1, Figure 5-2, Figure 5-3 show the
power schematics.

ATMEL 1

6430F-ATARM-21-Feb-12

ATMEL

Figure 5-1. Single Supply

VDDBU :
— L]

VDDUTMI
+—{]
VDDANA
]
VDDIO
]

Main Supply (1.8V-3.6V) VDDIN D
l Voltage
i Regulator
VDDOUT I:Ej

VDDCOREE

VDDPLL IE

Note: Restrictions
With Main Supply < 2.0 V, USB and ADC are not usable.
With Main Supply > 2.4V and < 3V, USB is not usable.
With Main Supply > 3V, all peripherals are usable.

SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

6430F-ATARM-21-Feb-12

Figure 5-2. Core Externally Supplied

VDDBU :
— L]

VDDUTMI
L]

VDDANA
+——{]
VDDIO
o——[]

Main Supply (1.62V-3.6V)

T

SAM3U Series

VDDOUT [i]

Voltage
Regulator

VDDCORE Supply (1.62V-1.95V) \,ppcoRg

VDDPLL

Note: Restrictions
With Main Supply < 2.0 V, USB and ADC are not usable.
With Main Supply > 2.4V and < 3V, USB is not usable.
With Main Supply > 3V, all peripherals are usable.

ATMEL

17

ATMEL

Figure 5-3. Backup Batteries Used
FWUP |I|
SHDN E:l

S S VOORU
| VDDUTMI E:I

——
VDDANA
o]

VDDIO '
+——L]
/ VDDIN |I|
Main Supply (1.62V-3.6V) ‘t 5 Voltage
i Regulator

VDDOUT

I

VDDCORE m

VDDPLL El

Note: Restrictions
With Main Supply < 2.0 V, USB and ADC are not usable.
With Main Supply > 2.4V and < 3V, USB is not usable.
With Main Supply > 3V, all peripherals are usable.

SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

5.4 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator,
the main crystal oscillator or the PLLA. The power management controller can be used to adapt
the frequency and to disable the peripheral clocks.

5.5 Low Power Modes
The various low power modes of the ATSAM3U4/2/1 are described below:

5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system
which is performing periodic wake-ups to perform tasks but not requiring fast startup time
(<0.5ms).

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz
Oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running.
The regulator and the core supply are off.

Backup Mode is based on the Cortex-M3 deep-sleep mode with the voltage regulator disabled.

The SAM3U Series can be awakened from this mode through the Force Wake-Up pin (FWUP),
and Wake-Up input pins WKUPO to WKUP15, Supply Monitor, RTT or RTC wake-up event. Cur-
rent Consumption is 2.5 pA typical on VDDBU.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Con-
trol Register of the Cortex-M3 set to 1. (See the “Power Management” description in The “ARM
Cortex M3 Processor” section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake up events occurs:

* FWUP pin (low level, configurable debouncing)

* WKUPENO-15 pins (level transition, configurable debouncing)
e SM alarm

¢ RTC alarm

* RTT alarm

5.5.2 Wait Mode
The purpose of the wait mode is to achieve very low power consumption while maintaining the
whole device in a powered state for a startup time of less than 10 ps.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,
peripherals and memories power supplies are still powered. From this mode, a fast start up is
available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in

PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to
wake-up the core (WFE). This is done by configuring the external lines WKUPO-15 as fast
startup wake-up pins (refer to Section 5.7 “Fast Start-Up”). RTC or RTT Alarm and USB wake-up
events can be used to wake up the CPU (exit from WFE).

Current Consumption in Wait mode is typically 15 pA on VDDIN if the internal voltage regulator
is used or 8 pA on VDDCORE if an external regulator is used.

ATMEL 1

6430F-ATARM-21-Feb-12

ATMEL

Entering Wait Mode:

¢ Select the 4/8/12 MHz Fast RC Oscillator as Main Clock
¢ Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
¢ Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN
bit and the effective entry in Wait mode. Depending on the user application, Waiting for
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired
instructions.

5.5.3 Sleep Mode
The purpose of sleep mode is to optimize power consumption of the device versus response
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. This
mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM =0 in
PMC_FSMR.

The processor can be awakened from an interrupt if WFI instruction of the Cortex M3 is used, or
from an event if the WFE instruction is used to enter this mode.

20 SAM3U Series mmssse——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

5.5.4 Low Power Mode Summary Table
The modes detailed above are the main low power modes. Each part can be set to on or off sep-
arately and wake up sources can be individually configured. Table 5-1 below shows a summary
of the configurations of the low power modes.
Table 5-1. Low Power Mode Configuration Summary
SUPC,
32 kHz
Oscillator
RTC RTT
Backup
Registers,
POR Core PIO State
(vDDBU Memory Potential Wake Up | Core at |whilein Low | PIO State | Consumption | Wake-up
Mode Region) |Regulator |Peripherals| Mode Entry Sources Wake Up |Power Mode |at Wake Up @ Time™"
FWUP pin PIOA &
WFE WKUPO-15 pins . PIOB &
OFF OFF
’\BA?)%ILUp ON s _ +SLEEPDEEP [BOD alarm Reset :t:)t\g(::/ed PIOC 25pAtyp® |<0.5ms
HDN =0 |(Not powered)| ~ =% 1"~ |RTC alarm Inputs with
RTT alarm pull ups
Any Event from: Fast
WFE startup through
Wait ON Powered | +SLEEPDEEP |WKUPO0-15 pins Clocked |Previous ®)
Mode ON SHDN =1 | (Not clocked) bit=0 RTC alarm back state saved Unchanged |13 A/20 pA ™)< 10 ps
+LPMbit=1 |RTT alarm
USB wake-up
Entry mode =WFI
Interrupt Only; Entry
mode =WFE Any
WEFEE or WFI Enabled Interrupt
Sleep ON Powered”) | +SLEEPDEEP and/(?r Any Event Clocked |Previous ®) ®)
Mode ON S _ bit = 0 from: Fast start-up back state saved Unchanged
HDN =1 | (Not clocked) = through WKUPO-15
+LPMbit=0 |oing
RTC alarm
RTT alarm
USB wake-up
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works

with the 4/8/12 MHz Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up
time is defined as the time taken for wake up until the first instruction is fetched.

A A

BOD current consumption is not included.
Current consumption on VDDBU.
13 pA total current consumption - without using internal voltage regulator.

The external loads on PIOs are not taken into account in the calculation.

20 pA total current consumption - using internal voltage regulator.

o

Depends on MCK frequency.
In this mode the core is supplied and not clocked but some peripherals can be clocked.

6430F-ATARM-21-Feb-12

ATMEL

21

ATMEL

5.6 Wake-up Sources

The wake-up events allow the device to exit backup mode. When a wake-up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power

supply.

Figure 5-4. Wake-up Source

]
sm_int -
e
rtc_alarm
Core
RTTEN N
rtt_alarm)} gUptP'Vt
estar
SLCK
NS FWUP
Falling —\ Debouncer
| I Edge ®
FWUP Detector _/
[wkuPENo | | wkuPIso
Falling/Rising |_
WKUPO D— Edge
Detector
[wkuPENT | | wkupist | SLIili>
Falling/Rising - Debouncer ®
WKUP1 | |— Edge
| Detector
I
' [wKkuPEN15[| wKuPIS1s|
I
Falling/Rising I_
WKUP15 D— Edge
Detector
22 SAM3U Series mmssse——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

5.7 Fast Start-Up
The ATSAM3U4/2/1 device allows the processor to restart in a few microseconds while the pro-
cessor is in wait mode. A fast start up can occur upon detection of a low level on one of the 19
wake-up inputs.

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,
the PMC automatically restarts the embedded 4/8/12 MHz fast RC oscillator, switches the mas-
ter clock on this 4/8/12 MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Sources

usb_wakeup____———— |
rtc_alarm ___ —————— |
rtt_alarm _ —————— |
FSTTO
High/Low
WKUPO Di Level
Detector ——— fast_restart
FSTTA
High/Low
WKUP1 Di Level
Detector
I
1
1
| FSTT15
1

High/Low
WKUP15 Di Level

Detector

ATMEL 2

6430F-ATARM-21-Feb-12

6.

6.1

6.2

6.3

24

ATMEL

Input/Output Lines

The SAM3U has different kinds of input/output (I/O) lines, such as general purpose 1/0Os (GPIO)
and system I/Os. GPIOs can have alternate functions thanks to multiplexing capabilities of the
PIO controllers. The same GPIO line can be used whether it is in IO mode or used by the multi-
plexed peripheral. System I/Os are pins such as test pin, oscillators, erase pin, analog inputs or
debug pins.

With a few exceptions, the I/Os have input schmitt triggers. Refer to the footnotes associated
with “PIO Controller - PIOA - PIOB - PIOC” on page 6 within Table 3-1, “Signal Description List”.

General Purpose I/O Lines (GPIO)

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such
as, pull-up, input schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input
change interrupt. Programming of these modes is performed independently for each 1/O line
through the PIO controller user interface. For more details, refer to the “PIO Controller” section
of the product datasheet.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3U embeds high speed pads able to handle up to 65 MHz for HSMCI and SPI clock
lines and 35 MHz on other lines. See “AC Characteristics” of the product datasheet for more
details. Typical pull-up value is 100 kQ for all 1/0Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). ODT consists
of an internal series resistor termination scheme for impedance matching between the driver
output (SAM3) and the PCB track impedance preventing signal reflection. The series resistor
helps to reduce 1/Os switching current (di/dt) thereby reducing in turn, EMI. It also decreases
overshoot and undershoot (ringing) due to inductance of interconnect between devices or
between boards. In conclusion, ODT helps reducing signal integrity issues.

Figure 6-1. On-Die Termination schematic

”””””””””””””””” Z0 ~ Zout + Rodt

| 1
| |
| |
oDT
! 36 Ohms Typ. !
! :
ol SS . M T (O
E Rodt i
i — —
E E Receiver
! SAMS3 Driver with ! PCB Trace
E Zout ~ 10 Ohms E 70 ~ 50 Ohms

System I/O Lines

System 1/O lines are pins used by oscillators, test mode, reset, flash erase and JTAG to name
but a few.

Serial Wire JTAG Debug Port (SWJ-DP)

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference
and reset state, refer to Table 3-1, “Signal Description List”

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

6.4

6.5

6.6

6.7

Test Pin

NRST Pin

NRSTB Pin

ERASE Pin

6430F-ATARM-21-Feb-12

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kQto GNDBU, so that it can be left uncon-
nected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire
Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous
trace can only be used with SW-DP, not JTAG-DP.

All the JTAG signals are supplied with VDDIO except JTAGSEL, supplied by VDDBU.

The TST pin is used for JTAG Boundary Scan Manufacturing Test or fast flash programming
mode of the ATSAM3U4/2/1 series. The TST pin integrates a permanent pull-down resistor of
about 15 kQto GND, so that it can be left unconnected for normal operations. To enter fast pro-
gramming mode, see the “Fast Flash Programming Interface” section of the product datasheet.
For more on the manufacturing and test mode, refer to the “Debug and Test” section of the prod-
uct datasheet.

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low
to provide a reset signal to the external components or asserted low externally to reset the
microcontroller. It will reset the Core and the peripherals, except the Backup region (RTC, RTT
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-
troller can guarantee a minimum pulse length.

The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 k<

The NRSTB pin is input only and enables asynchronous reset of the ATSAM3U4/2/1 when
asserted low. The NRSTB pin integrates a permanent pull-up resistor of about 15 kQ This allows
connection of a simple push button on the NRSTB pin as a system-user reset. In all modes, this
pin will reset the chip including the Backup region (RTC, RTT and Supply Controller). It reacts as
the Power-on reset. It can be used as an external system reset source. In harsh environments, it
is recommended to add an external capacitor (10 nF) between NRSTB and VDDBU. (For filter-
ing values refer to “I/O Characteristics” in the “Electrical Characteristics” section of the product
datasheet.)

It embeds an anti-glitch filter.

The ERASE pin is used to reinitialize the Flash content and some of its NVM bits. It integrates a
permanent pull-down resistor of about 15 kQ2to GND, so that it can be left unconnected for nor-
mal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high
during less than 100 ms, it is not taken into account. The pin must be tied high during more than
220 ms to perform the reinitialization of the Flash.

ATMEL 2

ATMEL

Even in all low power modes, asserting the pin will automatically start-up the chip and erase the
Flash.

7. Processor and Architecture

7.1 ARM Cortex-M3 Processor
¢ Version 2.0
e Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.
e Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
* Three-stage pipeline.
* Single cycle 32-bit multiply.
e Hardware divide.
e Thumb and Debug states.
¢ Handler and Thread modes.
* Low latency ISR entry and exit.

7.2 APB/AHB Bridges
The ATSAM3U4/2/1 product embeds two separated APB/AHB bridges:

* low speed bridge
¢ high speed bridge
This architecture enables to make concurrent accesses on both bridges.
All the peripherals are on the low-speed bridge except SPI, SSC and HSMCI.

The UART, 10-bit ADC (ADC), 12-bit ADC (ADC12B), TWI0O-1, USARTO0-3, PWM have dedicated
channels for the Peripheral DMA Channels (PDC). These peripherals can not use the DMA
Controller.

The high speed bridge regroups the SSC, SPI and HSMCI. These three peripherals do not have
PDC channels but can use the DMA with the internal FIFO for Channel buffering.

Note that the peripherals of the two bridges are clocked by the same source: MCK.

7.3 Matrix Masters

The Bus Matrix of the ATSAM3U4/2/1 device manages 5 masters, which means that each mas-
ter can perform an access concurrently with others to an available slave.

Each master has its own decoder and specifically defined bus. In order to simplify the address-
ing, all the masters have the same decoding.

Table 7-1. List of Bus Matrix Masters

Master 0 Cortex-M3 Instruction/Data
Master 1 Cortex-M3 System
Master 2 Peripheral DMA Controller (PDC)
Master 3 USB Device High Speed DMA
Master 4 DMA Controller
26 SAM3U Series

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

7.4 Matrix Slaves

The Bus Matrix of the ATSAM3U4/2/1 manages 10 slaves. Each slave has its own arbiter, allow-
ing a different arbitration per slave.

Table 7-2. List of Bus Matrix Slaves

Slave 0 Internal SRAMO

Slave 1 Internal SRAM1

Slave 2 Internal ROM

Slave 3 Internal Flash 0

Slave 4 Internal Flash 1

Slave 5 USB Device High Speed Dual Port RAM (DPR)
Slave 6 NAND Flash Controller RAM

Slave 7 External Bus Interface

Slave 8 Low Speed Peripheral Bridge

Slave 9 High Speed Peripheral Bridge

7.5 Master to Slave Access

All the Masters can normally access all the Slaves. However, some paths do not make sense,
for example allowing access from the USB Device High speed DMA to the Internal Peripherals.
Thus, these paths are forbidden or simply not wired, and shown as “—” in Table 7-3 below.

Table 7-3. ATSAM3U4/2/1 Master to Slave Access

0 1 2 3 4
USB Device
Cortex-M3 | Cortex-M3 S High Speed DMA
Slaves Masters I/D Bus Bus PDC DMA Controller

0 Internal SRAMO - X X X X
1 Internal SRAM1 - X X X X
2 Internal ROM X - X X X
3 Internal Flash O X - - - -
4 Internal Flash 1 X - - - -
5 USB Device High Speed Dual Port RAM (DPR) - X - - -
6 NAND Flash Controller RAM - X X X X
7 External Bus Interface - X X X X
8 Low Speed Peripheral Bridge - X X - -
9 High Speed Peripheral Bridge - X X - -

ATMEL 2

6430F-ATARM-21-Feb-12

7.6

7.7

28

DMA Controller

ATMEL

¢ Acting as one Matrix Master

* Embeds 4 channels:

— 3 channels with 8 bytes/FIFO for Channel Buffering
— 1 channel with 32 bytes/FIFO for Channel Buffering
e Linked List support with Status Write Back operation at End of Transfer
* Word, HalfWord, Byte transfer support.
* Handles high speed transfer of SPI, SSC and HSMCI (peripheral to memory, memory to

peripheral)

¢ Memory to memory transfer
¢ Can be triggered by PWM and T/C which enables to generate waveforms though the

External Bus Interface

The DMA controller can handle the transfer between peripherals and memory and so receives
the triggers from the peripherals listed below. The hardware interface numbers are also given in

Table 7-4 below.

Table 7-4. DMA Controller

Instance name

DMA Channel HW interface

Channel T/R Number
HSMCI Transmit/Receive 0
SPI Transmit 1
SPI Receive 2
SSC Transmit 3
SSC Receive 4
PWM Event Line 0 Trigger 5
PWM Event Line 1 Trigger 6
7

Peripheral DMA Controller

¢ Handles data transfer between peripherals and memories

* Nineteen channels
— Two for each USART
— Two for the UART
— Two for each Two Wire
— One for the PWM

Interface

— One for each Analog-to-digital Converter
* Low bus arbitration overhead

— One Master Clock cycle needed for a transfer from memory to peripheral
— Two Master Clock cycles needed for a transfer from peripheral to memory
¢ Next Pointer management for reducing interrupt latency requirement

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

The Peripheral DMA Controller handles transfer requests from the channel according to the fol-
lowing priorities (Low to High priorities):

Table 7-5. Peripheral DMA Controller

Instance name Channel T/R
TWH Transmit
TWIO Transmit
PWM Transmit
UART Transmit

USART3 Transmit
USART2 Transmit
USART1 Transmit
USARTO Transmit
TWIO Receive
TWIH Receive
UART Receive
USART3 Receive
USART2 Receive
USART1 Receive
USARTO Receive
ADC Receive
ADC12B Receive

7.8 Debug and Test Features

¢ Debug access to all memory and registers in the system, including Cortex-M3 register bank
when the core is running, halted, or held in reset.

¢ Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
¢ Flash Patch and Breakpoint (FPB) unit for implementing break points and code patches

e Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and
system profiling

¢ Instrumentation Trace Macrocell (ITM) for support of printf style debugging
« IEEE® 1149.1 JTAG Boundary-scan on all digital pins

ATMEL 2

6430F-ATARM-21-Feb-12

ATMEL

8. Product Mapping

Figure 8-1. ATSAM3U4/2/1 Memory Mapping
Code Address memory space Peripherals
0%00000000 e o 0x0000606060 0x40000000 , ‘
Boot Memory R MCI Y
0x00080000 Code 0%40004000 S
Internal Flash 0 ,'l SSC k
0x00100000 0x20000000. oy’éoosooo 21
Internal Flash 1 ,:f' o SPI
0x00180000 /::' Internal SRAM ,+" 0x4000C000 20
Internal ROM ',"/' R Reserved
0x00200000 ’,"(szfoooooool, 0240080000 |-—
Reserved RS S TCO
0x1FFFFFFF o ,'I' Peripherals +0x40 = 22 “‘
Internal SRAM " N et
0x20000000, 0x60090000 , ‘ +0x80 - \
IMByte ==~ SRAMO g K . TC2 iy \
bit band 0x20080000 S N External SRAM Y 0x40084000 B
region " T=<._ . SRAM1 ," "' “‘ TWIO “‘
0x20100000" 9%A0000600 Y 0x40088000 18 \
NFC (SRAM) /! K ‘.‘ TWH
0x20180000 Reserved 1 0x4008C000 19 '
UDPHS (DMA) ! ; ! ‘.‘ PWM
0x20200000 A g OXE'o'oooog.'o 1 0x40090000 25
Undefined ,'l ," ; “‘ USARTO . 1 MByte
0%22000000 K . System } 0x40094000 bit band
32 MBytes K . ' USART1 region
0%24000000 bit band alias OXFEFFEFFE 0x40098000 14
Undefined ' USART2 !
0x40000000 ," 0x40650000 System Controller 0%4009C000 15 :'
' / SMC N ' USART3 B
0%4(0E0200 . 0x40020000 16
',' ',' MATRIX ‘\“ '-‘ Reserved ','
oreo00000 . EXtemal SRAM 0x#00E0400 r, 0x480R4000
h PMC AU UDPHS)
Chip Select 0 0'5'{400]‘:0600 5 5.>‘<4O[,‘A8000 29 :'
0x61000000 N UART NN ADC12B !
Chip Select 1 {0x400£0740 0x46,0AC000 26 ;
0%62000000 : CHIPID N ADGC
Chip Select 2 7 0x400£0800 0x40088000 =
0x63000000 : EFCO \ DMAC
Chip Select 3 :' 0x400E0A00 6 OX4OOB3F“:F‘F 28
0x64000000 ; EFCA v Reserved
reserved ! 0x400E0C00 7 0%400£000D
0%68000000 ; PIOA ‘-‘ System Controller
NFC B 0x400EOE00 10 0x400E2600",
0x69000000 PIOB ' F— ;
reserved K 0x400E1000 11 0x40100000
Ox9FFFFFFF PIOC ," Reserved
offset 0340081200 = 042000900 32 MBytes
block RSTC N bit band alias
peripheral o +0x10 1 0x44000000
SUPC) Reserved
030 0x60000000
.
RTT K
+0x50 3 /
WDT
+0x60 4
RTC K
+0%90 =
S GPBR :
0x400E1400
reserved ‘.
0x4007FFFF]

30

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

9. Memories

9.1

9.1.1

9.1.3.1

9.1.3.2

9.1.3.3

The embedded and external memories are described below.

Embedded Memories

Internal SRAM

Internal ROM

The SAM3U4 (256 KBytes internal Flash version) embeds a total of 48 Kbytes high-speed
SRAM (32 Kbytes SRAMO and 16 Kbytes SRAM1).

The SAM3U2 (128 KBytes internal Flash version) embeds a total of 32 Kbytes high-speed
SRAM (16 Kbytes SRAMO and 16 Kbytes SRAM1).

The SAM3U1 (64 KBytes internal Flash version) embeds a total of 16 Kbytes high-speed SRAM
(8 Kbytes SRAMO and 8 Kbytes SRAM1).

The SRAMO is accessible over System Cortex-M3 bus at address 0x2000 0000 and SRAM1 at
address 0x2008 0000. The user can see the SRAM as contiguous at 0x20078000-0x20083FFF
(SAM3U4), 0x2007C000-0x20083FFFF (SAM3U2) or 0x2007E000-0x20081FFFF (SAM3U1).

The SRAMO and SRAM1 are in the bit band region. The bit band alias region is from 0x2200
0000 and 0x23FF FFFF.

The NAND Flash Controller embeds 4224 bytes of internal SRAM. If the NAND Flash controller
is not used, these 4224 bytes of SRAM can be used as general purpose. It can be seen at
address 0x2010 0000.

The ATSAM3U4/2/1 product embeds an Internal ROM, which contains the SAM-BA Boot and
FFPI program.

At any time, the ROM is mapped at address 0x0018 0000.

Embedded Flash

Flash Overview

The Flash of the SAM3U4 (256 KBytes internal Flash version) is organized in two banks of 512
pages (dual plane) of 256 bytes.

The Flash of the SAM3U2 (128 KBytes internal Flash version) is organized in one bank of 512
pages (single plane) of 256 bytes.

The Flash of the SAM3U1 (64 KBytes internal Flash version) is organized in one bank of 256
pages (single plane) of 256 bytes.

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

Flash Power Supply

The Flash is supplied by VDDCORE.

Enhanced Embedded Flash Controller

6430F-ATARM-21-Feb-12

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a
User Interface, mapped within the Memory Controller on the APB.

ATMEL s

ATMEL

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-
bit internal bus. Its 128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking
sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

The SAM3U4 (256 KBytes internal Flash version) embeds two EEFC (EEFCO for FlashO and
EEFC1 for Flash1) whereas the SAM3U2/1 embeds one EEFC.

9.1.34 Lock Regions
In the SAM3U4 (256 KBytes internal Flash version) two Enhanced Embedded Flash Controllers
each manage 16 lock bits to protect 32 regions of the flash against inadvertent flash erasing or
programming commands.

The SAM3U4 (256 KBytes internal Flash version) contains 32 lock regions and each lock region
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.

The SAM3U2 (128 KBytes internal Flash version) Enhanced Embedded Flash Controller man-
ages 16 lock bits to protect 32 regions of the flash against inadvertent flash erasing or
programming commands.

The SAM3U2 (128 KBytes internal Flash version) contains 16 lock regions and each lock region
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.

The SAM3U1(64 KBytes internal Flash version) Embedded Flash Controller manages 8 lock bits
to protect 8 regions of the flash against inadvertent flash erasing or programming commands.

The SAM3U1(64 KBytes internal Flash version) contains 8 lock regions and each lock region
contains 32 pages of 256 bytes. Each lock region has a size of 8 Kbytes.

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC
triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

9.1.3.5 Security Bit Feature
The ATSAM3U4/2/1 features a security bit, based on a specific General Purpose NVM bit
(GPNVM bit 0). When the security is enabled, any access to the Flash, SRAM, Core Registers
and Internal Peripherals either through the ICE interface or through the Fast Flash Programming
Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of

the EEFC User Interface. Disabling the security bit can only be achieved by asserting the
ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated,
all accesses to the Flash, SRAM, Core Registers and Internal Peripherals either through the ICE
interface or through the Fast Flash Programming Interface are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal

32 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

operation. However, it is safer to connect it directly to GND for the final application.

9.1.3.6 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-
ibration bits.

9.1.3.7 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

9.1.3.8 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial
JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang program-
ming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect
commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered
when TST, NRSTB and FWUP pins are tied high during power up sequence and if all supplies
are provided externally (do not use internal regulator for VDDCORE). Please note that since the
FFPI is a part of the SAM-BA Boot Application, the device must boot from the ROM.

9.1.3.9 SAM-BA® Boot

9.1.3.10 GPNVM Bits

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the
on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set
to 0.

The ATSAM3U4/2/1 features three GPNVM bits that can be cleared or set respectively through
the commands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

The SAM3U4 is equipped with two EEFC, EEFCO and EEFC1. EEFC1 does not feature the
GPNVM bits. The GPNVM embedded on EEFCO applies to the two blocks in the SAM3U4.

Table 9-1. General-purpose Non-volatile Memory Bits
GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection
o Flash selef:tion (Flash 0 or Flash 1) Only on SAM3U4 (256 Kbytes internal
Flash version)

| AWEL@ 33

6430F-ATARM-21-Feb-12

9.1.4

9.2

9.2.1

9.2.2

9.2.3

34

ATMEL

Boot Strategies
The system always boots at address 0x0. To ensure a maximum boot possibilities the memory
layout can be changed via GPNVM.

A general purpose NVM (GPNVM1) bit is used to boot either on the ROM (default) or from the
Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-
pose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface.

Setting the GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the
ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by
default.

GPNVM2 enables to select if Flash 0 or Flash 1 is used for the boot. Setting the GPNVM2 bit
selects the boot from Flash 1, clearing it selects the boot from Flash 0.

External Memories

The ATSAM3U4/2/1 offers an interface to a wide range of external memories and to any parallel
peripheral.

Static Memory Controller
¢ 8- or 16- bit Data Bus
¢ Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)
¢ Up to 4 chips selects, Configurable Assignment
¢ Multiple Access Modes supported
— Byte Write or Byte Select Lines
¢ Multiple device adaptability
— Control signals programmable setup, pulse and hold time for each Memory Bank
e Multiple Wait State Management
— Programmable Wait State Generation
— External Wait Request
— Programmable Data Float Time
¢ Slow Clock mode supported

NAND Flash Controller
* Handles automatic Read/Write transfer through 4224 bytes SRAM buffer
¢ DMA support
e Supports SLC NAND Flash technology
* Programmable timing on a per chip select basis
* Programmable Flash Data width 8-bit or 16-bit

NAND Flash Error Corrected Code Controller
* Integrated in the NAND Flash Controller
* Single bit error correction and 2-bit Random detection.
* Automatic Hamming Code Calculation while writing
— ECC value available in a register
* Automatic Hamming Code Calculation while reading

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

— Error Report, including error flag, correctable error flag and word address being
detected erroneous

— Supports 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte
pages

ATMEL s

6430F-ATARM-21-Feb-12

ATMEL

10. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the sys-
tem, such as power, resets, clocks, time, interrupts, watchdog, etc...

The System Controller User Interface also embeds the registers used to configure the Matrix.

See the system controller block diagram in Figure 10-1 on page 37.

36 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

SAM3U Series

Figure 10-1. System Controller Block Diagram

VDDBU VDDIN

vr_standby VDDOUT
Software Controlled
FWUP Voltage Regulator | I- mEE_—————
1
SHDN 1
< WKUPO - WKUP15 :
NRSTB Supply 1
Controller VDDIO 1
1
PIOAB/IC 1
Input/ Output Bufiers FiOx 1
Zero-Power 1
Power-on Reset
VDDANA 1
1
I—D p
General Purpose !
u
' —| | ADVREF 1
Backup Registers ADC (front-end) 1
1
SLCK rtc_alarm
RT! .
¢ REdDUDRI VDDUTMI !
Supply 1
bodbup_on Monitor I 1
1
SLCK rtt_alarm 1
RTT usB —D USBx 1
1
1
osc32k_xtal_en 1
vddcore_nreset VDDCORE 1
XTALSEL 1
XIN32 Xtal 32 kH] |_| | Ty pp———
Oscillator
X0uT32 bodcore_on Brownout
Embedded bodcore_in Detector
32 kHz RC| 55c32k rc_en supc_interrupt
Oscillator
<€ SRAV [
Backup Power Supply
Peripherals [
—> t
vddcore_nreset Reset RICCSTESE)
] Contiofler [Pperiph_nreset Cortex-M3 |«@=P»{ Matrix
—> ice_nreset
NRST D‘—’ - | Perheral
Bridge
FSTTO- FSTT150 [} > €| Flash [
Embedded SLCK_, |
12/8/4 MHz 5
RC Main Clock " Clock
Oscillator MAINCK Power as't\:(r:K ocl
. > Controller
XOUT D XTAL Oscillator
MAINCK PLLACK Watchdog
—
PLLA B == Timer
MAINCK UPLLCK c P Supol
—> uPLL ore Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins,
but are not physical pins.

ATMEL s

6430F-ATARM-21-Feb-12

10.1

ATMEL

System Controller and Peripheral Mapping

Please refer to Figure 8-1“ATSAM3U4/2/1 Memory Mapping” on page 30 .

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

10.2.1

10.2.2

10.2.3

The SAM3U embeds three features to monitor, warn and/or reset the chip:
¢ Power-on-Reset on VDDBU

¢ Brownout Detector on VDDCORE
e Supply Monitor on VDDUTMI

Power-on-Reset on VDDBU

The Power-on-Reset monitors VDDBU. It is always activated and monitors voltage at start up
but also during power down. If VDDBU goes below the threshold voltage, the entire chip is reset.
For more information, refer to the “Electrical Characteristics” section of the datasheet.

Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it
during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-
mation, refer to the “Supply Controller” and “Electrical Characteristics” sections of the product
datasheet.

Supply Monitor on VDDUTMI

The Supply Monitor monitors VDDUTMI. It is not active by default. It can be activated by soft-
ware and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is
controlled by the Supply Controller. A sample mode is possible. It allows to divide the supply
monitor power consumption by a factor of up to 2048. For more information, refer to the “Supply
Controller” and “Electrical Characteristics” sections of the product datasheet.

10.3 Reset Controller

The Reset Controller is capable to return to the software the source of the last reset, either a
general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin output. It is
capable to shape a reset signal for the external devices, simplifying to a minimum connection of
a push-button on the NRST pin to implement a manual reset.

10.4 Supply Controller

38

The Supply Controller controls the power supplies of each section of the processor and the
peripherals (via Voltage regulator control).

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock
generator.

The reset circuitry is based on a zero-power power-on reset cell. The zero-power power-on reset
allows the Supply Controller to start properly.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC
oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal
oscillator and select it as the Slow Clock source.

The Supply Controller starts up the device by enabling the Voltage Regulator, then it generates
the proper reset signals to the core power supply.

It also enables to set the system in different low power modes and to wake it up from a wide
range of events.

10.5 Clock Generator

6430F-ATARM-21-Feb-12

The Clock Generator is made up of:

* One Low Power 32768 Hz Slow Clock Oscillator with bypass mode
* One Low Power RC Oscillator
¢ One 3 to 20 MHz Crystal Oscillator, which can be bypassed

¢ One Fast RC Oscillator factory programmed, 3 output frequencies can be selected: 4, 8 or 12
MHz. By default 4 MHz is selected. 8 MHz and 12 MHz output are factory calibrated.

* One 480 MHz UPLL providing a clock for the USB High Speed Device Controller. Input
frequency is 12 MHz (only).

* One 96 to 192 MHz programmable PLL (PLL A), capable to provide the clock MCK to the
processor and to the peripherals. The input frequency of the PLL A is between 8 and 16 MHz.

Figure 10-2. Clock Generator Block Diagram

Clock Generator
— XTALSEL
On Chip
32k RC OSC [
|, Slow Clock
XIN32 | I SLCK
Slow Clock [—>|
Oscillator
XOuUT32 | I
XIN D 12M Main
Oscillator [
XOUT | I Main Clock
” MAINCK
On Chip
12/8/4 MHz ||
RC OSC
MAINSEL
* PLL B » HSCK
Divider UPLL Clock
/6 /8 UPLLCK
—| PLL and PLLA Clock
Divider A PLLACK

l Status T Control

Power
Management
Controller

ATMEL 5

ATMEL

10.6 Power Management Controller
The Power Management Controller provides all the clock signals to the system. It provides:
¢ the Processor Clock HCLK
e the Free running processor clock FCLK
* the Cortex SysTick external clock
¢ the Master Clock MCK, in particular to the Matrix and the memory interfaces
¢ the USB Device HS Clock UDPCK
¢ independent peripheral clocks, typically at the frequency of MCK
* three programmable clock outputs: PCKO, PCK1 and PCK2
The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The
unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the Fast RC Oscillator running
at 4 MHz.

Figure 10-3. Power Management Controller Block Diagram

Processor
Clock > HCK
Controller

< int

Sleep Mod¢

Divider .
— /8 —— > SystTick

FCLK

Master Clock Controller

SLCK] —
MAINCK — rescaler
PLLACK — 1,/2,/4,.../64 MCK
PLLBCK]

Peripherals
|_,| Clock Controller periph_clk[..]
ON/OFF
Programmable Clock Controller
SLCK — ON/OFF
MAINCK — Prescaler | -~ | = ekl
PLLACK — /1,/2,/4,...,/64
PLLBCK —
USB Clock Controller
ON/OFF
HSCK UDPCK

The SysTick calibration value is fixed at 10500, which allows the generation of a time base of
1 ms with SystTick clock to 10.5 MHz (max HCLK/8).

40 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

10.7 Watchdog Timer
* 16-bit key-protected once-only Programmable Counter
* Windowed, prevents the processor from being in a dead-lock on the watchdog access

10.8 SysTick Timer
¢ 24-bit down counter
» Self-reload capability
* Flexible system timer

10.9 Real-time Timer
¢ Real-time Timer, allowing backup of time with different accuracies
— 32-bit Free-running back-up Counter
— Integrates a 16-bit programmable prescaler running on slow clock
— Alarm Register capable to generate a wake-up of the system

10.10 Real-time Clock
e Low power consumption
* Full asynchronous design
¢ Two hundred year calendar
* Programmable Periodic Interrupt
e Alarm and update parallel load
¢ Control of alarm and update Time/Calendar Data In

10.11 General-Purpose Back-up Registers
¢ Eight 32-bit general-purpose backup registers

10.12 Nested Vectored Interrupt Controller
* Thirty maskable interrupts
* Sixteen priority levels
* Dynamic reprioritization of interrupts
* Priority grouping
— selection of preempting interrupt levels and non preempting interrupt levels.
* Support for tail-chaining and late arrival of interrupts.

— back-to-back interrupt processing without the overhead of state saving and
restoration between interrupts.

¢ Processor state automatically saved on interrupt entry, and restored on
— interrupt exit, with no instruction overhead.

ATMEL o

6430F-ATARM-21-Feb-12

ATMEL

10.13 Chip Identification
* Chip Identifier (CHIPID) registers permit recognition of the device and its revision.

Table 10-1. ATSAMS3UA4/2/1 Chip IDs Register - Engineering Samples

Flash Size
Chip Name KByte Pin Count CHIPID_CIDR CHIPID_EXID
SAM3U4C 256 100 0x28000960 0x0
SAM3U2C 128 100 0x280A0760 0x0
SAM3U1C 64 100 0x28090560 0x0
SAM3U4E 256 144 0x28100960 0x0
SAM3U2E 128 144 0x281A0760 0x0
SAM3U1E 64 144 0x28190560 0x0

* JTAG ID: 0x0582A03F

Table 10-2. ATSAMB3U4/2/1 Chip IDs Register - Revision A Parts

Flash Size
Chip Name KByte Pin Count CHIPID_CIDR CHIPID_EXID
SAM3UA4C (Rev A) 256 100 0x28000961 0x0
SAM3U2C (Rev A) 128 100 0x280A0761 0x0
SAM3U1C (Rev A) 64 100 0x28090561 0x0
SAM3UA4E (Rev A) 256 144 0x28100961 0x0
SAMS3U2E (Rev A) 128 144 0x281A0761 0x0
SAM3U1E (Rev A) 64 144 0x28190561 0x0

* JTAG ID: 0x0582A03F

10.14 PIO Controllers
¢ 3 PIO Controllers, PIOA, PIOB, and PIOC, controlling a maximum of 96 I/O Lines
e Each PIO Controller controls up to 32 programmable I/O Lines
— PIOA has 32 1/O Lines
— PIOB has 32 I/O Lines
— PIOC has 32 I/O Lines
* Fully programmabile through Set/Clear Registers
* Multiplexing of two peripheral functions per 1/O Line
¢ For each /O Line (whether assigned to a peripheral or used as general purpose I/O)
— Input change, rising edge, falling edge, low level and level interrupt
— Debouncing and Gilitch filter
— Multi-drive option enables driving in open drain
— Programmable pull up on each I/O line
— Pin data status register, supplies visibility of the level on the pin at any time
¢ Synchronous output, provides Set and Clear of several I/O lines in a single write

42 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the ATSAM3U4/2/1. A peripheral identifier is
required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller
and for the control of the peripheral clock with the Power Management Controller.

Note that some Peripherals are always clocked. Please refer to the table below.

Table 11-1. Peripheral Identifiers

NVIC PMC
Instance ID Instance Name Interrupt Clock Control Instance Description
0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real Time Clock
3 RTT X Real Time Timer
4 WDT X Watchdog Timer
5 PMC X Power Management Controller
6 EEFCO X Enhanced Embedded Flash Controller O
7 EEFC1 X Enhanced Embedded Flash Controller 1
8 UART X X Universal Asynchronous Receiver Transmitter
9 SMC X X Static Memory Controller
10 PIOA X X Parallel 1/0 Controller A,
11 PIOB X X Parallel I/O Controller B
12 PIOC X X Parallel I/O Controller C
13 USARTO X X USART 0
14 USART1 X X USART 1
15 USART2 X X USART 2
16 USART3 X X USART 3
17 HSMCI X X High Speed Multimedia Card Interface
18 TWIO X X Two-Wire Interface 0
19 TWNH X X Two-Wire Interface 1
20 SPI X X Serial Peripheral Interface
21 SSC X X Synchronous Serial Controller
22 TCO X X Timer Counter 0
23 TC1 X X Timer Counter 1
24 TC2 X X Timer Counter 2
25 PWM X X Pulse Width Modulation Controller
26 ADC12B X X 12-bit ADC Controller
27 ADC X X 10-bit ADC Controller
28 DMAC X X DMA Controller
29 UDPHS X X USB Device High Speed

ATMEL i

6430F-ATARM-21-Feb-12

ATMEL

11.2 Peripheral Signal Multiplexing on I/O Lines

The ATSAM3U4/2/1 features 3 PI1O controllers, PIOA, PIOB and PIOC that multiplex the I/O
lines of the peripheral set.

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral
functions, A or B. The multiplexing tables in the following pages define how the I/O lines of
peripherals A and B are multiplexed on the PIO Controllers. The two columns “Extra Function”
and “Comments” have been inserted in this table for the user's own comments, they may be
used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

44 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

11.2.1 PIO Controller A Multiplexing

Table 11-2. Multiplexing on P1O Controller A (PIOA)

I/0 Line Peripheral A Peripheral B Extra Function Comments
PAO TIOBO NPCS1 WKUPO™M®
PA1 TIOAOQ NPCS2 WKUP1M@)
PA2 TCLKO ADTRG WKUP2(@)
PA3 MCCK PCKA1
PA4 MCCDA PWMHO
PA5 MCDAO PWMH1
PAG6 MCDA1 PWMH2
PA7 MCDA2 PWMLO
PA8 MCDA3 PWMLA1
PA9 TWDO PWML2 WKUP3(M®)
PA10 TWCKO PWML3 WKUP4"@)
PA11 URXD PWMFIO
PA12 UTXD PWMFI1
PA13 MISO
PA14 MOSI
PA15 SPCK PWMH2
PA16 NPCSO0 NCS1 WKUP5()@)
PA17 SCKO AD12BTRG WKUP6()@
PA18 TXDO PWMFI2 WKUP7M@
PA19 RXDO NPCS3 WKUP8™M@
PA20 TXDA PWMH3 WKUP9(®)
PA21 RXD1 PCKO WKUP100@
PA22 TXD2 RTS1 AD12B0
PA23 RXD2 CTS1
PA24 TWD1® SCK1 WKUP110@
PA25 TWCK1® SCK2 WKUP12(0(@)
PA26 TD TCLK2
PA27 RD PCKO
PA28 TK PWMHO
PA29 RK PWMH1
PA30 TF TIOA2 AD12B1
PA31 RF TIOB2

Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).

2. Fast Start-Up source in Wait mode (managed by the PMC).
3. Only on 144-pin version

6430F-ATARM-21-Feb-12

ATMEL

45

ATMEL

11.2.2 PIO Controller B Multiplexing

Table 11-3. Multiplexing on P1O Controller B (PIOB)

I/0 Line Peripheral A Peripheral B Extra Function Comments
PBO PWMHO A2 WKUP13M@
PB1 PWMH1 A3 WKUP14M@
PB2 PWMH2 A4 WKUP15M"@
PB3 PWMH3 A5 AD12B2
PB4 TCLK1 A6 AD12B3
PB5 TIOA1 A7 ADO
PB6 TIOB1 D15 AD1
PB7 RTSO AO/NBSO AD2
PB8 CTS0 Al AD3
PB9 DO DTRO
PB10 D1 DSRO
PB11 D2 DCDO
PB12 D3 RIO
PB13 D4 PWMHO
PB14 D5 PWMH1
PB15 D6 PWMH2
PB16 D7 PWMH3
PB17 NANDOE PWMLO
PB18 NANDWE PWMLA
PB19 NRD PWML2
PB20 NCS0 PWML3
PB21 A21/NANDALE RTS2
PB22 A22/NANDCLE CTS2
PB23 NWRO/NWE PCK2
PB24 NANDRDY PCK1
PB25 D8 PWMLO Only on 144-pin version
PB26 D9 PWMLA Only on 144-pin version
PB27 D10 PWML2 Only on 144-pin version
PB28 D11 PWML3 Only on 144-pin version
PB29 D12 Only on 144-pin version
PB30 D13 Only on 144-pin version
PB31 D14 Only on 144-pin version

Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).
2. Fast Start-Up source in Wait mode (managed by the PMC).

46 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

11.2.3 PIO Controller C Multiplexing

Table 11-4. Multiplexing on PIO Controller C (PIOC)

1/0 Line Peripheral A Peripheral B Extra function Comments
PCO A2 Only on 144-pin version
PC1 A3 Only on 144-pin version
PC2 A4 Only on 144-pin version
PC3 A5 NPCS1 Only on 144-pin version
PC4 A6 NPCS2 Only on 144-pin version
PC5 A7 NPCS3 Only on 144-pin version
PC6 A8 PWMLO Only on 144-pin version
PC7 A9 PWML1 Only on 144-pin version
PC8 A10 PWML2 Only on 144-pin version
PC9 A1 PWML3 Only on 144-pin version
PC10 Al12 CTS3 Only on 144-pin version
PC11 A13 RTS3 Only on 144-pin version
PC12 NCSH1 TXD3 Only on 144-pin version
PC13 A2 RXD3 Only on 144-pin version
PC14 A3 NPCS2 Only on 144-pin version
PC15 NWR1/NBS1 AD12B4 Only on 144-pin version
PC16 NCS2 PWML3 AD12B5 Only on 144-pin version
PC17 NCS3 AD12B6 Only on 144-pin version
PC18 NWAIT AD12B7 Only on 144-pin version
PC19 SCK3 NPCS1 Only on 144-pin version
PC20 Al14 Only on 144-pin version
PC21 A15 Only on 144-pin version
PC22 A16 Only on 144-pin version
PC23 Al7 Only on 144-pin version
PC24 A18 PWMHO Only on 144-pin version
PC25 A19 PWMH1 Only on 144-pin version
PC26 A20 PWMH2 Only on 144-pin version
PC27 A23 PWMH3 Only on 144-pin version
PC28 MCDA4 AD4 Only on 144-pin version
PC29 PWMLO MCDA5 AD5 Only on 144-pin version
PC30 PWML1 MCDAG6 AD6 Only on 144-pin version
PC31 PWML2 MCDA7 AD7 Only on 144-pin version

Notes: 1. Wake-Up source in Backup mode (managed by the SUPC).
2. Fast Start-Up source in Wait mode (managed by the PMC).

6430F-ATARM-21-Feb-12

ATMEL

47

ATMEL

12. Embedded Peripherals Overview

12.1 Serial Peripheral Interface (SPI)
¢ Supports communication with serial external devices

— Four chip selects with external decoder support allow communication with up to 15
peripherals

— Serial memories, such as DataFlash and 3-wire EEPROMSs

— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

— External co-processors

¢ Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select

— Programmable transfer delays between consecutive transfers and between clock
and data per chip select

— Programmable delay between consecutive transfers
— Selectable mode fault detection
* Very fast transfers supported
— Transfers with baud rates up to MCK
— The chip select line may be left active to speed up transfers on the same device

12.2 Two Wire Interface (TWI)

* Master, Multi-Master and Slave Mode Operation

 Compatibility with Atmel two-wire interface, serial memory and 1°C compatible devices

¢ One, two or three bytes for slave address

* Sequential read/write operations

* Bit Rate: Up to 400 kbit/s

¢ General Call Supported in Slave Mode

¢ Connecting to PDC channel capabilities optimizes data transfers in Master Mode only
— One channel for the receiver, one channel for the transmitter
— Next buffer support

12.3 Universal Asynchronous Receiver Transceiver (UART)
* Two-pin UART
— Implemented features are 100% compatible with the standard Atmel USART

— Independent receiver and transmitter with a common programmable Baud Rate
Generator

— Even, Odd, Mark or Space Parity Generation

— Parity, Framing and Overrun Error Detection

— Automatic Echo, Local Loopback and Remote Loopback Channel Modes
— Support for two PDC channels with connection to receiver and transmitter

48 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

12.4 Universal Synchronous Asynchronous Receiver Transmitter (USART)
* Programmable Baud Rate Generator
¢ 5- to 9-bit full-duplex synchronous or asynchronous serial communications
— 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection
— Framing error detection, overrun error detection
— MSB- or LSB-first
— Optional break generation and detection
— By 8 or by-16 over-sampling receiver frequency
— Hardware handshaking RTS-CTS
— Receiver time-out and transmitter timeguard
— Optional Multi-drop Mode with address generation and detection
— Optional Manchester Encoding
* RS485 with driver control signal
¢ |SO7816, T =0 or T = 1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
* SPI Mode
— Master or Slave
— Serial Clock programmable Phase and Polarity
— SPI Serial Clock (SCK) Frequency up to MCK/6
¢ IrDA modulation and demodulation
— Communication at up to 115.2 Kbps
¢ Test Modes
— Remote Loopback, Local Loopback, Automatic Echo

12.5 Serial Synchronous Controller (SSC)

* Provides serial synchronous communication links used in audio and telecom applications
(with CODECs in Master or Slave Modes, 1°S, TDM Buses, Magnetic Card Reader, ...)

¢ Contains an independent receiver and transmitter and a common clock divider
» Offers a configurable frame sync and data length

* Receiver and transmitter can be programmed to start automatically or on detection of
different event on the frame sync signal

* Receiver and transmitter include a data signal, a clock signal and a frame synchronization
signal

12.6 Timer Counter (TC)
* Three 16-bit Timer Counter Channels
* Wide range of functions including:
— Frequency Measurement
— Event Counting
— Interval Measurement

ATMEL 1

6430F-ATARM-21-Feb-12

— Pulse Generation
— Delay Timing
— Pulse Width Modulation
— Up/Down Capabilities
— Quadrature Decoder Logic
* Each channel is user-configurable and contains:
— Three external clock inputs
— Five internal clock inputs
— Two multi-purpose input/output signals
* Two global registers that act on all three TC Channels

12.7 Pulse Width Modulation Controller (PWM)

* 4 channels, one 16-bit counter per channel

* Common clock generator, providing Thirteen Different Clocks
— A Modulo n counter providing eleven clocks
— Two independent Linear Dividers working on modulo n counter outputs
— High Frequency Asynchronous clocking mode

* Independent channel programming
— Independent Enable Disable Commands
— Independent Clock Selection
— Independent Period and Duty Cycle, with Double Buffering
— Programmable selection of the output waveform polarity
— Programmable center or left aligned output waveform
— Independent Output Override for each channel

— Independent complementary Outputs with 12-bit dead time generator for each
channel

— Independent Enable Disable Commands

— Independent Clock Selection

— Independent Period and Duty Cycle, with Double Buffering
¢ Synchronous Channel mode

— Synchronous Channels share the same counter

— Mode to update the synchronous channels registers after a programmable number
of periods

¢ Connection to one PDC channel

— Offers Buffer transfer without Processor Intervention, to update duty cycle of
synchronous channels

¢ Two independent event lines which can send up to 8 triggers on ADC within a period
e Four programmable Fault Inputs providing asynchronous protection of outputs

50 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

12.8 High Speed Multimedia Card Interface (HSMCI)
¢ Compatibility with MultiMedia Card Specification Version 4.3
e Compatibility with SD Memory Card Specification Version 2.0
¢ Compatibility with SDIO Specification Version V2.0.
¢ Compatibility with CE-ATA Specification 1.1
* Cards clock rate up to Master Clock divided by 2
¢ Boot Operation Mode support
* High Speed mode support
* Embedded power management to slow down clock rate when not used
* HSMCI has one slot supporting
— One MultiMediaCard bus (up to 30 cards) or
— One SD Memory Card
— One SDIO Card
¢ Support for stream, block and multi-block data read and write
¢ Supports Connection to DMA controller
— Minimizes Processor intervention for large buffer transfers
* Built in FIFO (32 bytes) with large Memory Aperture Supporting Incremental access
e Support for CE-ATA Completion Signal Disable Command

12.9 USB High Speed Device Port (UDPHS)

* USB V2.0 high-speed compliant, 480 MBits per second

e Embedded USB V2.0 UTMI+ high-speed transceiver

* Embedded 4-Kbyte dual-port RAM for endpoints

* Embedded 6 channels DMA controller

e Suspend/Resume logic

* Up to 2 or 3 banks for isochronous and bulk endpoints

» Seven endpoints, configurable by software

* Maximum configuration: seven endpoints:
— Endpoint 0: 64 bytes, 1 bank mode
— Endpoint 1 & 2: 512 bytes, 2 banks mode, HS isochronous capable
— Endpoint 3 & 4:64 bytes, 3 banks mode
— Endpoint 5 & 6: 1024 bytes, 3 banks mode, HS isochronous capable

12.10 Analog-to-Digital Converter (ADC)
Two ADCs are embedded in the product.

12.10.1 12-bit High Speed ADC
¢ 8-channel ADC
¢ 12-bit 1 Msamples/sec. Cyclic Pipeline ADC
* Integrated 8-to-1 multiplexer
¢ 12-bit resolution

ATMEL 2

6430F-ATARM-21-Feb-12

ATMEL

* Selectable single ended or differential input voltage
* Programmable gain for maximum full scale input range
* External voltage reference for better accuracy on low voltage inputs
* Individual enable and disable of each channel
* Multiple trigger sources
— Hardware or software trigger
— External trigger pin
— Timer Counter 0 to 2 outputs TIOAO to TIOA2 trigger
— PWM trigger
* Sleep Mode and conversion sequencer

— Automatic wakeup on trigger and back to sleep mode after conversions of all
enabled channels

12.10.2 10-bit Low Power ADC
¢ 8-channel ADC

* 10-bit 384 Ksamples/sec. or 8-bit 533 Ksamples/sec. Successive Approximation Register
ADC

» -2/+2 LSB Integral Non Linearity, -1/+1 LSB Differential Non Linearity
¢ Integrated 8-to-1 multiplexer
» External voltage reference for better accuracy on low voltage inputs
¢ Individual enable and disable of each channel
* Multiple trigger sources

— Hardware or software trigger

— External trigger pin

— Timer Counter 0 to 2 outputs TIOAO to TIOA2 trigger

— PWM trigger
* Sleep Mode and conversion sequencer

— Automatic wakeup on trigger and back to sleep mode after conversions of all
enabled channels

52 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13. ARM Cortex® M3 Processor

13.1 About this section
This section provides the information required for application and system-level software devel-
opment. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have
no experience of ARM products.

Note: The information in this section is reproduced from source material provided to Atmel by
ARM Ltd. in terms of Atmel’s license for the ARM Cortex " -M3 processor core. This information
is copyright ARM Ltd., 2008 - 2009.

13.2 About the Cortex-M3 processor and core peripherals

¢ The Cortex-M3 processor is a high performance 32-bit processor designed for the
microcontroller market. It offers significant benefits to developers, including:

* outstanding processing performance combined with fast interrupt handling
* enhanced system debug with extensive breakpoint and trace capabilities
* efficient processor core, system and memories

e ultra-low power consumption with integrated sleep modes

* platform security, with integrated memory protection unit (MPU).

Figure 13-1. Typical Cortex-M3 implementation

Cortex-M3
Processor

NVIC | Processor
— Core

Debug Memory Serial
< Pr Access Protection Unit Wire >
Port X K Viewer
Flash Data
Patch Watchpoint
Bus Matrix
Code SRAM and
InteArface Periphera] Interface
A A
\ \

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline
Harvard architecture, making it ideal for demanding embedded applications. The processor
delivers exceptional power efficiency through an efficient instruction set and extensively opti-

ATMEL s

6430F-ATARM-21-Feb-12

13.2.1

13.2.2

13.2.3

54

ATMEL

mized design, providing high-end processing hardware including single-cycle 32x32
multiplication and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-
coupled system components that reduce processor area while significantly improving interrupt
handling and system debug capabilities. The Cortex-M3 processor implements a version of the
Thumb® instruction set, ensuring high code density and reduced program memory requirements.
The Cortex-M83 instruction set provides the exceptional performance expected of a modern 32-
bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to
deliver industry-leading interrupt performance. The NVIC provides up to 16 interrupt priority lev-
els. The tight integration of the processor core and NVIC provides fast execution of interrupt
service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the
hardware stacking of registers, and the ability to suspend load-multiple and store-multiple opera-
tions. Interrupt handlers do not require any assembler stubs, removing any code overhead from
the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from
one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep
sleep function that enables the entire device to be rapidly powered down.

System level interface

The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high
speed, low latency memory accesses. It supports unaligned data accesses and implements
atomic bit manipulation that enables faster peripheral controls, system spinlocks and thread-safe
Boolean data handling.

The Cortex-M3 processor has a memory protection unit (MPU) that provides fine grain memory
control, enabling applications to implement security privilege levels, separating code, data and
stack on a task-by-task basis. Such requirements are becoming critical in many embedded
applications.

Integrated configurable debug

The Cortex-M3 processor implements a complete hardware debug solution. This provides high
system visibility of the processor and memory through either a traditional JTAG port or a 2-pin
Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside
data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system
events these generate, a Serial Wire Viewer (SWV) can export a stream of software-generated
messages, data trace, and profiling information through a single pin.

Cortex-M3 processor features and benefits summary

* tight integration of system peripherals reduces area and development costs

e Thumb instruction set combines high code density with 32-bit performance

* code-patch ability for ROM system updates

¢ power control optimization of system components

* integrated sleep modes for low power consumption

« fast code execution permits slower processor clock or increases sleep mode time
¢ hardware division and fast multiplier

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ deterministic, high-performance interrupt handling for time-critical applications
e memory protection unit (MPU) for safety-critical applications
* extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging and tracing.

13.24 Cortex-M3 core peripherals
These are:

13.2.4.1 Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that sup-
ports low latency interrupt processing.

13.2.4.2 System control block

The System control block (SCB) is the programmers model interface to the processor. It pro-
vides system implementation information and system control, including configuration, control,
and reporting of system exceptions.

13.2.4.3 System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating Sys-
tem (RTOS) tick timer or as a simple counter.

13.2.4.4 Memory protection unit
The Memory protection unit (MPU) improves system reliability by defining the memory attributes
for different memory regions. It provides up to eight different regions, and an optional predefined
background region.

13.3 Programmers model

This section describes the Cortex-M3 programmers model. In addition to the individual core reg-
ister descriptions, it contains information about the processor modes and privilege levels for
software execution and stacks.

13.3.1 Processor mode and privilege levels for software execution
The processor modes are:

13.3.1.1 Thread mode

Used to execute application software. The processor enters Thread mode when it comes out of
reset.

13.3.1.2 Handler mode

Used to handle exceptions. The processor returns to Thread mode when it has finished excep-
tion processing.

The privilege levels for software execution are:

13.3.1.3 Unprivileged
The software:

¢ has limited access to the MSR and MRS instructions, and cannot use the CPS instruction

ATMEL s

6430F-ATARM-21-Feb-12

13.3.1.4

13.3.2

56

Privileged

Stacks

ATMEL

¢ cannot access the system timer, NVIC, or system control block
* might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.

The software can use all the instructions and has access to all resources.
Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see “CONTROL register” on page 65. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to make
a supervisor call to transfer control to privileged software.

The processor uses a full descending stack. This means the stack pointer indicates the last
stacked item on the stack memory. When the processor pushes a new item onto the stack, it
decrements the stack pointer and then writes the item to the new memory location. The proces-
sor implements two stacks, the main stack and the process stack, with independent copies of
the stack pointer, see “Stack Pointer” on page 58.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or
the process stack, see “CONTROL register” on page 65. In Handler mode, the processor always
uses the main stack. The options for processor operations are:

Table 13-1. Summary of processor mode, execution privilege level, and stack use options

Processor Used to Privilege level for
mode execute software execution Stack used
I Privileged or Main stack or process
Thread Applications unprivileged ™ stack(™
Exception o .
Handler handlers Always privileged Main stack
1. See “CONTROL register” on page 65.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.3.3 Core registers

The processor core registers are:
e

Low registers

High registers

Stack Pointer
Link Register

Program Counter

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

General-purpose registers

SP (R13)

pspP*

MsP* *Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Program status register

Exception mask registers

Special registers

CONTROL register

Table 13-2. Core register set summary
Required
Type | privilege Reset
Name (U] @ value Description
RO-R12 RW Either Unknown “General-purpose registers” on page 58
. See “ "
MSP RW Privileged - Stack Pointer” on page 58
description
PSP RW Either Unknown “Stack Pointer” on page 58
LR RW Either OxFFFFFFFF | “Link Register’ on page 58
. See « »
PC RW Either - Program Counter” on page 58
description
PSR RW Privileged | 0x01000000 “Program Status Register” on page 59
ASPR RW Either 0X00000000 Application Program Status Register” on
page 60
IPSR RO Privileged | 0x00000000 6I;ﬂerrupt Program Status Register” on page
EPSR RO Privileged | 0x01000000 6I52xecut|on Program Status Register” on page
PRIMASK RW Privileged | 0x00000000 “Priority Mask Register” on page 63

6430F-ATARM-21-Feb-12

ATMEL

57

13.3.3.1

13.3.3.2

13.3.3.3

13.3.3.4

58

ATMEL

Table 13-2. Core register set summary (Continued)

Required
Type | privilege Reset
Name M @ value Description
FAULTMASK | RW Privileged | 0x00000000 “Fault Mask Register” on page 63
BASEPRI RW Privileged | 0x00000000 “Base Priority Mask Register” on page 64
CONTROL RW Privileged | 0x00000000 “CONTROL register’ on page 65

1. Describes access type during program execution in thread mode and Handler mode. Debug
access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

General-purpose registers
R0O-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indi-
cates the stack pointer to use:
* 0 = Main Stack Pointer (MSP). This is the reset value.
¢ 1 = Process Stack Pointer (PSP).
On reset, the processor loads the MSP with the value from address 0x00000000.

Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions. On reset, the processor loads the LR value OxFFFFFFFF.

Program Counter
The Program Counter (PC) is register R15. It contains the current program address. Bit[0] is
always 0 because instruction fetches must be halfword aligned. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.3.3.5 Program Status Register
The Program Status Register (PSR) combines:
* Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
e Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:

¢ APSR:
31 30 29 28 27 26 25 24

| N | Z | C | \ | Q Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

¢ |IPSR:
31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

e EPSR:
31 30 29 28 27 26 25 24

| Reserved ICIIT T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICIT Reserved |
7 6 5 4 3 2 1 0

| Reserved |

ATMEL

6430F-ATARM-21-Feb-12

59

31

30

ATMEL

The PSR bit assignments are:

29

28

27

26

25

24

c I

v

ICI/IT

23

22

21

20

18

17

16

Reserved

15

14

13

12

10

9

8

ICI/IT

Reserved

ISR_NUMBER

4

3

1

0

ISR_NUMBER

13.3.3.6

* N

Negative or less than flag:

Application Program Status Register
The APSR contains the current state of the condition flags from previous instruction executions.

Access these registers individually or as a combination of any two or all three registers, using
the register name as an argument to the MSR or MRS instructions. For example:

* read all of the registers using PSR with the MRS instruction
* write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 13-3.

PSR register combinations

Register

Type

Combination

PSR

Rw (. @

APSR, EPSR, and IPSR

IEPSR

RO

EPSR and IPSR

IAPSR

APSR and IPSR

EAPSR

APSR and EPSR

1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the proces-

See the instruction descriptions “MRS” on page 157 and “MSR” on page 158 for more informa-
tion about how to access the program status registers.

sor ignores writes to the these bits.

See the register summary in Table 13-2 on page 57 for its attributes. The bit assignments are:

0 = operation result was positive, zero, greater than, or equal

1 = operation result was negative or less than.

° Z

Zero flag:

0 = operation result was not zero

1 = operation result was zero.

60

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

e C
Carry or borrow flag:

0 = add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1 = add operation resulted in a carry bit or subtract operation did not result in a borrow bit.
eV

Overflow flag:

0 = operation did not result in an overflow

1 = operation resulted in an overflow.

*Q

Sticky saturation flag:

0 = indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1 = indicates when an ssaT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRs instruction.

13.3.3.7 Interrupt Program Status Register

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).
See the register summary in Table 13-2 on page 57 for its attributes. The bit assignments are:

¢ ISR_NUMBER

This is the number of the current exception:
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV
15 = SysTick
16 = IRQO
45 = 1RQ29

see “Exception types” on page 77 for more information.

ATMEL o

6430F-ATARM-21-Feb-12

ATMEL

13.3.3.8 Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:
e [f-Then (IT) instruction

* Interruptible-Continuable Instruction (ICl) field for an interrupted load multiple or store
multiple instruction.

See the register summary in Table 13-2 on page 57 for the EPSR attributes. The bit assign-
ments are:

e ICI
Interruptible-continuable instruction bits, see “Interruptible-continuable instructions” on page 62.

o IT
Indicates the execution state bits of the IT instruction, see “IT” on page 147.

e T
Always set to 1.

Attempts to read the EPSR directly through application software using the MSR instruction
always return zero. Attempts to write the EPSR using the MSR instruction in application software
are ignored. Fault handlers can examine EPSR value in the stacked PSR to indicate the opera-
tion that is at fault. See “Exception entry and return” on page 82

13.3.3.9 Interruptible-continuable instructions
When an interrupt occurs during the execution of an LDM or STM instruction, the processor:

* stops the load multiple or store multiple instruction operation temporarily
* stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

e returns to the register pointed to by bits[15:12]
* resumes execution of the multiple load or store instruction.
When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

13.3.3.10 If-Then block

The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruc-
tion in the block is conditional. The conditions for the instructions are either all the same, or
some can be the inverse of others. See “IT” on page 147 for more information.

13.3.3.11 Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruc-
tion to change the value of PRIMASK or FAULTMASK. See “MRS” on page 157, “MSR” on page
158, and “CPS” on page 153 for more information.

62 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.3.3.12 Priority Mask Register
The PRIMASK register prevents activation of all exceptions with configurable priority. See the
register summary in Table 13-2 on page 57 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIMASK |

¢ PRIMASK

0 = no effect

1 = prevents the activation of all exceptions with configurable priority.

13.3.3.13 Fault Mask Register
The FAULTMASK register prevents activation of all exceptions. See the register summary in
Table 13-2 on page 57 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved FAULTMASK |

e FAULTMASK
0 = no effect

1 = prevents the activation of all exceptions.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

ATMEL e

6430F-ATARM-21-Feb-12

ATMEL

13.3.3.14 Base Priority Mask Register
The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is
set to a nonzero value, it prevents the activation of all exceptions with same or lower priority
level as the BASEPRI value. See the register summary in Table 13-2 on page 57 for its attri-
butes. The bit assignments are:
31 30 29 28 27 26 25 24
| Reserved
23 22 21 20 19 18 17 16
| Reserved
15 14 13 12 11 10 9 8
| Reserved
7 6 5 4 3 2 1 0
| BASEPRI
e BASEPRI

Priority mask bits:

0x0000 = no effect

Nonzero = defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” on page 172 for more information. Remember

that higher priority field values correspond to lower exception priorities.

64

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.3.3.15 CONTROL register
The CONTROL register controls the stack used and the privilege level for software execution
when the processor is in Thread mode. See the register summary in Table 13-2 on page 57 for
its attributes. The bit assignments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved |
7 6 5 4 3 2 1 0
; Thread Mode
Active Stack o
Reserved Pointer PE\Q\I/% e

e Active stack pointer
Defines the current stack:

0 = MSP is the current stack pointer

1 = PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.
¢ Thread mode privilege level

Defines the Thread mode privilege level:

0 = privileged

1 = unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-
TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack and the kernel and
exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR instruc-
tion to set the Active stack pointer bit to 1, see “MSR” on page 158.

When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This
ensures that instructions after the ISB execute using the new stack pointer. See “ISB” on page 156

ATMEL o

6430F-ATARM-21-Feb-12

ATMEL

13.3.4 Exceptions and interrupts

13.35 Data types

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the
Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception
changes the normal flow of software control. The processor uses handler mode to handle all
exceptions except for reset. See “Exception entry” on page 83 and “Exception return” on page
84 for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller” on
page 165 for more information.

The processor:

e supports the following data types:
— 32-bit words
— 16-bit halfwords
— 8-bit bytes
* supports 64-bit data transfer instructions.

* manages all data memory accesses as little-endian. Instruction memory and Private
Peripheral Bus (PPB) accesses are always little-endian. See “Memory regions, types and
attributes” on page 68 for more information.

13.3.6 The Cortex Microcontroller Software Interface Standard

For a Cortex-M3 microcontroller system, the Cortex Microcontroller Software Interface Standard
(CMSIS) defines:
* a common way to:
— access peripheral registers
— define exception vectors
¢ the names of:
— the registers of the core peripherals
— the core exception vectors
* a device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cor-
tex-M3 processor. It also includes optional interfaces for middleware components comprising a
TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combi-
nation of CMSIS-compliant software components from various middleware vendors. Software
vendors can expand the CMSIS to include their peripheral definitions and access functions for
those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions
of the CMSIS functions that address the processor core and the core peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these differ
from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

* “Power management programming hints” on page 88

66 SAM3U Series mmssse——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

* “Intrinsic functions” on page 92
* “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 165
* “NVIC programming hints” on page 177.

ATMEL o

6430F-ATARM-21-Feb-12

ATMEL

13.4 Memory model

This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of
addressable memory. The memory map is:

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
Pr|vatebpuesr|phera| 1.0MB
0xE0000000
OXDFFFFFFF
External device 1.0GB
0xA0000000
Ox9FFFFFFF
Ox43FFFFFF External RAM 1.0GB
32MB Bit band alias
0x60000000
0x42000000 OXS5FFFFFFF
Ox400FFFFE . . Peripheral 0.5GB
[1MB Bit band region
0x40000000 0x40000000
Ox23FFFFFF Ox3FFFFFFF
32MB Bit band alias SRAM 0.568
0x20000000
0x2200000 0x1FFFFFFF
Code 0.5GB
0x200FFFFF - -
0x20000000. MB_Bitband region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic
operations to bit data, see “Bit-banding” on page 72.

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers, see “About the Cortex-M3 peripherals” on page 164.

This memory mapping is generic to ARM Cortex-M3 products. To get the specific memory map-
ping of this product, refer to the Memories section of the datasheet.

13.4.1 Memory regions, types and attributes

The memory map and the programming of the MPU split the memory map into regions. Each
region has a defined memory type, and some regions have additional memory attributes. The
memory type and attributes determine the behavior of accesses to the region.

The memory types are:

68 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.4.1.1 Normal

13.4.1.2 Device

The processor can re-order transactions for efficiency, or perform speculative reads.

The processor preserves transaction order relative to other transactions to Device or Strongly-
ordered memory.

13.4.1.3 Strongly-ordered

13.4.1.4 Shareable

The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the
memory system can buffer a write to Device memory, but must not buffer a write to Strongly-
ordered memory.

The additional memory attributes include.

For a shareable memory region, the memory system provides data synchronization between
bus masters in a system with multiple bus masters, for example, a processor with a DMA
controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data
coherency between the bus masters.

13.4.1.5 Execute Never (XN)

Means the processor prevents instruction accesses. Any attempt to fetch an instruction from an
XN region causes a memory management fault exception.

13.4.2 Memory system ordering of memory accesses

6430F-ATARM-21-Feb-12

For most memory accesses caused by explicit memory access instructions, the memory system
does not guarantee that the order in which the accesses complete matches the program order of
the instructions, providing this does not affect the behavior of the instruction sequence. Nor-
mally, if correct program execution depends on two memory accesses completing in program
order, software must insert a memory barrier instruction between the memory access instruc-
tions, see “Software ordering of memory accesses” on page 71.

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs before
A2 in program order, the ordering of the memory accesses caused by two instructions is:

i Strongly-

A2 Normal Device access gly:

A1 access ordered

Non-shareable| Shareable access
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:

- Means that the memory system does not guarantee the ordering of the accesses.

ATMEL L

ATMEL

< Means that accesses are observed in program order, that is, A1 is always observed before A2.

13.4.3 Behavior of memory accesses
The behavior of accesses to each region in the memory map is:

Table 13-4. Memory access behavior

Address Memory Memory
range region type XN Description
0x00000000- Executable region for program code. You can also put
M -
Ox{FFFFFFF | C°d8 Normal data here.
Executable region for data. You can also put code
0x20000000- here.
SRAM Normal® | -
Ox3FFFFFFF This region includes bit band and bit band alias areas,
see Table 13-6 on page 72.
0x40000000- | 5 ool | Device™ | XN This region includes bit band and bit band alias areas,
Ox5FFFFFFF P see Table 13-6 on page 72.
0x60000000- | External .
(1) -
OXOFFFFFFE | RAM Normal Executable region for data.
0xA0000000- | External . .
(1)
OXDFFFFFFF | device Device XN External Device memory
Private . . .
0xE0000000- Perioheral Strongly- XN This region includes the NVIC, System timer, and
OXEOOFFFFF Busp ordered" system control block.
0xE0100000- .
(1)
OXFFFFFFFE Reserved Device XN Reserved
1. See “Memory regions, types and attributes” on page 68 for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends
that programs always use the Code region. This is because the processor has separate buses
that enable instruction fetches and data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more
information, see “Memory protection unit” on page 210.

13.4.3.1 Ad(ditional memory access constraints for shared memory
When a system includes shared memory, some memory regions have additional access con-
straints, and some regions are subdivided, as Table 13-5 shows:

Table 13-5. Memory region share ability policies

Address range Memory region Memory type Shareability
0x00000000-)]

OX1FFFFFFF Code Normal

0x20000000-)]

OX3FFFFFFF SRAM Normal

0x40000000- . @))

OXSFFFFFFF Peripheral Device

70 SAM3U Serles |

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Table 13-5. Memory region share ability policies (Continued)

Address range Memory region Memory type Shareability
0x60000000-

(2
0x7FFFFFFF WBWA
External RAM Normal (" -

0x80000000-
)
O0x9FFFFFFF wT
0xA0000000-)
OXBFFFFFFF Shareable
External device Device" -

0xC0000000- Non-
OXDFFFFFFF shareable "
0xE0000000- Private Peripheral Strongly-) i
OXEQOFFFFF Bus ordered Shareable
0xE0100000- Vendor-specific Device ™ i i
OXFFFFFFFF device®

1. See “Memory regions, types and attributes” on page 68 for more information.

2. The Peripheral and Vendor-specific device regions have no additional access constraints.

13.4.4 Software ordering of memory accesses
The order of instructions in the program flow does not always guarantee the order of the corre-
sponding memory transactions. This is because:

e the processor can reorder some memory accesses to improve efficiency, providing this does
not affect the behavior of the instruction sequence.

* the processor has multiple bus interfaces

* memory or devices in the memory map have different wait states

* some memory accesses are buffered or speculative.

“Memory system ordering of memory accesses” on page 69 describes the cases where the
memory system guarantees the order of memory accesses. Otherwise, if the order of memory
accesses is critical, software must include memory barrier instructions to force that ordering. The
processor provides the following memory barrier instructions:

13.4.4.1 DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions com-
plete before subsequent memory transactions. See “DMB” on page 154.

13.4.4.2 DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transac-
tions complete before subsequent instructions execute. See “DSB” on page 155.

13.4.4.3 ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory
transactions is recognizable by subsequent instructions. See “ISB” on page 156.

Use memory barrier instructions in, for example:
* MPU programming:

— Use a DSB instruction to ensure the effect of the MPU takes place immediately at
the end of context switching.

ATMEL g

6430F-ATARM-21-Feb-12

ATMEL

— Use an ISB instruction to ensure the new MPU setting takes effect immediately after
programming the MPU region or regions, if the MPU configuration code was
accessed using a branch or call. If the MPU configuration code is entered using
exception mechanisms, then an ISB instruction is not required.

* Vector table. If the program changes an entry in the vector table, and then enables the
corresponding exception, use a DMB instruction between the operations. This ensures that if
the exception is taken immediately after being enabled the processor uses the new exception
vector.

¢ Self-modifying code. If a program contains self-modifying code, use an ISB instruction
immediately after the code modification in the program. This ensures subsequent instruction
execution uses the updated program.

* Memory map switching. If the system contains a memory map switching mechanism, use a
DSB instruction after switching the memory map in the program. This ensures subsequent
instruction execution uses the updated memory map.

* Dynamic exception priority change. When an exception priority has to change when the
exception is pending or active, use DSB instructions after the change. This ensures the
change takes effect on completion of the DSB instruction.

* Using a semaphore in multi-master system. If the system contains more than one bus
master, for example, if another processor is present in the system, each processor must use
a DMB instruction after any semaphore instructions, to ensure other bus masters see the
memory transactions in the order in which they were executed.

Memory accesses to Strongly-ordered memory, such as the system control block, do not require
the use of DMB instructions.

13.4.5 Bit-banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.
The bit-band regions occupy the lowest 1MB of the SRAM and peripheral memory regions.

The memory map has two 32MB alias regions that map to two 1MB bit-band regions:

* accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as shown
in Table 13-6

¢ accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as
shown in Table 13-7.

Table 13-6. SRAM memory bit-banding regions

Address Memory
range region Instruction and data accesses
0x20000000- SRAM bit-band Direct accesses to this memory range behgve as SRAM
. memory accesses, but this region is also bit addressable

O0x200FFFFF region . .

through bit-band alias.
0x22000000- Data accesses to this region are remapped to bit band

SRAM bit-band alias | region. A write operation is performed as read-modify-write.

0x23FFFFFF X

Instruction accesses are not remapped.

72 SAM3U Serles |

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Table 13-7. Peripheral memory bit-banding regions

Address Memory
range region Instruction and data accesses

Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.

0x40000000- Peripheral bit-band
0x400FFFFF alias

Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not permitted.

0x42000000- Peripheral bit-band
O0x43FFFFFF region

A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM
or peripheral bit-band region.

The following formula shows how the alias region maps onto the bit-band region:

bit_word_offset = (byte_offset x 32) + (bit_number x 4)
bit_word_addr = bit_band_base + bit_word_offset
where:
e Bit_word_offset is the position of the target bit in the bit-band memory region.

e Bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit.

* Bit_band_base is the starting address of the alias region.
* Byte offset is the number of the byte in the bit-band region that contains the targeted bit.
e Bit_number is the bit position, 0-7, of the targeted bit.

Figure 13-2 shows examples of bit-band mapping between the SRAM bit-band alias region and
the SRAM bit-band region:

¢ The alias word at 0x23FFFFEQ maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEQ =
0x22000000 + (OXFFFFF*32) + (0*4).

¢ The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC =
0x22000000 + (OxFFFFF*32) + (7*4).

* The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =
0x22000000 + (0*32) + (0 *4).

* The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =
0x22000000+ (0*32) + (7*4).

ATMEL 7

6430F-ATARM-21-Feb-12

ATMEL

Figure 13-2. Bit-band mapping

32MB alias region

| oxe3rrrrFC | oxe3FrFFFs | 0x2sFFFFF4 | 0x23FFFFFO | 0x23FFFFEC | 0x23FFFFES

0x23FFFFE4 | 0x23FFFFEO |

°
°
°

0x22000 0x22000008

0x22000004 | 0x22000000 |

/| 0x2200001C | 0x22000018 | 0x22000014 | 0x22000010

1MB SRAM bit-band region

\

2

\X‘? 6 5 4 3 2 1 07 6 3

1

0 7 6 5 4 3 2

1

0 7 6 5 4 3 2 10

[
0x200FFFFF
I —

T
0x200FFFFE
I —

[~~~

[

_—

T 1
0x200FFFFD
I —

T 1
0x200FFFFC
I —

°
°

°

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 0

I | |
0x20000003
| | |

I | [
0x20000002
| | |

! | [
0x20000001
| | |

I | [
0x20000000
| | |

13.4.5.1 Directly accessing an alias region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the tar-
geted bit in the bit-band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit,
and writing a value with bit[0] set to 0 writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as
writing OxFF. Writing 0x00 has the same effect as writing 0xOE.

Reading a word in the alias region:

* 0x00000000 indicates that the targeted bit in the bit-band region is set to zero
* 0x00000001 indicates that the targeted bit in the bit-band region is set to 1

13.4.5.2 Directly accessing a bit-band region

“Behavior of memory accesses” on page 70 describes the behavior of direct byte, halfword, or
word accesses to the bit-band regions.

13.4.6 Memory endianness
The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored

word. or “Little-endian format” describes how words of data are stored in memory.

74 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.4.6.1 Little-endian format
In little-endian format, the processor stores the least significant byte of a word at the lowest-
numbered byte, and the most significant byte at the highest-numbered byte. For example:

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2(B2

A+3 B3 msbyte

13.4.7 Synchronization primitives
The Cortex-M3 instruction set includes pairs of synchronization primitives. These provide a non-
blocking mechanism that a thread or process can use to obtain exclusive access to a memory
location. Software can use them to perform a guaranteed read-modify-write memory update
sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

13.4.7.1 A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that location.

13.4.7.2 A Store-Exclusive instruction

Used to attempt to write to the same memory location, returning a status bit to a register. If this
bit is:

0: it indicates that the thread or process gained exclusive access to the memory, and the write
succeeds,

1: it indicates that the thread or process did not gain exclusive access to the memory, and no
write is performed,

The pairs of Load-Exclusive and Store-Exclusive instructions are:

¢ the word instructions LDREX and STREX

¢ the halfword instructions LDREXH and STREXH

* the byte instructions LDREXB and STREXB.
Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.
To perform a guaranteed read-modify-write of a memory location, software must:

¢ Use a Load-Exclusive instruction to read the value of the location.
e Update the value, as required.

¢ Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location, and tests the returned status bit. If this bit is:

0: The read-modify-write completed successfully,

ATMEL 7

6430F-ATARM-21-Feb-12

ATMEL

1: No write was performed. This indicates that the value returned the first step might be out
of date. The software must retry the read-modify-write sequence,

Software can use the synchronization primitives to implement a semaphores as follows:

¢ Use a Load-Exclusive instruction to read from the semaphore address to check whether the
semaphore is free.

* If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore
address.

¢ If the returned status bit from the second step indicates that the Store-Exclusive succeeded
then the software has claimed the semaphore. However, if the Store-Exclusive failed, another
process might have claimed the semaphore after the software performed the first step.

The Cortex-M3 includes an exclusive access monitor, that tags the fact that the processor has
executed a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the

system also globally tags the memory locations addressed by exclusive accesses by each
processor.

The processor removes its exclusive access tag if:

* |t executes a CLREX instruction
* |t executes a Store-Exclusive instruction, regardless of whether the write succeeds.

¢ An exception occurs. This means the processor can resolve semaphore conflicts between
different threads.

In a multiprocessor implementation:

* executing a CLREX instruction removes only the local exclusive access tag for the processor

¢ executing a Store-Exclusive instruction, or an exception. removes the local exclusive access
tags, and all global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX”
on page 114 and “CLREX” on page 116.

13.4.8 Programming hints for the synchronization primitives

ANSI C cannot directly generate the exclusive access instructions. Some C compilers provide
intrinsic functions for generation of these instructions:

Table 13-8. C compiler intrinsic functions for exclusive access instructions

Instruction Intrinsic function

LDREX, LDREXH, or . . . -

LDREXB unsigned int __Idrex(volatile void *ptr)
STREX, STREXH, or -
STREXB int __strex(unsigned int val, volatile void *ptr)
CLREX void __clrex(void)

The actual exclusive access instruction generated depends on the data type of the pointer

passed to the intrinsic function. For example, the following C code generates the require
LDREXB operation:

__Idrex((volatile char *) OxFF);

76 SAM3U Series mmssse——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.5 Exception model
This section describes the exception model.

13.5.1 Exception states
Each exception is in one of the following states:

13.5.1.1 Inactive
The exception is not active and not pending.

13.5.1.2 Pending
The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the correspond-
ing interrupt to pending.

13.5.1.3 Active
An exception that is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case both
exceptions are in the active state.

13.5.1.4 Active and pending

The exception is being serviced by the processor and there is a pending exception from the
same source.

13.5.2 Exception types
The exception types are:

13.56.2.1 Reset
Reset is invoked on power up or a warm reset. The exception model treats reset as a special
form of exception. When reset is asserted, the operation of the processor stops, potentially at
any point in an instruction. When reset is deasserted, execution restarts from the address pro-
vided by the reset entry in the vector table. Execution restarts as privileged execution in Thread
mode.

13.5.2.2 Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is
the highest priority exception other than reset. It is permanently enabled and has a fixed priority
of -2.

NMiIs cannot be:

* Masked or prevented from activation by any other exception.
* Preempted by any exception other than Reset.

13.56.2.3 Hard fault
A hard fault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. Hard faults have
a fixed priority of -1, meaning they have higher priority than any exception with configurable
priority.

ATMEL L

6430F-ATARM-21-Feb-12

ATMEL

13.5.2.4 Memory management fault
A memory management fault is an exception that occurs because of a memory protection
related fault. The MPU or the fixed memory protection constraints determines this fault, for both
instruction and data memory transactions. This fault is used to abort instruction accesses to
Execute Never (XN) memory regions, even if the MPU is disabled.

13.56.2.5 Bus fault
A bus fault is an exception that occurs because of a memory related fault for an instruction or
data memory transaction. This might be from an error detected on a bus in the memory system.

13.5.2.6 Usage fault
A usage fault is an exception that occurs because of a fault related to instruction execution. This
includes:
* an undefined instruction
¢ an illegal unaligned access
¢ invalid state on instruction execution
* an error on exception return.
The following can cause a usage fault when the core is configured to report them:

* an unaligned address on word and halfword memory access
e division by zero.

13.5.2.7 SVcCall
A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS envi-
ronment, applications can use SVC instructions to access OS kernel functions and device
drivers.

13.5.2.8 PendSV
PendSV is an interrupt-driven request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

13.5.2.9 SysTick
A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as system tick.

78 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.5.2.10

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.

Table 13-9. Properties of the different exception types
IRQ
Exception | number! | Exception Vector address
number M | 1 type Priority or offset @ Activation
1 - Reset _3’ the 0x00000004 Asynchronous
highest
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -
Memory)
4 -12 management C(:sc))nflgurable 0x00000010 Synchronous
fault
Synchronous when
5 -1 Bus fault Configurable | 4,00000014 preciss,
asynchronous when
imprecise
Configurable
6 -10 Usage fault @) 0x00000018 Synchronous
7-10 - - - Reserved -
Configurable
11 -5 SVCall @) 0x0000002C Synchronous
12-13 - - - Reserved -
14 2 PendSV Configurable | 4,00000038 Asynchronous
15 -1 SysTick Configurable | o, 0000003¢ Asynchronous
16 and 0and Configurable | 0x00000040 and
above above @ Interrupt (IRQ) ®) above © Asynchronous
1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative

values for exceptions other than interrupts. The IPSR returns the Exception number, see
“Interrupt Program Status Register” on page 61.

See “Vector table” on page 81 for more information.
See “System Handler Priority Registers” on page 190.
See the “Peripheral Identifiers” section of the datasheet.
See “Interrupt Priority Registers” on page 172.
Increasing in steps of 4.

o o~ WD

For an asynchronous exception, other than reset, the processor can execute another instruction
between when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 13-9 on page 79 shows as having con-
figurable priority, see:

* “System Handler Control and State Register” on page 193

ATMEL 7

6430F-ATARM-21-Feb-12

ATMEL

¢ “Interrupt Clear-enable Registers” on page 168.

For more information about hard faults, memory management faults, bus faults, and usage
faults, see “Fault handling” on page 84.

13.5.3 Exception handlers
The processor handles exceptions using:

13.5.3.1 Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ29 are the exceptions handled by ISRs.

13.5.3.2 Fault handlers

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the
fault handlers.

13.5.3.3 System handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are han-
dled by system handlers.

13.5.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 13-3 on page 81 shows the order of
the exception vectors in the vector table. The least-significant bit of each vector must be 1, indi-
cating that the exception handler is Thumb code.

80 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Figure 13-3. Vector table

Exception number IRQ number Offset Vector
45 29 IRQ29
0x00B4
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 Reserved
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to
the VTOR to relocate the vector table start address to a different memory location, in the range
0x00000080 to Ox3FFFFF80, see “Vector Table Offset Register” on page 184.

13.5.5 Exception priorities
As Table 13-9 on page 79 shows, all exceptions have an associated priority, with:
* a lower priority value indicating a higher priority
* configurable priorities for all exceptions except Reset, Hard fault.
If software does not configure any priorities, then all exceptions with a configurable priority have
a priority of 0. For information about configuring exception priorities see
* “System Handler Priority Registers” on page 190
* “Interrupt Priority Registers” on page 172.

ATMEL o

6430F-ATARM-21-Feb-12

13.5.6

13.5.7

13.5.7.1

13.5.7.2

82

ATMEL

Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and
NMI exceptions, with fixed negative priority values, always have higher priority than any other
exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]
means that IRQ[1] has higher priority than IRQ[O0]. If both IRQ[1] and IRQI[0] are asserted, IRQ[1]
is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and
have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a
higher priority exception occurs. If an exception occurs with the same priority as the exception
being handled, the handler is not preempted, irrespective of the exception number. However,
the status of the new interrupt changes to pending.

Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This
divides each interrupt priority register entry into two fields:

* an upper field that defines the group priority
* a lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is
executing an interrupt exception handler, another interrupt with the same group priority as the
interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the
order in which they are processed. If multiple pending interrupts have the same group priority
and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see
“Application Interrupt and Reset Control Register” on page 185.

Exception entry and return

Preemption

Return

Descriptions of exception handling use the following terms:

When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled. See “Interrupt pri-
ority grouping” on page 82 for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See
“Exception entry” on page 83 more information.

This occurs when the exception handler is completed, and:

* there is no pending exception with sufficient priority to be serviced
* the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred. See “Exception return” on page 84 for more information.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.5.7.3 Tail-chaining
This mechanism speeds up exception servicing. On completion of an exception handler, if there
is a pending exception that meets the requirements for exception entry, the stack pop is skipped
and control transfers to the new exception handler.

13.5.7.4 Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and initi-
ates the vector fetch for that exception. State saving is not affected by late arrival because the
state saved is the same for both exceptions. Therefore the state saving continues uninterrupted.
The processor can accept a late arriving exception until the first instruction of the exception han-
dler of the original exception enters the execute stage of the processor. On return from the
exception handler of the late-arriving exception, the normal tail-chaining rules apply.

13.5.7.5 Exception entry
Exception entry occurs when there is a pending exception with sufficient priority and either:

¢ the processor is in Thread mode

* the new exception is of higher priority than the exception being handled, in which case the
new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask regis-
ters, see “Exception mask registers” on page 62. An exception with less priority than this is
pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred as
stacking and the structure of eight data words is referred as stack frame. The stack frame con-
tains the following information:

* RO-R3, R12

¢ Return address
* PSR

* LR.

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
Unless stack alignment is disabled, the stack frame is aligned to a double-word address. If the
STKALIGN bit of the Configuration Control Register (CCR) is set to 1, stack align adjustment is
performed during stacking.

The stack frame includes the return address. This is the address of the next instruction in the
interrupted program. This value is restored to the PC at exception return so that the interrupted
program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the excep-
tion handler start address from the vector table. When stacking is complete, the processor starts
executing the exception handler. At the same time, the processor writes an EXC_RETURN
value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the was processor was in before the entry occurred.

ATMEL .

6430F-ATARM-21-Feb-12

13.5.7.6

ATMEL

If no higher priority exception occurs during exception entry, the processor starts executing the
exception handler and automatically changes the status of the corresponding pending interrupt
to active.

If another higher priority exception occurs during exception entry, the processor starts executing
the exception handler for this exception and does not change the pending status of the earlier
exception. This is the late arrival case.

Exception return

Exception return occurs when the processor is in Handler mode and executes one of the follow-
ing instructions to load the EXC_RETURN value into the PC:

* a POP instruction that includes the PC

* a BX instruction with any register.

¢ an LDR or LDM instruction with the PC as the destination.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. The low-
est four bits of this value provide information on the return stack and processor mode. Table 13-
10 shows the EXC_RETURN][3:0] values with a description of the exception return behavior.

The processor sets EXC_RETURN bits[31:4] to oxFFFFFFF. When this value is loaded into the PC
it indicates to the processor that the exception is complete, and the processor initiates the
exception return sequence.

Table 13-10. Exception return behavior
EXC_RETURN[3:0] A Description

bXXX0 Reserved.
Return to Handler mode.
b0001 Exception return gets state from MSP.
Execution uses MSP after return.
b0011 Reserved.
b01X1 Reserved.

Return to Thread mode.
b1001 Exception return gets state from MSP.
Execution uses MSP after return.

Return to Thread mode.

b1101 Exception return gets state from PSP.
Execution uses PSP after return.
b1X11 Reserved.

13.6 Fault handling

84

Faults are a subset of the exceptions, see “Exception model” on page 77. The following gener-
ate a fault:

— a bus error on:

— an instruction fetch or vector table load

— a data access

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ an internally-detected error such as an undefined instruction or an attempt to change state
with a BX instruction

* attempting to execute an instruction from a memory region marked as Non-Executable (XN).
e an MPU fault because of a privilege violation or an attempt to access an unmanaged region.

13.6.1 Fault types
Table 13-11 shows the types of fault, the handler used for the fault, the corresponding fault sta-
tus register, and the register bit that indicates that the fault has occurred. See “Configurable
Fault Status Register” on page 195 for more information about the fault status registers.

Table 13-11. Faults

Fault Handler Bit name Fault status register
Bus error on a vector read VECTTBL “Hard Fault Status
Hard fault Register”
Fault escalated to a hard fault FORCED egister” on page 201
MPU mismatch: - -
on instruction access IACCVIOL
Memory
on data access managem | DACCVIOL Memory Management
:) : ent fault Fault Address Register” on
during exception stacking MSTKERR page 202
during exception unstacking MUNSKERR
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR “Bus Fault Status Register”
Precise data bus error PRECISERR on page 197
. IMPRECISER
Imprecise data bus error R
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction
set state @ Usage INVSTATE “Usage Fault Status
fault Register” on page 199
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
1. Occurs on an access to an XN region even if the MPU is disabled.
2. Attempting to use an instruction set other than the Thumb instruction set.

13.6.2 Fault escalation and hard faults
All faults exceptions except for hard fault have configurable exception priority, see “System Han-
dler Priority Registers” on page 190. Software can disable execution of the handlers for these
faults, see “System Handler Control and State Register” on page 193.

ATMEL L

6430F-ATARM-21-Feb-12

13.6.3

13.6.4

86

ATMEL

Usually, the exception priority, together with the values of the exception mask registers, deter-
mines whether the processor enters the fault handler, and whether a fault handler can preempt
another fault handler. as described in “Exception model” on page 77.

In some situations, a fault with configurable priority is treated as a hard fault. This is called prior-
ity escalation, and the fault is described as escalated to hard fault. Escalation to hard fault
occurs when:

e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard
fault occurs because a fault handler cannot preempt itself because it must have the same
priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is
because the handler for the new fault cannot preempt the currently executing fault handler.

¢ An exception handler causes a fault for which the priority is the same as or lower than the
currently executing exception.

e A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not
escalate to a hard fault. This means that if a corrupted stack causes a fault, the fault handler
executes even though the stack push for the handler failed. The fault handler operates but the
stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any
exception other than Reset, NMI, or another hard fault.

Fault status registers and fault address registers

Lockup

The fault status registers indicate the cause of a fault. For bus faults and memory management
faults, the fault address register indicates the address accessed by the operation that caused
the fault, as shown in Table 13-12.

Table 13-12. Fault status and fault address registers

Status register | Address register
Handler name name Register description

“Hard Fault Status Register” on page

Hard fault HFSR - 201

“Memory Management Fault Status

Register” 1
Memory MMESR MMFAR egister” on page 196
management fault “Memory Management Fault Address
Register” on page 202
“Bus Fault Status Register” on page 197
Bus fault BFSR BFAR “Bus Fault Address Register” on page
203
Usage fault UFSR) Usage Fault Status Register” on page

199

The processor enters a lockup state if a hard fault occurs when executing the hard fault han-
dlers. When the processor is in lockup state it does not execute any instructions. The processor
remains in lockup state until:

e it is reset

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.7 Power management
The Cortex-M3 processor sleep modes reduce power consumption:

e Backup Mode
¢ Wait Mode
¢ Sleep Mode
The SLEEPDEERP bit of the SCR selects which sleep mode is used, see “System Control Regis-

ter” on page 187. For more information about the behavior of the sleep modes see “Low Power
Modes” in the PMC section of the datasheet.

This section describes the mechanisms for entering sleep mode, and the conditions for waking
up from sleep mode.

13.7.1 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the
processor. Therefore software must be able to put the processor back into sleep mode after
such an event. A program might have an idle loop to put the processor back to sleep mode.

13.7.1.1 Wait for interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the proces-
sor executes a WFI instruction it stops executing instructions and enters sleep mode. See “WFI”
on page 163 for more information.

13.7.1.2 Wait for event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an
one-bit event register. When the processor executes a WFE instruction, it checks this register:

« if the register is 0 the processor stops executing instructions and enters sleep mode

* if the register is 1 the processor clears the register to 0 and continues executing instructions
without entering sleep mode.

See “WFE” on page 162 for more information.

13.7.1.3 Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of
an exception handler it returns to Thread mode and immediately enters sleep mode. Use this
mechanism in applications that only require the processor to run when an exception occurs.

13.7.2 Wakeup from sleep mode
The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

13.7.2.1 Wakeup from WFI or sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1
and the FAULTMASK bit to O. If an interrupt arrives that is enabled and has a higher priority than
current exception priority, the processor wakes up but does not execute the interrupt handler

ATMEL o

6430F-ATARM-21-Feb-12

ATMEL

until the processor sets PRIMASK to zero. For more information about PRIMASK and FAULT-
MASK see “Exception mask registers” on page 62.

13.7.2.2 Wakeup from WFE
The processor wakes up if:

¢ it detects an exception with sufficient priority to cause exception entry

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an
event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to
cause exception entry. For more information about the SCR see “System Control Register” on
page 187.

13.7.3 Power management programming hints
ANSI C cannot directly generate the WFI and WFE instructions. The CMSIS provides the follow-
ing intrinsic functions for these instructions:

void _ WFE(void) // Wait for Event
void _ WFE(void) // Wait for Interrupt

88 SAM3U Series mmssse——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.8 Instruction set summary

The processor implements a version of the Thumb instruction set. Table 13-13 lists the sup-
ported instructions.

In Table 13-13:

6430F-ATARM-21-Feb-12

* angle brackets, <>, enclose alternative forms of the operand

* braces, {}, enclose optional operands

¢ the Operands column is not exhaustive

e Op2 is a flexible second operand that can be either a register or a constant

* most instructions can use an optional condition code sulffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 13-13. Cortex-M3 instructions

Mnemonic Operands Brief description Flags Page
ADC, ADCS |{Rd,} Rn, Op2 Add with Carry N,Z,C,V |page 119
ADD, ADDS |{Rd,} Rn, Op2 Add N,Z,CV |page 119
ADD, ADDW |{Rd,} Rn, #imm12 Add N,Z,CV |page 119
ADR Rd, label Load PC-relative address - page 102
AND, ANDS |{Rd,} Rn, Op2 Logical AND N,Z,C page 122
ASR, ASRS |Rd, Rm, <Rsl#n> Arithmetic Shift Right N,Z,C page 124
B label Branch - page 144
BFC Rd, #lsb, #width Bit Field Clear - page 140
BFI Rd, Rn, #Isb, #width | Bit Field Insert - page 140
BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C page 122
BKPT #imm Breakpoint - page 152
BL label Branch with Link - page 144
BLX Rm Branch indirect with Link - page 144
BX Rm Branch indirect - page 144
CBNz Rn, label Compare and Branch if Non Zero - page 146
CBz Rn, label Compare and Branch if Zero - page 146
CLREX - Clear Exclusive - page 116
CLz Rd, Rm Count leading zeros - page 126
CMN, CMNS |Rn, Op2 Compare Negative N,Z,C\V page 127
CMP, CMPS | Rn, Op2 Compare N,Z,CV page 127
CPSID iflags ICrirtilrr:fj;st:’rocessor State, Disable i page 153
CPSIE iflags ICr):earr:SStsProcessor State, Enable i page 153
DMB - Data Memory Barrier - page 154
DSB - Data Synchronization Barrier - page 155
EOR, EORS |{Rd,} Rn, Op2 Exclusive OR N,Z,C page 122

ATMEL

89

90

ATMEL

Table 13-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
ISB - Instruction Synchronization Barrier - page 156
IT - If-Then condition block - page 147
LDM Rn{!}, reglist Load Multiple registers, increment after | - page 111
Il:gl\l\:gi Rn(1}, reglist It;z;dreMultiple registers, decrement page 111
II:BM:TAD Rn{!}, reglist Load Multiple registers, increment after | - page 111
LDR Rt, [Rn, #offset] Load Register with word - page 106
LDRB, Rt, [Rn, #offset] Load Register with byte - page 106
LDRBT

LDRD Rt, Rt2, [Rn, #offset] | Load Register with two bytes - page 106
LDREX Rt, [Rn, #offset] Load Register Exclusive - page 106
LDREXB Rt, [Rn] Load Register Exclusive with byte - page 106
LDREXH Rt, [Rn] Load Register Exclusive with halfword | - page 106
LDRH, Rt, [Rn, #offset] Load Register with halfword - page 106
LDRHT

tggggT Rt, [Rn, #offset] Load Register with signed byte - page 106
::ggg:.r Rt, [Rn, #offset] Load Register with signed halfword - page 106
LDRT Rt, [Rn, #offset] Load Register with word - page 106
LSL, LSLS Rd, Rm, <Rsl#n> Logical Shift Left N,Z,C page 124
LSR, LSRS Rd, Rm, <Rsl#n> Logical Shift Right N,Z,C page 124
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result |- page 134
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result - page 134
MOV, MOVS |Rd, Op2 Move N,Z,C page 128
MOVT Rd, #imm16 Move Top - page 130
MOVW, MOV | Rd, #imm16 Move 16-bit constant N,Z,C page 128
MRS Rd, spec_reg lr\gz]\i/set ;:om special register to general | page 157
MSR spec_reg, Rm ?gc;\i/;;:om general register to special N.Z,C.V page 158
MUL, MULS |{Rd,} Rn, Rm Multiply, 32-bit result N,Z page 134
MVN, MVNS | Rd, Op2 Move NOT N,z,C page 128
NOP - No Operation - page 159
ORN, ORNS |{Rd,} Rn, Op2 Logical OR NOT N,Z,C page 122
ORR, ORRS |{Rd,} Rn, Op2 Logical OR N,Z,C page 122
POP reglist Pop registers from stack - page 113
PUSH reglist Push registers onto stack - page 113

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

6430F-ATARM-21-Feb-12

Table 13-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
RBIT Rd, Rn Reverse Bits - page 131
REV Rd, Rn Reverse byte order in a word - page 131
REV16 Rd, Rn Reverse byte order in each halfword - page 131
REVSH Rd, Rn gr?&/zr;i t;))/(tti:(;der in bottom halfword page 131
ROR, RORS |Rd, Rm, <Rsl#n> Rotate Right N,Z,C page 124
RRX, RRXS |Rd, Rm Rotate Right with Extend N,Z,C page 124
RSB, RSBS |{Rd,} Rn, Op2 Reverse Subtract N,Z,C,V page 119
SBC, SBCS |{Rd,} Rn, Op2 Subtract with Carry N,Z,C\V page 119
SBFX Rd, Rn, #Isb, #width | Signed Bit Field Extract - page 141
SDIV {Rd,} Rn, Rm Signed Divide - page 136
SEV - Send Event - page 160
SMLAL RdLo, RdHi, Rn, Rm giggz‘zci;\,"gﬁiﬂi’; ‘r’g:”fccum”'ate (82 x page 135
SMULL RdLo, RdHi, Rn, Rm | Signed Multiply (32 x 32), 64-bit result |- page 135
SSAT Rd, #n, Rm {,shift #s} | Signed Saturate Q page 137
STM Rn{!}, reglist Store Multiple registers, increment after | - page 111
2?\'\222 Rn(1}, reglist S;(:cr::eMultiple registers, decrement page 111
§¥M:ZD Rn{!}, reglist Store Multiple registers, increment after | - page 111
STR Rt, [Rn, #offset] Store Register word - page 106
§$SST Rt, [Rn, #offset] Store Register byte - page 106
STRD Rt, Rt2, [Rn, #offset] | Store Register two words - page 106
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive - page 114
STREXB Rd, Rt, [Rn] Store Register Exclusive byte - page 114
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword - page 114
§$EET Rt, [Rn, #offset] Store Register halfword - page 106
STRT Rt, [Rn, #offset] Store Register word - page 106
SUB, SUBS | {Rd,} Rn, Op2 Subtract N,Z,C,V |page 119
SUB, SUBW |{Rd,} Rn, #imm12 Subtract N,Z,C,V page 119
SvC #imm Supervisor Call - page 161
SXTB {Rd,} Rm {,ROR #n} |Sign extend a byte - page 142
SXTH {Rd,} Rm {,ROR #n} |Sign extend a halfword - page 142
TBB [Rn, Rm] Table Branch Byte - page 149
TBH [Rn, Rm, LSL #1] Table Branch Halfword - page 149

ATMEL

91

ATMEL

Table 13-13. Cortex-M3 instructions (Continued)
Mnemonic Operands Brief description Flags Page
TEQ Rn, Op2 Test Equivalence N,Z,C page 132
TST Rn, Op2 Test N,Z,C page 132
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract - page 141
ubIv {Rd,} Rn, Rm Unsigned Divide - page 136
UMLAL RdLo, RdHi, Rn, Rm (Légsj(gggi“g:;t,i‘gz_‘t’)"iit”r‘eéﬁﬁ“m“'ate - page 135
UMULL RdLo, RdHi, Rn, Rm :Je’;iiﬁ’”ed Multiply (32 x 32), 64-bit | _ page 135
USAT Rd, #n, Rm {,shift #s} | Unsigned Saturate Q page 137
UXTB {Rd,} Bm {,ROR #n} |Zero extend a byte - page 142
UXTH {Rd,} Rm {,ROR #n} |Zero extend a halfword - page 142
WFE - Wait For Event - page 162
WFI - Wait For Interrupt - page 163
13.9 Intrinsic functions
ANSI cannot directly access some Cortex-M3 instructions. This section describes intrinsic func-
tions that can generate these instructions, provided by the CMIS and that might be provided by a
C compiler. If a C compiler does not support an appropriate intrinsic function, you might have to
use inline assembler to access some instructions.
The CMSIS provides the following intrinsic functions to generate instructions that ANSI cannot
directly access:
Table 13-14. CMSIS intrinsic functions to generate some Cortex-M3 instructions
Instruction CMSIS intrinsic function
CPSIE | void __enable_irq(void)
CPSID | void __disable_irq(void)
CPSIEF void __enable_fault_irg(void)
CPSID F void __disable_fault_irg(void)
ISB void __ISB(void)
DSB void __DSB(void)
DMB void ___DMB(void)
REV uint32_t __REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t __REVSH(uint32_t int value)
RBIT uint32_t __RBIT(uint32_t int value)
SEV void __SEV/(void)
WFE void __ WFE(void)
WFI void __WFI(void)
92 SAM3U Seri©:S

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

The CMSIS also provides a number of functions for accessing the special registers using MRS

and MSR instructions:

Table 13-15. CMSIS intrinsic functions to access the special registers

Special register | Access | CMSIS function
Read uint32_t __get_PRIMASK (void)
PRIMASK
Write void __set_PRIMASK (uint32_t value)
Read uint32_t __get_ FAULTMASK (void)
FAULTMASK
Write void __set_ FAULTMASK (uint32_t value)
Read uint32_t __get_BASEPRI (void)
BASEPRI
Write void __set_BASEPRI (uint32_t value)
Read uint32_t __get_ CONTROL (void)
CONTROL
Write void __set_ CONTROL (uint32_t value)
Read uint32_t __get_MSP (void)
MSP
Write void __set_MSP (uint32_t TopOfMainStack)
PSP Read uint32_t __get_PSP (void)
Write void __set_PSP (uint32_t TopOfProcStack)

13.10 About the instruction descriptions

The following sections give more information about using the instructions:

¢ “Operands” on page 93

* “Restrictions when using PC or SP” on page 93

* “Flexible second operand” on page 94

¢ “Shift Operations” on page 95

* “Address alignment” on page 97

* “PC-relative expressions” on page 98

* “Conditional execution” on page 98

* “Instruction width selection” on page 100.

13.10.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination register.
When there is a destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See

“Flexible second operand”.

13.10.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack
Pointer (SP) for the operands or destination register. See instruction descriptions for more

information.

6430F-ATARM-21-Feb-12

ATMEL

93

ATMEL

Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be
1 for correct execution, because this bit indicates the required instruction set, and the Cortex-M3
processor only supports Thumb instructions.

13.10.3 Flexible second operand
Many general data processing instructions have a flexible second operand. This is shown as
Operand2 in the descriptions of the syntax of each instruction.

Operand?2 can be a:

* “Constant”
* “Register with optional shift” on page 94

13.10.3.1 Constant
You specify an Operand2 constant in the form:

#constant
where constant can be:
* any constant that can be produced by shifting an 8-bit value left by any number of bits within
a 32-bit word
¢ any constant of the form 0x00XY00XY
¢ any constant of the form 0xXYO00XYO00
* any constant of the form OxXYXYXYXY.

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an Operand?2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS,
EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is
greater than 255 and can be produced by shifting an 8-bit value. These instructions do not affect
the carry flag if Operand2 is any other constant.

13.10.3.2 Instruction substitution
Your assembler might be able to produce an equivalent instruction in cases where you specify a
constant that is not permitted. For example, an assembler might assemble the instruction CMP
Rd, #OxFFFFFFFE as the equivalent instruction CMN Rqg, #0x2.

13.10.3.3 Register with optional shift
You specify an Operand2 register in the form:

Rm {, shift}
where:

Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 <n <32.
LSL #n logical shift left n bits, 1 <n <31.

94 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

LSR #n logical shift right n bits, 1 <n <32.
ROR #n rotate right n bits, 1 <n <31.
RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remains unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions. For information
on the shift operations and how they affect the carry flag, see “Shift Operations”

13.10.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the
shift length. Register shift can be performed:

« directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register
* during the calculation of Operand2 by the instructions that specify the second operand as a
register with shift, see “Flexible second operand” on page 94. The result is used by the
instruction.
The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or “Flexible second operand” on page 94. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is 0.
The following sub-sections describe the various shift operations and how they affect the carry
flag. In these descriptions, Rm is the register containing the value to be shifted, and nis the shift
length.

13.10.4.1 ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 13-4 on page 95.

You can use the ASR #n operation to divide the value in the register Rm by 2", with the result
being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand?2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 13-4. ASR #3

31 543210|:|

ATMEL s

6430F-ATARM-21-Feb-12

ATMEL

13.10.4.2 LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0.
See Figure 13-5.

You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

¢ If nis 32 or more, then all the bits in the result are cleared to 0.
e If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 13-5. LSR #3

b
L\ Flag

31 5/413(2[1]|0 |:|
| |A Af | |A;Af f
H 1

nm : ________ J

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0.
See Figure 13-6 on page 96.

- —

13.104.3 LSL

You can use he LSL #n operation to multiply the value in the register Rm by 2", if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is
updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect
the carry flag when used with LSL #0.

* If nis 32 or more, then all the bits in the result are cleared to 0.
* If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 13-6. LSL #3

, , |]|
1 1 00 O
v I vV V¥
|:|31 5(4(3|2|1/0

Carry 4 4 A A

Flag ? | ? |

96 SAM3U Series mmssse——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.10.4.4

13.10.4.5

ROR

RRX

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into
the left-hand n bits of the result. See Figure 13-7.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
rotation, bit[n-1], of the register Rm.

e If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

* ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 13-7. ROR #3

Carry
yYY Flag
31 5/4|3|2|1|0 |:|

A A f | A;A f f
H }

H !

|, a

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 13-8 on page 97.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of
the register Rm.

Figure 13-8. RRX

Carry
Flag

31|3 110

Tl ... O T

13.10.5 Address alignment

6430F-ATARM-21-Feb-12

An aligned access is an operation where a word-aligned address is used for a word, dual word,
or multiple word access, or where a halfword-aligned address is used for a halfword access.
Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:
e LDR, LDRT
¢ LDRH, LDRHT
¢ LDRSH, LDRSHT
e STR, STRT
¢ STRH, STRHT

ATMEL o

ATMEL

All other load and store instructions generate a usage fault exception if they perform an
unaligned access, and therefore their accesses must be address aligned. For more information
about usage faults see “Fault handling” on page 84.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that programmers
ensure that accesses are aligned. To avoid accidental generation of unaligned accesses, use
the UNALIGN_TRP bit in the Configuration and Control Register to trap all unaligned accesses,
see “Configuration and Control Register” on page 188.

13.10.6 PC-relative expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or lit-
eral data. It is represented in the instruction as the PC value plus or minus a numeric offset. The
assembler calculates the required offset from the label and the address of the current instruc-
tion. If the offset is too big, the assembler produces an error.

e For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current
instruction plus 4 bytes.

* For all other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

* Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus
or minus a number, or an expression of the form [PC, #number].

13.10.7 Conditional execution
Most data processing instructions can optionally update the condition flags in the Application
Program Status Register (APSR) according to the result of the operation, see “Application Pro-
gram Status Register” on page 60. Some instructions update all flags, and some only update a
subset. If a flag is not updated, the original value is preserved. See the instruction descriptions
for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruc-
tion, either:

* immediately after the instruction that updated the flags

* after any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 13-16 on page 99 for a list of the suffixes to add to instructions
to make them conditional instructions. The condition code suffix enables the processor to test a
condition based on the flags. If the condition test of a conditional instruction fails, the instruction:

* does not execute

* does not write any value to its destination register
¢ does not affect any of the flags

* does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction
block. See “IT” on page 147 for more information and restrictions when using the IT instruction.
Depending on the vendor, the assembler might automatically insert an IT instruction if you have
conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch
on the result.

98 SAM3U Series mmssse——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

This section describes:

¢ “The condition flags”
¢ “Condition code suffixes”.

13.10.7.1 The condition flags
The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

\% Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see “Program Status Register” on page 59.

A carry occurs:

« if the result of an addition is greater than or equal to 2%2

« if the result of a subtraction is positive or zero

¢ as the result of an inline barrel shifter operation in a move or logical instruction.
Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 23!, or
less than —23,

Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

13.10.7.2 Condition code suffixes
The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An instruction
with a condition code is only executed if the condition code flags in the APSR meet the specified
condition. Table 13-16 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instruc-
tions in code.

Table 13-16 also shows the relationship between condition code suffixes and the N, Z, C, and V

flags.

Table 13-16. Condition code suffixes
Suffix Flags Meaning
EQ Z=1 Equal
NE Z=0 Not equal
gg or C=1 Higher or same, unsigned >
CCor .
LO Cc=0 Lower, unsigned <
Mi N=1 Negative
PL N=0 Positive or zero
VS V=1 Overflow

ATMEL o

6430F-ATARM-21-Feb-12

ATMEL

Table 13-16. Condition code suffixes (Continued)

Suffix Flags Meaning

VC V=0 No overflow

HI C=1andZ=0 Higher, unsigned >

LS C=0o0or Z=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >

LT N!=V Less than, signed <

GT Z=0andN=V Greater than, signed >

LE Z=1andN! =V | Lessthan or equal, signed <

AL Can have any AIwa_y_s. This is the default when no suffix is
value specified.

13.10.7.3 Absolute value
The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = R1, setting flags
1T Ml ; IT instruction for the negative condition
RSBMI RO, R1, #0 ; IT negative, RO = -R1

13.10.7.4 Compare and update value
The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

CMP RO, R1 ; Compare RO and R1l, setting flags

ITT GT ; IT instruction for the two GT conditions

CMPGT R2, R3 ; If "greater than®, compare R2 and R3, setting flags
MOVGT R4, R5 ; IT still “greater than®, do R4 = R5

13.10.8 Instruction width selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these instructions,
you can force a specific instruction size by using an instruction width suffix. The .W suffix forces
a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is the
label of an instruction or literal data, as in the case of branch instructions. This is because the
assembler might not automatically generate the right size encoding.

13.10.8.1 Instruction width selection
To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The exam-
ple below shows instructions with the instruction width suffix.

BCS.W label ; creates a 32-bit instruction even for a short branch

ADDS.W RO, RO, R1 ; creates a 32-bit instruction even though the same
; operation can be done by a 16-bit instruction

100 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11 Memory access instructions

6430F-ATARM-21-Feb-12

Table 13-17 shows the memory access instructions:

Table 13-17. Memory access instructions

Mnemonic Brief description See
ADR Load PC-relative address “ADR” on page 102
CLREX Clear Exclusive “CLREX” on page 116
LDM{mode} Load Multiple registers “LDM and STM” on page 111
Load Register using immediate “LDR and STR, immediate offset” on
LDR{type} offset page 103
LDR{type} Load Register using register offset 1'6%R and STR, register offset” on page
LDR{type}T Load Register with unprivileged LDR and STR, unprivileged” on page
access 108
LDR Load Register using PC-relative “ DR, PC-relative” on page 109
address
LDREX{type} Load Register Exclusive “LDREX and STREX” on page 114
POP Pop registers from stack “PUSH and POP” on page 113
PUSH Push registers onto stack “PUSH and POP” on page 113
STM{mode} Store Multiple registers “LDM and STM” on page 111
Store Register using immediate “LDR and STR, immediate offset” on
STR{type} offset page 103
STR{type} Store Register using register offset 1'6%R and STR, register offset” on page
STRitype)T Store Register with unprivileged LDR and STR, unprivileged” on page
access 108
STREX({type} Store Register Exclusive “LDREX and STREX” on page 114

ATMEL

101

13.11.1

13.11.1.1

13.11.1.2

13.11.1.3

13.11.1.4

13.11.1.5

ADR

102

ADR

Syntax

Operation

Restrictions

Load PC-relative address.

ADR{cond} Rd, label
where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.

label is a PC-relative expression. See “PC-relative expressions” on page 98.

ADR determines the address by adding an immediate value to the PC, and writes the result to
the destination register.

ADR produces position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that
bit[0] of the address you generate is set to1 for correct execution.

Values of label must be within the range of 4095 to +4095 from the address in the PC.

You might have to use the .W suffix to get the maximum offset range or to generate addresses
that are not word-aligned. See “Instruction width selection” on page 100.

Rd must not be SP and must not be PC.

Condition flags

Examples

This instruction does not change the flags.

R1, TextMessage ; Write address value of a location labelled as

; TextMessage to R1

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.2 LDR and STR, immediate offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate

offset.
13.11.2.1 Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

where:

op is one of:

LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 98.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.

13.11.2.2 Operation
LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

13.11.2.3 Offset addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access. The register Rn is unaltered. The assem-
bly language syntax for this mode is:

[Rn, #offset]
13.11.2.4 Pre-indexed addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The

result is used as the address for the memory access and written back into the register Rn. The
assembly language syntax for this mode is:

AImEl@ 103

6430F-ATARM-21-Feb-12

ATMEL

[Rn, #offset]!

13.11.2.5 Post-indexed addressing
The address obtained from the register Rn is used as the address for the memory access. The
offset value is added to or subtracted from the address, and written back into the register Rn.
The assembly language syntax for this mode is:
[Rn], #offset
The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can
either be signed or unsigned. See “Address alignment” on page 97.

Table 13-18 shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 13-18. Offset ranges

Instruction type Immediate offset | Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed 255 to 4095 255 to 255 255 to 255
byte
multiple of 4 inthe | multiple of 4 inthe | multiple of 4 in the
Two words range 1020 to range 1020 to range 1020 to
1020 1020 1020

13.11.2.6 Restrictions
For load instructions:
¢ Rtcan be SP or PC for word loads only
¢ Rt must be different from Rt2 for two-word loads
¢ Rn must be different from Rtand Rt2 in the pre-indexed or post-indexed forms.
When Rtis PC in a word load instruction:

¢ bit[0] of the loaded value must be 1 for correct execution
¢ a branch occurs to the address created by changing bit[0] of the loaded value to 0
¢ if the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:
* Rtcan be SP for word stores only
* Rt must not be PC
e Rn must not be PC
¢ Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

13.11.2.7 Condition flags
These instructions do not change the flags.

10 SAM3U Series messssssssssssssssssssss——
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.2.8 Examples
LDR R8, [R10]
LDRNE R2, [R5, #960]!

Loads R8 from the address in R10.

Loads (conditionally) R2 from a word

960 bytes above the address in R5, and
increments R5 by 960.

const-struc Is an expression evaluating
to a constant in the range 0-4095.

Store R3 as halfword data into address in
R4, then increment R4 by 4

Load R8 from a word 32 bytes above the
address in R3, and load R9 from a word 36
bytes above the address in R3

Store RO to address in R8, and store R1 to
a word 4 bytes above the address in RS,
and then decrement R8 by 16.

STR R2, [R9,#const-struc]
STRH R3, [R4], #4

LDRD R8, R9, [R3, #0x20]

STRD RO, R1, [R8], #-16

AImEl@ 105

6430F-ATARM-21-Feb-12

ATMEL

13.11.3 LDR and STR, register offset

13.11.3.1

13.11.3.2

13.11.3.3

106

Syntax

Operation

Restrictions

Load and Store with register offset.

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:

op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 98.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

LSL #n is an optional shift, with nin the range 0 to 3.

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address alignment” on page 97.

In these instructions:

* Rn must not be PC
* Rm must not be SP and must not be PC
* Rtcan be SP only for word loads and word stores
* Rtcan be PC only for word loads.
When Rtis PC in a word load instruction:
¢ bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.3.4 Condition flags
These instructions do not change the flags.

13.11.3.5 Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
; sum of R5 and R1

LDRSB RO, [R5, R1, LSL #1] ; Read byte value from an address equal to
; sum of R5 and two times R1, sign extended it
; to a word value and put it in RO

STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sum of R1
; and four times R2

AI“]EL@ 107

6430F-ATARM-21-Feb-12

13.11.4 LDR and STR,

13.11.4.1 Syntax

13.11.4.2 Operation

13.11.4.3 Restrictions

ATMEL

unprivileged
Load and Store with unprivileged access.

op{type}T{cond} Rt, [Rn {, #offset}] ; Immediate offset
where:

op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 98.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

These load and store instructions perform the same function as the memory access instructions
with immediate offset, see “LDR and STR, immediate offset” on page 103. The difference is that
these instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as nor-
mal memory access instructions with immediate offset.

In these instructions:

¢ Rn must not be PC
¢ Rt must not be SP and must not be PC.

13.11.4.4 Condition flags

13.11.4.5 Examples

These instructions do not change the flags.

STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivileged access

LDRHT R2, [R2, #8] ; Load halfword value from an address equal to

; sum of R2 and 8 into R2, with unprivileged access

108 SANMIU Seerie S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.5 LDR, PC-relative
Load register from memory.

13.11.5.1 Syntax
LDR{type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label
where:

type is one of:

; Load two words

B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.

H unsigned halfword, zero extend to 32 bits.

SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 98.
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative expressions” on page 98.

13.11.5.2 Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is
specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-

words can either be signed or unsigned. See “Address alignment” on page 97.

label must be within a limited range of the current instruction. Table 13-19 shows the possible

offsets between label and the PC.

Table 13-19. Offset ranges

Instruction type

Offset range

Word, halfword, signed halfword, byte, signed
byte

4095 to 4095

Two words

1020 to 1020

You might have to use the .W suffix to get the maximum offset range. See “Instruction width

selection” on page 100.

13.11.6.3 Restrictions
In these instructions:
¢ Rtcan be SP or PC only for word loads
¢ Rt2 must not be SP and must not be PC
¢ Rt must be different from R{2.
When Rtis PC in a word load instruction:

ATMEL

6430F-ATARM-21-Feb-12

109

ATMEL

* bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address
¢ if the instruction is conditional, it must be the last instruction in the IT block.

13.11.5.4 Condition flags
These instructions do not change the flags.

13.11.5.5 Examples

LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled

as localdata, sign extend it to a word
value, and put it in R7

110 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.6 LDM and STM
Load and Store Multiple registers.

13.11.6.1 Syntax
op{addr_mode}{cond} Rn{!}, reglist

where:

op is one of:
LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.
cond is an optional condition code, see “Conditional execution” on page 98.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If Iis present the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more than one register or reg-
ister range, see “Examples” on page 112.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full
Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending
stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending
stacks

13.11.6.2 Operation
LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on
Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rnto Rn + 4 * (n-1), where nis the number of reg-
isters in reglist. The accesses happens in order of increasing register numbers, with the lowest
numbered register using the lowest memory address and the highest number register using the
highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is written
back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at
4-byte intervals ranging from Rnto Rn - 4 * (n-1), where n is the number of registers in reglist.

AImEl@ 111

6430F-ATARM-21-Feb-12

ATMEL

The accesses happen in order of decreasing register numbers, with the highest numbered regis-
ter using the highest memory address and the lowest number register using the lowest memory
address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” on page
113 for details.

13.11.6.3 Restrictions

In these instructions:
* Rn must not be PC
* reglist must not contain SP
e in any STM instruction, reglist must not contain PC
* in any LDM instruction, reglist must not contain PC if it contains LR
* reglist must not contain Rn if you specify the writeback suffix.

When PC is in reglistin an LDM instruction:
¢ bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to

this halfword-aligned address

* if the instruction is conditional, it must be the last instruction in the IT block.

13.11.6.4 Condition flags
These instructions do not change the flags.
13.11.6.5 Examples
LDM R8,{R0O,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3-R6,R11,R12}

13.11.6.6 Incorrect examples

STM R51,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list
112 SAM3U Serles]

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

13.11.7.1 Syntax
PUSH{cond} reglist

POP{cond} reglist

where:
cond is an optional condition code, see “Conditional execution” on page 98.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges.

It must be comma separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for
the access based on SP, and with the final address for the access written back to the SP. PUSH
and POP are the preferred mnemonics in these cases.

13.11.7.2 Operation
PUSH stores registers on the stack in order of decreasing the register numbers, with the highest
numbered register using the highest memory address and the lowest numbered register using
the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest num-
bered register using the lowest memory address and the highest numbered register using the
highest memory address.

See “LDM and STM” on page 111 for more information.

13.11.7.3 Restrictions

In these instructions:
* reglist must not contain SP
e for the PUSH instruction, reglist must not contain PC
» for the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglistin a POP instruction:
¢ bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to

this halfword-aligned address

« if the instruction is conditional, it must be the last instruction in the IT block.

13.11.7.4 Condition flags
These instructions do not change the flags.

13.11.7.5 Examples
PUSH {RO,R4-R7}
PUSH {R2,LR}
POP {RO,R10,PC}

AImEl@ 113

6430F-ATARM-21-Feb-12

ATMEL

13.11.8 LDREX and STREX

13.11.8.1

13.11.8.2

13.11.8.3

114

Syntax

Operation

Restrictions

Load and Store Register Exclusive.

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory
address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a
memory address. The address used in any Store-Exclusive instruction must be the same as the
address in the most recently executed Load-exclusive instruction. The value stored by the Store-
Exclusive instruction must also have the same data size as the value loaded by the preceding
Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Syn-
chronization primitives” on page 75

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction
writes 0 to the destination register, it is guaranteed that no other process in the system has
accessed the memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

In these instructions:

* do not use PC

¢ do not use SP for Rd and Rt

e for STREX, Rd must be different from both Rt and Rn

* the value of offset must be a multiple of four in the range 0-1020.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.11.8.4 Condition flags
These instructions do not change the flags.

13.11.8.5 Examples

MOV R1, #0x1 ; Initialize the “lock taken” value
try

LDREX RO, [LockAddr] ; Load the lock value

CMP RO, #0 ; Is the lock free?

ITT EQ ; IT instruction for STREXEQ and CMPEQ

STREXEQ RO, R1, [LockAddr] ; Try and claim the lock

CMPEQ RO, #0 ; Did this succeed?

BNE try ; No — try again

; Yes — we have the lock

AImEl@ 115

6430F-ATARM-21-Feb-12

13.11.9 CLREX
Clear Exclusive.

13.11.9.1 Syntax

CLREX{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 98.

13.11.9.2 Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination
register and fail to perform the store. It is useful in exception handler code to force the failure of
the store exclusive if the exception occurs between a load exclusive instruction and the match-
ing store exclusive instruction in a synchronization operation.

See “Synchronization primitives” on page 75 for more information.

13.11.9.3 Condition flags
These instructions do not change the flags.

13.11.9.4 Examples
CLREX

116 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12 General data processing instructions

6430F-ATARM-21-Feb-12

Table 13-20 shows the data processing instructions:

Table 13-20. Data processing instructions

Mnemonic | Brief description See

ADC Add with Carry ADD, ADC, SUB, SBC, and RSB” on
page 119

ADD Add ADD, ADC, SUB, SBC, and RSB” on
page 119

ADDW Add ADD, ADC, SUB, SBC, and RSB” on
page 119

AND Logical AND AND, ORR, EOR, BIC, and ORN” on
page 122

ASR Arithmetic Shift Right 1"\;‘& LSL, LSR, ROR, and RRX" on page

BIC Bit Clear AND, ORR, EOR, BIC, and ORN” on
page 122

CLz Count leading zeros “CLZ” on page 126

CMN Compare Negative “CMP and CMN” on page 127

CMP Compare “CMP and CMN” on page 127

EOR Exclusive OR AND, ORR, EOR, BIC, and ORN” on
page 122

LSL Logical Shift Left 1/;§R, LSL, LSR, ROR, and RRX” on page

LSR Logical Shift Right éiR, LSL, LSR, ROR, and RRX” on page

MOV Move “MOV and MVN” on page 128

MOVT Move Top “MOVT” on page 130

MOVW Move 16-bit constant “MOV and MVN” on page 128

MVN Move NOT “MOV and MVN” on page 128

ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN” on
page 122

ORR Logical OR AND, ORR, EOR, BIC, and ORN” on
page 122

RBIT Reverse Bits REV, REV16, REVSH, and RBIT” on
page 131

REV Reverse byte order in a word REV, REV16, REVSH, and RBIT” on
page 131

REV16 Reverse byte order in each halfword REV, REV16, REVSH, and RBIT" on
page 131

Reverse byte order in bottom halfword and | “REV, REV16, REVSH, and RBIT” on
REVSH .
sign extend page 131
ROR Rotate Right ASR, LSL, LSR, ROR, and RRX” on page

124

ATMEL

117

118

ATMEL

Table 13-20. Data processing instructions (Continued)

Mnemonic | Brief description See

RRX Rotate Right with Extend éiR' LSL, LSR, ROR, and RRX" on page

RSB Reverse Subtract ADD, ADC, SUB, SBC, and RSB” on
page 119

SBC Subtract with Carry ADD, ADC, SUB, SBC, and RSB” on
page 119

SUB Subtract ADD, ADC, SUB, SBC, and RSB” on
page 119

SUBW Subtract ADD, ADC, SUB, SBC, and RSB” on
page 119

TEQ Test Equivalence “TST and TEQ” on page 132

TST Test “TST and TEQ” on page 132

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.1

13.12.1.1

13.12.1.2

13.12.1.3

ADD, ADC, SUB, SBC, and RSB

Syntax

Operation

Restrictions

6430F-ATARM-21-Feb-12

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only
where:
op is one of:
ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 98.

cond is an optional condition code, see “Conditional execution” on page 98.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.
See “Flexible second operand” on page 94 for details of the options.

imm12 is any value in the range 0-4095.

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is
clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful
because of the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see “Multiword arithmetic examples” on
page 121.

See also “ADR” on page 102.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the
SUB syntax that uses the imm12 operand.

In these instructions:

¢ Operand2 must not be SP and must not be PC

AImEl@ 119

ATMEL

* Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— any shift in Operand2 must be limited to a maximum of 3 bits using LSL
* Rncan be SP only in ADD and SUB
¢ Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— you must not specify the S suffix
— Rm must not be PC and must not be SP
— if the instruction is conditional, it must be the last instruction in the IT block

¢ with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and
SUB, and only with the additional restrictions:

— you must not specify the S suffix
— the second operand must be a constant in the range 0 to 4095.

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded
to b00 before performing the calculation, making the base address for the calculation
word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant
based on the value of the PC. ARM recommends that you use the ADR instruction
instead of ADD or SUB with Rn equal to the PC, because your assembler
automatically calculates the correct constant for the ADR instruction.

When Rdis PC in the ADD{cond} PC, PC, Rm instruction:

¢ bit[0] of the value written to the PC is ignored
¢ a branch occurs to the address created by forcing bit[0] of that value to 0.

13.12.1.4 Condition flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

13.12.1.5 Examples

ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, RO, R3 ; Only executed if C flag set and Z
; flag clear
120 SAM3U Series masss s ——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.1.6 Multiword arithmetic examples

13.12.1.7 64-bit addition
The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer con-
tained in RO and R1, and place the result in R4 and R5.

ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

13.12.1.8 96-bit subtraction
Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit

integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,
and R2.

SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

AImEl@ 121

6430F-ATARM-21-Feb-12

ATMEL

13.12.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

13.12.2.1

13.12.2.2

13.12.2.3

13.12.2.4

122

op{S}{cond} {Rd,} Rn, Operand2

is one of:

logical AND.

logical OR, or bit set.

logical Exclusive OR.

logical AND NOT, or bit clear.
logical OR NOT.

is an optional suffix. If S is specified, the condition code flags are updated on the

result of the operation, see “Conditional execution” on page 98.

is an optional condition code, see See “Conditional execution” on page 98..
is the destination register.
is the register holding the first operand.

is a flexible second operand. See “Flexible second operand” on page 94 for

details of the options.

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations
on the values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand?.

Syntax
where:
op
AND
ORR
EOR
BIC
ORN
S
cond
Rd
Rn
Operand2
Operation
Restrictions

Do not use SP and do not use PC.

Condition flags

If S is specified, these instructions:

¢ update the N and Z flags according to the result

e can update the C flag during the calculation of Operand2, see “Flexible second operand” on

page 94

* do not affect the V flag.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.2.5 Examples
AND R9, R2, #OxFFOO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC RO, R1, #Oxab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

AImEl@ 123

6430F-ATARM-21-Feb-12

ATMEL

13.12.3 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

13.12.3.1 Syntax
op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm
where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 98.

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 1 to 31.
MOV{S}cond} Rd, Rm is the preferred syntax for LSL{S}{cond} Rd, Rm, #0.

13.12.3.2 Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of
places specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions, see “Shift Oper-
ations” on page 95.

13.12.3.3 Restrictions
Do not use SP and do not use PC.

13.12.3.4 Condition flags
If S is specified:

e these instructions update the N and Z flags according to the result

122 SAM3U Series mssssssssssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ the C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift
Operations” on page 95.

13.12.3.5 Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend

AImEl@ 125

6430F-ATARM-21-Feb-12

Y)
13.124 CLZ
Count Leading Zeros.

13.12.4.1 Syntax
CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.

Rm is the operand register.

13.12.4.2 Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result
in Rd. The result value is 32 if no bits are set in the source register, and zero if bit[31] is set.

13.12.4.3 Restrictions
Do not use SP and do not use PC.

13.12.4.4 Condition flags
This instruction does not change the flags.

13.124.5 Examples
CLz R4,R9
CLZNE R2,R3

126 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.5 CMP and CMN
Compare and Compare Negative.

13.12.5.1 Syntax
CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 94 for
details of the options.

13.12.5.2 Operation
These instructions compare the value in a register with Operand2. They update the condition
flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as
a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

13.12.5.3 Restrictions
In these instructions:
¢ do not use PC
¢ Operand2 must not be SP.

13.12.5.4 Condition flags
These instructions update the N, Z, C and V flags according to the result.

13.12.5.5 Examples
CMP R2, R9
CMN RO, #6400
CMPGT SP, R7, LSL #2

AImEl@ 127

6430F-ATARM-21-Feb-12

13.12.6 MOV and MVN

Restrictions

Move and Move NOT.

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imml1l6
MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 98.

cond is an optional condition code, see “Conditional execution” on page 98.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible second operand” on page 94 for
details of the options.

imm16 is any value in the range 0-65535.

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred
syntax is the corresponding shift instruction:
¢ ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, ASR #n
¢ LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nif n!=0
¢ LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, LSR #n
* ROR{S}Kcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n
* RRX{SKcond} Rd, Rm is the preferred syntax for MOV{S}cond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift
instructions:
* MOV{S}cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs
e MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs
* MOV{S}cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
* MOV{S}¥cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX” on page 124.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on
the value, and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16
operand.

You can use SP and PC only in the MOV instruction, with the following restrictions:

¢ the second operand must be a register without shift
¢ you must not specify the S suffix.
When Rdis PC in a MOV instruction:

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ bit[0] of the value written to the PC is ignored
* a branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of
a BX or BLX instruction to branch for software portability to the ARM instruction set.

13.12.6.4 Condition flags
If S is specified, these instructions:
 update the N and Z flags according to the result

¢ can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 94
* do not affect the V flag.

13.12.6.5 Example
MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated

MOV R1, #OxFAO5 ; Write value of OxFAO5 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated

MOV R3, #23 ; Write value of 23 to R3

MOV R8, SP ; Write value of stack pointer to R8

MVNS R2, #OxF ; Write value of OxXFFFFFFFO (bitwise inverse of OxF)

; to the R2 and update flags

AImEl@ 129

6430F-ATARM-21-Feb-12

Y)
13.12.7 MOVT
Move Top.

13.12.7.1 Syntax
MOVT{cond} Rd, #imml6

where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.

imm16 is a 16-bit immediate constant.

13.12.7.2 Operation
MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination
register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

13.12.7.3 Restrictions
Rd must not be SP and must not be PC.

13.12.7.4 Condition flags
This instruction does not change the flags.

13.12.7.5 Examples

MOVT R3, #0xF123 ; Write OxF123 to upper halfword of R3, lower halfword
; and APSR are unchanged

130 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.12.8 REV, REV16, REVSH, and RBIT

13.12.8.1 Syntax

13.12.8.2 Operation

13.12.8.3 Restrictions

Reverse bytes and Reverse bits.

op{cond} Rd, Rn
where:

op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
Rn is the register holding the operand.

Use these instructions to change endianness of data:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data
into big-endian data.

REVSH converts either:
16-bit signed big-endian data into 32-bit signed little-endian data
16-bit signed little-endian data into 32-bit signed big-endian data.

Do not use SP and do not use PC.

13.12.8.4 Condition flags

13.12.8.5 Examples
REV R3, R7
REV16 RO, RO
REVSH RO, R5
REVHS R3, R7
RBIT R7, R8

6430F-ATARM-21-Feb-12

These instructions do not change the flags.

; Reverse byte order of value in R7 and write it to R3

; Reverse byte order of each 16-bit halfword in RO

; Reverse Signed Halfword

; Reverse with Higher or Same condition

; Reverse bit order of value in R8 and write the result to R7

AImEl@ 131

13.12.9 TST and TEQ
Test bits and Test Equivalence.

13.12.9.1 Syntax
TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 94 for
details of the options.

13.12.9.2 Operation

These instructions test the value in a register against Operand2. They update the condition flags
based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with an Operand2 constant that has
that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.
TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

13.12.9.3 Restrictions
Do not use SP and do not use PC.

13.12.9.4 Condition flags
These instructions:
* update the N and Z flags according to the result

e can update the C flag during the calculation of Operand2, see “Flexible second operand” on
page 94

* do not affect the V flag.

13.12.9.5 Examples

TST RO, #0x3F8 ; Perform bitwise AND of RO value to Ox3F8,
; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded

132 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.13 Multiply and divide instructions
Table 13-21 shows the multiply and divide instructions:

Table 13-21. Multiply and divide instructions

Mnemonic | Brief description See

MLA Multiply with Accumulate, 32-bit result | “MUL, MLA, and MLS” on page 134

MLS Multiply and Subtract, 32-bit result “MUL, MLA, and MLS” on page 134

MUL Multiply, 32-bit result “MUL, MLA, and MLS” on page 134

SDIV Signed Divide “SDIV and UDIV” on page 136

SMLAL Signed Multiply with Accumulate “UMULL, UMLAL, SMULL, and SMLAL” on
(32x32+64), 64-bit result page 135

SMULL Signed Multiply (32x32), 64-bit result | oMo UMLAL, SMULL, and SMLAL" on

page 135

ubDIV Unsigned Divide “SDIV and UDIV” on page 136

UMLAL Unsigned Multiply with Accumulate “UMULL, UMLAL, SMULL, and SMLAL” on
(32x32+64), 64-bit result page 135
Unsigned Multiply (32x32), 64-bit “UMULL, UMLAL, SMULL, and SMLAL” on

UMULL
result page 135

AImEl@ 133

6430F-ATARM-21-Feb-12

13.13.1

ATMEL

MUL, MLA, and MLS

13.13.1.1 Syntax

13.13.1.2 Operation

13.13.1.3 Restrictions

13.13.1.4

13.13.1.5 Examples

134

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and pro-
ducing a 32-bit result.

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see “Conditional execution” on page 98.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional execution” on page 98.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32
bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places
the least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value
from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.

In these instructions, do not use SP and do not use PC.
If you use the S suffix with the MUL instruction:

* Rd, Rn, and Rm must all be in the range RO to R7
¢ Rd must be the same as Rm
¢ you must not use the cond suffix.

Condition flags

If S is specified, the MUL instruction:

¢ updates the N and Z flags according to the result
* does not affect the C and V flags.

MUL R10, R2, R5 ; Multiply, R10 = R2 x R5

MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2

MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2

MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.13.2 UMULL, UMLAL, SMULL, and SMLAL

13.13.2.1

13.13.2.2

13.13.2.3

13.13.2.4

13.13.2.5

UMULL
SMLAL

Syntax

Operation

Restrictions

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and pro-
ducing a 64-bit result.

op{cond} RdLo, RdHi, Rn, Rm
where:

op is one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional execution” on page 98.
RdHi, RdLo are the destination registers.

For UMLAL and SMLAL they also hold the accumulating value.

Rn, Rm are registers holding the operands.

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most signifi-
cant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHiand RdLo,
and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers and places the least significant 32 bits of the result in RdLo, and
the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed inte-
gers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in
RdHi and RdLo, and writes the result back to RdHi and RdLo.

In these instructions:

* do not use SP and do not use PC
* RdHiand RdLo must be different registers.

Condition flags

Examples

6430F-ATARM-21-Feb-12

RO, R4, R5, R6 ; Unsigned (R4,R0)
R4, R5, R3, R8 ; Signed (R5,R4) =

These instructions do not affect the condition code flags.

= R5 x R6
(R5,R4) + R3 x R8

AImEl@ 135

13.13.3 SDIV and UDIV
Signed Divide and Unsigned Divide.

13.13.3.1 Syntax
SDIV{cond} {Rd,} Rn, Rm

ubDIv{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

13.13.3.2 Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded
towards zero.

13.13.3.3 Restrictions
Do not use SP and do not use PC.

13.13.3.4 Condition flags
These instructions do not change the flags.

13.13.3.5 Examples
SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
ubDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

136 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.14 Saturating instructions
This section describes the saturating instructions, SSAT and USAT.

13.14.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

13.14.1.1 Syntax
op{cond} Rd, #n, Rm {, shift #s}

where:
op is one of:
SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
n specifies the bit position to saturate to:

nranges from 1 to 32 for SSAT
nranges from 0 to 31 for USAT.

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
ASR #s where sis in the range 1 to 31
LSL #s where sis in the range 0 to 31.

13.14.1.2 Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -
2 <x 21,

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 <x <2"1.
For signed n-bit saturation using SSAT, this means that:

« if the value to be saturated is less than 2™, the result returned is 2™
« if the value to be saturated is greater than 2771, the result returned is 2"'4
* otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

¢ if the value to be saturated is less than 0, the result returned is 0
« if the value to be saturated is greater than 2", the result returned is 2™
¢ otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If satura-
tion occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag
unchanged. To clear the Q flag to 0, you must use the MSR instruction, see “MSR” on page 158.

To read the state of the Q flag, use the MRS instruction, see “MRS” on page 157.

AImEl@ 137

6430F-ATARM-21-Feb-12

ATMEL

13.14.1.3 Restrictions
Do not use SP and do not use PC.

13.14.1.4 Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

13.14.1.5 Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
saturate it as a signed 16-bit value and
; write it back to R7
USATNE RO, #7, R5 ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and write it to RO

138 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.15 Bitfield instructions
Table 13-22 shows the instructions that operate on adjacent sets of bits in registers or bitfields:

6430F-ATARM-21-Feb-12

Table 13-22. Packing and unpacking instructions
Mnemonic | Brief description See
BFC Bit Field Clear “BFC and BFI” on page 140
BFI Bit Field Insert “BFC and BFI” on page 140
SBFX Signed Bit Field Extract “SBFX and UBFX” on page 141
SXTB Sign extend a byte “SXT and UXT” on page 142
SXTH Sign extend a halfword “SXT and UXT” on page 142
UBFX Unsigned Bit Field Extract “SBFX and UBFX” on page 141
UXTB Zero extend a byte “SXT and UXT” on page 142
UXTH Zero extend a halfword “SXT and UXT” on page 142

ATMEL

139

13.15.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

13.15.1.1 Syntax
BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lIsb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-sb.

13.15.1.2 Operation
BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position /sb.
Other bits in Rd are unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at
the low bit position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

13.15.1.3 Restrictions
Do not use SP and do not use PC.

13.15.1.4 Condition flags
These instructions do not affect the flags.

13.15.1.5 Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
; bit O to bit 11 from R2

140 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.15.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

13.15.2.1 Syntax
SBFX{cond} Rd, Rn, #lIsb, #width

UBFX{cond} Rd, Rn, #lIsb, #width

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-sb.

13.15.2.2 Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the
destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the
destination register.

13.15.2.3 Restrictions
Do not use SP and do not use PC.

13.15.2.4 Condition flags
These instructions do not affect the flags.

13.15.2.5 Examples
SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
; extend to 32 bits and then write the result to RO.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11l and zero
; extend to 32 bits and then write the result to R8

AImEl@ 141

6430F-ATARM-21-Feb-12

ATMEL

13.15.3 SXT and UXT
Sign extend and Zero extend.

13.15.3.1 Syntax
SXTextend{cond} {Rd,} Rm {, ROR #n}

UXTextend{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

13.15.3.2 Operation
These instructions do the following:
* Rotate the value from Rm right by 0, 8, 16 or 24 bits.
 Extract bits from the resulting value:
SXTB extracts bits[7:0] and sign extends to 32 bits.

UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.

13.15.3.3 Restrictions
Do not use SP and do not use PC.

13.15.3.4 Condition flags
These instructions do not affect the flags.

13.15.3.5 Examples

SXTH R4, R6, ROR #16 Rotate R6 right by 16 bits, then obtain the lower
halfword of the result and then sign extend to
32 bits and write the result to R4.
Extract lowest byte of the value in R10 and zero

extend it, and write the result to R3

UXTB R3, R10

142 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.16 Branch and control instructions

6430F-ATARM-21-Feb-12

Table 13-23 shows the branch and control instructions:

Table 13-23. Branch and control instructions
Mnemonic | Brief description See
B Branch “B, BL, BX, and BLX” on page 144
BL Branch with Link “B, BL, BX, and BLX” on page 144
BLX Branch indirect with Link “B, BL, BX, and BLX” on page 144
BX Branch indirect “B, BL, BX, and BLX” on page 144
CBNz Compare and Branch if Non Zero “CBZ and CBNZ” on page 146
CBz Compare and Branch if Non Zero “CBZ and CBNZ” on page 146
IT If-Then “IT” on page 147
TBB Table Branch Byte “TBB and TBH” on page 149
TBH Table Branch Halfword “TBB and TBH” on page 149

ATMEL

143

13.16.1 B, BL, BX, and BLX
Branch instructions.

13.16.1.1 Syntax
B{cond} label

BL{cond} label
BX{cond} Rm
BLX{cond} Rm

where:

B is branch (immediate).

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see “Conditional execution” on page 98.

label is a PC-relative expression. See “PC-relative expressions” on page 98.

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must

be 1, but the address to branch to is created by changing bit[0] to O.

13.16.1.2 Operation
All these instructions cause a branch to /abel, or to the address indicated in Rm. In addition:

e The BL and BLX instructions write the address of the next instruction to LR (the link register,
R14).
e The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All
other branch instructions must be conditional inside an IT block, and must be unconditional out-
side the IT block, see “IT” on page 147.

Table 13-24 shows the ranges for the various branch instructions.

Table 13-24. Branch ranges

Instruction Branch range

B label -16 MB to +16 MB
Beond label (outside IT block) 4 MBto +1 MB

Beond label (inside IT block) -16 MB to +16 MB
BL{cond} label 16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

You might have to use the .W suffix to get the maximum branch range. See “Instruction width
selection” on page 100.

13.16.1.3 Restrictions
The restrictions are:

144 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

¢ do not use PC in the BLX instruction

e for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target
address created by changing bit[0] to O

* when any of these instructions is inside an IT block, it must be the last instruction of the IT
block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it
has a longer branch range when it is inside an IT block.

13.16.1.4 Condition flags
These instructions do not change the flags.

13.16.1.5 Examples
B loopA ; Branch to loopA
BLE ng ; Conditionally branch to label ng
B.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address
; stored in LR

BX LR ; Return from function call

BXNE RO ; Conditionally branch to address stored in RO

BLX RO ; Branch with link and exchange (Call) to a address stored
; in RO

AImEl@ 145

6430F-ATARM-21-Feb-12

ATMEL

13.16.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

13.16.2.1 Syntax
CBZ Rn, label

CBNZ Rn, label

where:
Rn is the register holding the operand.
label is the branch destination.

13.16.2.2 Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BNE label

13.16.2.3 Restrictions
The restrictions are:
* Rn must be in the range of RO to R7
e the branch destination must be within 4 to 130 bytes after the instruction
* these instructions must not be used inside an IT block.

13.16.2.4 Condition flags
These instructions do not change the flags.

13.16.2.5 Examples
CBz R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero

146 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.16.3

13.16.3.1

13.16.3.2

13.16.3.3

IT

Syntax

Operation

Restrictions

6430F-ATARM-21-Feb-12

If-Then condition instruction.

IT{x{y{z}}} cond

where:

X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of
the instructions in the IT block must be unconditional, and each of x, y, and z must be T or omit-
ted but not E.

The IT instruction makes up to four following instructions conditional. The conditions can be all
the same, or some of them can be the logical inverse of the others. The conditional instructions
following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}
part of their syntax.

Your assembler might be able to generate the required IT instructions for conditional instructions
automatically, so that you do not need to write them yourself. See your assembler documenta-
tion for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an
IT block. Such an exception results in entry to the appropriate exception handler, with suitable
return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a PC-modi-
fying instruction is permitted to branch to an instruction in an IT block.

The following instructions are not permitted in an IT block:

o IT
* CBZ and CBNZ
* CPSID and CPSIE.
Other restrictions when using an IT block are:

AImEl@ 147

ATMEL

* a branch or any instruction that modifies the PC must either be outside an IT block or must be
the last instruction inside the IT block. These are:

— ADD PC, PC, Rm
— MOV PC, Rm
— B, BL, BX, BLX
— any LDM, LDR, or POP instruction that writes to the PC
— TBB and TBH
* do not branch to any instruction inside an IT block, except when returning from an exception
handler
e all conditional instructions except Bcond must be inside an IT block. Bcond can be either
outside or inside an IT block but has a larger branch range if it is inside one

¢ each instruction inside the IT block must specify a condition code suffix that is either the
same or logical inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

13.16.3.4 Condition flags

13.16.3.5 Example

ITTE
ANDNE
ADDSNE
MOVEQ

CMP

ITE
ADDGT
ADDLE

IT
ADDGT

ITTEE
MOVEQ
ADDEQ
ANDNE
BNE W

IT
ADD

NE

RO, RO,
R2, R2,
R2, R3

RO, #9

GT
R1, RO,
R1, RO,

GT
R1, R1,

EQ

RO, R1
R2, R2,
R3, R3,
dloop

NE
RO, RO,

This instruction does not change the flags.

; Next 3 instructions are conditional
R1 ; ANDNE does not update condition flags
#1 ; ADDSNE updates condition flags

; Conditional move

; Convert RO hex value (0 to 15) into ASCII
; (F07-79", “A"-"FY)
; Next 2 instructions are conditional

#55 ; Convert OxA -> "AF

#48 ; Convert Ox0 -> "OF

; IT block with only one conditional instruction
#1 ; Increment R1 conditionally

; Next 4 instructions are conditional
; Conditional move
#10 ; Conditional add
#1 ; Conditional AND
; Branch instruction can only be used in the last
; Instruction of an IT block

; Next instruction is conditional
R1 ; Syntax error: no condition code used in IT block

148 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.16.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

13.16.4.1 Syntax
TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the register containing the address of the table of branch lengths. If Rnis PC,
then the address of the table is the address of the byte immediately following the TBB or TBH
instruction.

Rm is the index register. This contains an index into the table. For halfword tables,

LSL #1 doubles the value in Rm to form the right offset into the table.

13.16.4.2 Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index
into the table. For TBB the branch offset is twice the unsigned value of the byte returned from
the table. and for TBH the branch offset is twice the unsigned value of the halfword returned
from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

13.16.4.3 Restrictions
The restrictions are:
¢ Rn must not be SP
¢ Rm must not be SP and must not be PC

¢ when any of these instructions is used inside an IT block, it must be the last instruction of the
IT block.

13.16.4.4 Condition flags
These instructions do not change the flags.

AImEl@ 149

6430F-ATARM-21-Feb-12

ATMEL

13.16.4.5 Examples
ADR.W RO, BranchTable_Byte
TBB [RO, R1] ; R1 is the index, RO is the base address of the
; branch table

Casel

; an instruction sequence follows

Case2

; an instruction sequence follows

Case3

; an instruction sequence follows

BranchTable_Byte
DCB 0
DCB ((Case2-Casel)/2)
DCB ((Case3-Casel)/2)
TBH [PC, R1, LSL #1]

Casel offset calculation

Case2 offset calculation

Case3 offset calculation

R1 is the index, PC is used as base of the
branch table

BranchTable_H
DCI ((CaseA - BranchTable_H)/2)
DCI ((CaseB - BranchTable_H)/2)
DCI ((CaseC - BranchTable_H)/2)

CaseA offset calculation
CaseB offset calculation
CaseC offset calculation

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

150 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17 Miscellaneous instructions
Table 13-25 shows the remaining Cortex-M3 instructions:

Table 13-25. Miscellaneous instructions

Mnemonic | Brief description See

BKPT Breakpoint “BKPT” on page 152
CPSID I(.“r,lzltslrr:gstsl:’rocessor State, Disable “CPS” on page 153
CPSIE l(;t::rr:gstgrocessor State, Enable “CPS’ on page 153
DMB Data Memory Barrier “DMB” on page 154
DSB Data Synchronization Barrier “DSB” on page 155
ISB Instruction Synchronization Barrier “ISB” on page 156
MRS Move from special register to register “MRS” on page 157
MSR Move from register to special register “MSR” on page 158
NOP No Operation “NOP” on page 159
SEV Send Event “SEV” on page 160
sSvC Supervisor Call “SVC” on page 161
WFE Wait For Event “WFE” on page 162
WFI Wait For Interrupt “WFI” on page 163

AImEl@ 151

6430F-ATARM-21-Feb-12

13.17.1 BKPT
Breakpoint.
13.17.1.1 Syntax
BKPT #imm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

13.17.1.2 Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional informa-
tion about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaf-
fected by the condition specified by the IT instruction.

13.17.1.3 Condition flags
This instruction does not change the flags.

13.17.1.4 Examples
BKPT OxAB ; Breakpoint with immediate value set to OxAB (debugger can
; extract the immediate value by locating it using the PC)

152 SANMIU Serie S s —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.2 CPS
Change Processor State.

13.17.2.1 Syntax
CPSeffect iflags

where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
[Set or clear PRIMASK.
f Set or clear FAULTMASK.

13.17.2.2 Operation
CPS changes the PRIMASK and FAULTMASK special register values. See “Exception mask
registers” on page 62 for more information about these registers.

13.17.2.3 Restrictions
The restrictions are:

* use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

13.17.2.4 Condition flags
This instruction does not change the condition flags.

13.17.2.5 Examples
CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID ¥ ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE T ; Enable interrupts and fault handlers (clear FAULTMASK)

AImEl@ 153

6430F-ATARM-21-Feb-12

13.17.3 DMB
Data Memory Barrier.

13.17.3.1 Syntax

DMB{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 98.

13.17.3.2 Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in
program order, before the DMB instruction are completed before any explicit memory accesses
that appear, in program order, after the DMB instruction. DMB does not affect the ordering or
execution of instructions that do not access memory.

13.17.3.3 Condition flags
This instruction does not change the flags.

13.17.3.4 Examples
DMB ; Data Memory Barrier

152 SAM3U Series msssssssssssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.4 DSB
Data Synchronization Barrier.

13.17.4.1 Syntax

DSB{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 98.

13.17.4.2 Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB instruction
completes when all explicit memory accesses before it complete.

13.17.4.3 Condition flags
This instruction does not change the flags.

13.17.4.4 Examples
DSB ; Data Synchronisation Barrier

AImEl@ 155

6430F-ATARM-21-Feb-12

13.17.5 ISB
Instruction Synchronization Barrier.

13.17.5.1 Syntax
1SB{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 98.

13.17.5.2 Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that
all instructions following the ISB are fetched from memory again, after the ISB instruction has
been completed.

13.17.5.3 Condition flags
This instruction does not change the flags.

13.17.5.4 Examples
ISB ; Instruction Synchronisation Barrier

156 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.6 MRS

13.17.6.1 Syntax

13.17.6.2 Operation

13.17.6.3 Restrictions

Move the contents of a special register to a general-purpose register.

MRS{cond} Rd, spec_reg

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations use MRS in the state-saving instruction sequence and
MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR” on page 158.

Rd must not be SP and must not be PC.

13.17.6.4 Condition flags

13.17.6.5 Examples

This instruction does not change the flags.

MRS RO, PRIMASK ; Read PRIMASK value and write it to RO

6430F-ATARM-21-Feb-12

AImEl@ 157

ATMEL

13.17.7 MSR
Move the contents of a general-purpose register into the specified special register.

13.17.7.1 Syntax
MSR{cond} spec_reg, Rn

where:
cond is an optional condition code, see “Conditional execution” on page 98.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

13.17.7.2 Operation
The register access operation in MSR depends on the privilege level. Unprivileged software can
only access the APSR, see “Application Program Status Register” on page 60. Privileged soft-
ware can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.
When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

* Rnis non-zero and the current BASEPRI value is 0
* Rnis non-zero and less than the current BASEPRI value.

See “MRS” on page 157.

13.17.7.3 Restrictions
Rn must not be SP and must not be PC.

13.17.7.4 Condition flags
This instruction updates the flags explicitly based on the value in Rn.

13.17.7.5 Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

158 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.8 NOP
No Operation.

13.17.8.1 Syntax

NOP{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 98.

13.17.8.2 Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

13.17.8.3 Condition flags
This instruction does not change the flags.

13.17.8.4 Examples
NOP ; No operation

AImEl@ 159

6430F-ATARM-21-Feb-12

13.17.9 SEV
Send Event.
13.17.9.1 Syntax
SEV{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 98.

13.17.9.2 Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multipro-
cessor system. It also sets the local event register to 1, see “Power management” on page 87.

13.17.9.3 Condition flags
This instruction does not change the flags.

13.17.9.4 Examples
SEV ; Send Event

160 SANMIU Seerie S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.10 SVC
Supervisor Call.

13.17.10.1 Syntax
SVC{cond} #imm

where:
cond is an optional condition code, see “Conditional execution” on page 98.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

13.17.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

13.17.10.3 Condition flags
This instruction does not change the flags.

13.17.10.4 Examples
SVC O0x32 ; Supervisor Call (SVC handler can extract the immediate value
; by locating it via the stacked PC)

AImEl@ 161

6430F-ATARM-21-Feb-12

13.17.11 WFE

13.17.11.1

13.17.11.2 Operation

Syntax

Wait For Event.

WFE{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 98.

WFE is a hint instruction.
If the event register is 0, WFE suspends execution until one of the following events occurs:

¢ an exception, unless masked by the exception mask registers or the current priority level
* an exception enters the Pending state, if SEVONPEND in the System Control Register is set
* a Debug Entry request, if Debug is enabled

¢ an event signaled by a peripheral or another processor in a multiprocessor system using the
SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see “Power management” on page 87.

13.17.11.3 Condition flags

13.17.11.4 Examples

162

WFE

This instruction does not change the flags.

; Wait for event

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.17.12 WFI
Wait for Interrupt.

13.17.12.1 Syntax

WF1{cond}
where:
cond is an optional condition code, see “Conditional execution” on page 98.

13.17.12.2 Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:

* an exception
* a Debug Entry request, regardless of whether Debug is enabled.

13.17.12.3 Condition flags
This instruction does not change the flags.

13.17.12.4 Examples
WF1 ; Wait for interrupt

AImEl@ 163

6430F-ATARM-21-Feb-12

ATMEL

13.18 About the Cortex-M3 peripherals

The address map of the Private peripheral bus (PPB) is:

Table 13-26. Core peripheral register regions

Address Core peripheral Description

gigggggggﬁ System control block Table 13-30 on page 178
giggggggig System timer Table 13-33 on page 205
gigggggig?: ggﬁ?g,g?dored Interrupt Table 13-27 on page 165
gigggggggg System control block Table 13-30 on page 178
8§E888E89808 Memory protection unit Table 13-35 on page 211
giggggggg ggﬁ?g,g?dored Interrupt Table 13-27 on page 165

In register descriptions:

* the register type is described as follows:
RW Read and write.

RO Read-only.
wO Write-only.

* the required privilege gives the privilege level required to access the register, as follows:
Privileged Only privileged software can access the register.

Unprivileged Both unprivileged and privileged software can access the register.

16 SAM3U Series msssssssssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.
The NVIC supports:
¢ 1 to 30 interrupts.

* A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower
priority, so level 0 is the highest interrupt priority.

* Level detection of interrupt signals.

* Dynamic reprioritization of interrupts.

* Grouping of priority values into group priority and subpriority fields.
* Interrupt tail-chaining.

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling. The
hardware implementation of the NVIC registers is:

Table 13-27. NVIC register summary

Required Reset

Address Name Type privilege value Description

OXEQOOE100 ISERO RW Privileged 0x00000000 “Interrupt Set-enable Registers” on page 167

OXEOOOE180 ICERO RW Privileged 0x00000000 “Interrupt Clear-enable Registers” on page 168

OXEO00E200 ISPRO RW Privileged 0x00000000 “Interrupt Set-pending Registers” on page 169

OXEO00E280 ICPRO RW Privileged 0x00000000 “Interrupt Clear-pending Registers” on page 170

OXEO00E300 IABRO RO Privileged 0x00000000 “Interrupt Active Bit Registers” on page 171

0xEOOOE400- IPRO- - . . .)

OXEO00E41C IPR7 RW Privileged 0x00000000 Interrupt Priority Registers” on page 172

OXEO0OEFO0 STIR WO %?nflgurable 0x00000000 1S7c;ftware Trigger Interrupt Register” on page
1. See the register description for more information.

13.19.1

6430F-ATARM-21-Feb-12

The CMSIS mapping of the Cortex-M3 NVIC registers

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the

CMSIS:

* the Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to
arrays of 32-bit integers, so that:

— the array ISER[0] corresponds to the registers ISERO

— the array ICER[0] corresponds to the registers ICERO

— the array ISPR[0] corresponds to the registers ISPRO

— the array ICPRI[0] corresponds to the registers ICPRO

— the array IABR[0] corresponds to the registers IABRO

ATMEL

165

166

ATMEL

¢ the 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the
array IP[0] to IP[29] corresponds to the registers IPRO-IPR7, and the array entry IP[n] holds
the interrupt priority for interrupt n.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Regis-
ters. For more information see the description of the NVIC_SetPriority function in “NVIC
programming hints” on page 177. Table 13-28 shows how the interrupts, or IRQ numbers, map
onto the interrupt registers and corresponding CMSIS variables that have one bit per interrupt.

Table 13-28. Mapping of interrupts to the interrupt variables

CMSIS array elements (!

Interrupts | Set-enable | Clear-enable | Set-pending | Clear-pending | Active Bit
0-29 ISERI[O0] ICERI[O0] ISPRI0] ICPR[O0] IABR[0]
1. Each array element corresponds to a single NVIC register, for example the element

ICER[0] corresponds to the ICERQO register.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.2 Interrupt Set-enable Registers
The ISERQO register enables interrupts, and show which interrupts are enabled. See:
e the register summary in Table 13-27 on page 165 for the register attributes
» Table 13-28 on page 166 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| SETENA bits |
23 22 21 20 19 18 17 16

| SETENA bits |
15 14 13 12 11 10 9 8

| SETENA bits |
7 6 5 4 3 2 1 0

| SETENA bits |

¢ SETENA

Interrupt set-enable bits.

Write:

0 = no effect

1 = enable interrupt.
Read:

0 = interrupt disabled
1 = interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, assert-
ing its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its
priority.

AImEl@ 167

6430F-ATARM-21-Feb-12

ATMEL

13.19.3 Interrupt Clear-enable Registers
The ICERO register disables interrupts, and shows which interrupts are enabled. See:

¢ the register summary in Table 13-27 on page 165 for the register attributes
* Table 13-28 on page 166 for which interrupts are controlled by each register
The bit assignments are:

31 30 29 28 27 26 25 24
| CLRENA

23 22 21 20 19 18 17 16
| CLRENA

15 14 13 12 11 10 9 8
| CLRENA

7 6 5 4 3 2 1 0
| CLRENA
¢ CLRENA
Interrupt clear-enable bits.
Write:
0 = no effect

1 = disable interrupt.
Read:
0 = interrupt disabled

1 = interrupt enabled.

168 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.4 Interrupt Set-pending Registers
The ISPRO register forces interrupts into the pending state, and shows which interrupts are

pending. See:
e the register summary in Table 13-27 on page 165 for the register attributes
* Table 13-28 on page 166 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

e SETPEND

Interrupt set-pending bits.

Write:

0 = no effect.

1 = changes interrupt state to pending.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to the ISPR bit corresponding to:

e an interrupt that is pending has no effect
* a disabled interrupt sets the state of that interrupt to pending

AImEl@ 169

6430F-ATARM-21-Feb-12

ATMEL

13.19.5 Interrupt Clear-pending Registers
The ICPRO register removes the pending state from interrupts, and show which interrupts are
pending. See:
e the register summary in Table 13-27 on page 165 for the register attributes
* Table 13-28 on page 166 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

e CLRPEND

Interrupt clear-pending bits.

Write:

0 = no effect.

1 = removes pending state an interrupt.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

170 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.6 Interrupt Active Bit Registers
The IABRO register indicates which interrupts are active. See:
e the register summary in Table 13-27 on page 165 for the register attributes
» Table 13-28 on page 166 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

« ACTIVE

Interrupt active flags:
0 = interrupt not active
1 = interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

AImEl@ 171

6430F-ATARM-21-Feb-12

13.19.7

13.19.7.1 IPRm

ATMEL

Interrupt Priority Registers

The IPRO-IPRY7 registers provide a 4-bit priority field for each interrupt (See the “Peripheral Iden-
tifiers” section of the datasheet for more details). These registers are byte-accessible. See the
register summary in Table 13-27 on page 165 for their attributes. Each register holds four priority
fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[29], as shown:

31 30 29 28 27 26 25 24
IP[4m+3] |

23 22 21 20 19 18 17 16
IP[4m+2] |

15 14 13 12 11 10 9 8
IP[4m+1] |

7 6 5 4 3 2 1 0
IP[4m] |

13.19.7.2 IPR4

31 30 29 28 27 26 25 24
IP[19] |

23 22 21 20 19 18 17 16
IP[18] |

15 14 13 12 11 10 9 8
IP[17] |

7 6 5 4 3 2 1 0
IP[16] |

13.19.7.3 IPR3

31 30 29 28 27 26 25 24
IP[15] |

23 22 21 20 19 18 17 16
IP[14] |

15 14 13 12 11 10 9 8
IP[13] |

7 6 5 4 3 2 1 0
IP[12] |

172

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.7.4 IPR2

31 30 29 28 27 26 25 24

| IP[11] |
23 22 21 20 19 18 17 16

| IP[10] |
15 14 13 12 11 10 9 8

I IP[9] |
7 6 5 4 3 2 1 0

I IP[8] |

13.19.7.5 IPR1

31 30 29 28 27 26 25 24

I IP[7] |
23 22 21 20 19 18 17 16

I IP[6] |
15 14 13 12 11 10 9 8

I IP[5] |
7 6 5 4 3 2 1 0

| IP[4] |

13.19.7.6 IPRO

31 30 29 28 27 26 25 24

I IP[3] |
23 22 21 20 19 18 17 16

| IP[2] |
15 14 13 12 1 10 9 8

I IP[1] |
7 6 5 4 3 2 1 0

I IP[0] |

¢ Priority, byte offset 3
¢ Priority, byte offset 2
¢ Priority, byte offset 1

¢ Priority, byte offset 0
Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field, bits[3:0] read as zero and ignore writes.

See “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 165 for more information about the IP[0] to IP[29]
interrupt priority array, that provides the software view of the interrupt priorities.

AIMEL 173

6430F-ATARM-21-Feb-12

ATMEL

Find the IPR number and byte offset for interrupt N as follows:

* the corresponding IPR number, M, is given by M= NDIV 4
* the byte offset of the required Priority field in this register is N MOD 4, where:
— byte offset 0 refers to register bits[7:0]
— byte offset 1 refers to register bits[15:8]
— byte offset 2 refers to register bits[23:16]
— byte offset 3 refers to register bits[31:24].

172 SAM3U Series msssssssssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.8 Software Trigger Interrupt Register

Write to the STIR to generate a Software Generated Interrupt (SGI). See the register summary
in Table 13-27 on page 165 for the STIR attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the
STIR, see “System Control Register” on page 187.

Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved INTID |
7 6 5 4 3 2 1 0

| INTID |

¢ INTID

Interrupt ID of the required SGi, in the range 0-239. For example, a value of b000000011 specifies interrupt IRQ3.

6430F-ATARM-21-Feb-12

AImEl@ 175

ATMEL

13.19.9 Level-sensitive interrupts
The processor supports level-sensitive interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typ-
ically this happens because the ISR accesses the peripheral, causing it to clear the interrupt
request.

When the processor enters the ISR, it automatically removes the pending state from the inter-
rupt, see “Hardware and software control of interrupts”. For a level-sensitive interrupt, if the
signal is not deasserted before the processor returns from the ISR, the interrupt becomes pend-
ing again, and the processor must execute its ISR again. This means that the peripheral can
hold the interrupt signal asserted until it no longer needs servicing.

13.19.9.1 Hardware and software control of interrupts
The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the fol-
lowing reasons:
* the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
* the NVIC detects a rising edge on the interrupt signal
e software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-

pending Registers” on page 169, or to the STIR to make an SGI pending, see “Software
Trigger Interrupt Register” on page 175.

A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pend-
ing to active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

— If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.

» Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt
does not change. Otherwise, the state of the interrupt changes to inactive.

176 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.19.10 NVIC design hints and tips
Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers. See the individual register descriptions for the supported

13.19.10.1

6430F-ATARM-21-Feb-12

access sizes.

A interrupt can enter pending state even it is disabled.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the
new vector table are setup for fault handlers and all enabled exception like interrupts. For more
information see “Vector Table Offset Register” on page 184.

NVIC programming hints

Software uses the CPSIE | and CPSID | instructions to enable and disable interrupts. The
CMSIS provides the following intrinsic functions for these instructions:

void _ disable_irq(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts
In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 13-29. CMSIS functions for NVIC control

CMSIS interrupt control function

Description

void NVIC_SetPriorityGrouping(uint32_t
priority_grouping)

Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQnN)

Enable IRQN

void NVIC_DisablelRQ(IRQn_t IRQN)

Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN)

Return true if IRQn is pending

void NVIC_SetPendinglRQ (IRQn_t IRQN)

Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQN)

Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQN)

Return the IRQ number of the active
interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)

Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN)

Read priority of IRQn

void NVIC_SystemReset (void)

Reset the system

For more information about these functions see the CMSIS documentation.

ATMEL

177

13.20 System control block

ATMEL

The System control block (SCB) provides system implementation information, and system con-
trol. This includes configuration, control, and reporting of the system exceptions. The system
control block registers are:

Table 13-30. Summary of the system control block registers

Required | Reset

Address Name Type privilege value Description
0xEOOOE008 ACTLR RW Privileged | 0x00000000 “Auxiliary Control Register” on page 179
0xEOOOEDO00 CPUID RO Privileged | 0x412FC230 “CPUID Base Register” on page 180
OxEOOOEDO04 ICSR Rw® Privileged | 0x00000000 “Interrupt Control and State Register” on page 181
OxEOOOEDO08 VTOR RW Privileged | 0x00000000 “Vector Table Offset Register” on page 184
OXEOOOEDOC AIRCR RW (M Privileged | 0XxFA050000 1Aégpllcat|on Interrupt and Reset Control Register” on page
O0xEOOOED10 SCR RW Privileged | 0x00000000 “System Control Register” on page 187
OxEOOOED14 CCR RW Privileged | 0x00000200 “Configuration and Control Register” on page 188
OxEOOOED18 SHPR1 RW Privileged | 0x00000000 “System Handler Priority Register 1” on page 191
0xEOOOED1C SHPR2 RW Privileged | 0x00000000 “System Handler Priority Register 2” on page 192
OxEOOOED20 SHPR3 RW Privileged | 0x00000000 “System Handler Priority Register 3" on page 192
OxEOOOED24 SHCRS RW Privileged | 0x00000000 “System Handler Control and State Register’ on page 193
O0xEOOOED28 CFSR RW Privileged | 0x00000000 “Configurable Fault Status Register” on page 195
OXEOOOED28 MMSR® RW Privileged | 0x00 2I\gzemory Management Fault Address Register” on page
OXxEOOOED29 | BFSR®@ RW Privileged | 0x00 “Bus Fault Status Register” on page 197
OXEOOOED2A | UFSR® RW Privileged | 0x0000 “Usage Fault Status Register” on page 199
0xEO00ED2C HFSR RW Privileged | 0x00000000 “Hard Fault Status Register” on page 201
OXEOOOED34 MMAR RW Privileged | Unknown 2I\gzemory Management Fault Address Register” on page
OxEOOOED38 BFAR RW Privileged | Unknown “Bus Fault Address Register” on page 203
0xEOOOED3C AFSR RW Privileged | 0x00000000 “Auxiliary Fault Status Register” on page 204

Notes: 1. See the register description for more information.

2. A subregister of the CFSR.

13.20.1

The CMSIS mapping of the Cortex-M3 SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the
CMSIS, the byte array SHP[0] to SHP[12] corresponds to the registers SHPR1-SHPRS3.

178 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.2 Auxiliary Control Register
The ACTLR provides disable bits for the following processor functions:
* |T folding
¢ write buffer use for accesses to the default memory map
e interruption of multi-cycle instructions.
See the register summary in Table 13-30 on page 178 for the ACTLR attributes. The bit assign-

ments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | DISFOLD | DISDEFWBUF DISMCYCINT |

e DISFOLD
When set to 1, disables IT folding. see “About IT folding” on page 179 for more information.

e DISDEFWBUF

When set to 1, disables write buffer use during default memory map accesses. This causes all bus faults to be precise bus
faults but decreases performance because any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M3 processor.

e DISMCYCINT
When set to 1, disables interruption of load multiple and store multiple instructions. This increases the interrupt latency of
the processor because any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

13.20.2.1 About IT folding
In some situations, the processor can start executing the first instruction in an IT block while it is
still executing the IT instruction. This behavior is called IT folding, and improves performance,
However, IT folding can cause jitter in looping. If a task must avoid jitter, set the DISFOLD bit to
1 before executing the task, to disable IT folding.

AIMEL 179

6430F-ATARM-21-Feb-12

ATMEL

13.20.3 CPUID Base Register

The CPUID register contains the processor part number, version, and implementation informa-
tion. See the register summary in Table 13-30 on page 178 for its attributes. The bit assignments

are:
31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant Constant |
15 14 13 12 11 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo Revision |

¢ Implementer

Implementer code:

0x41 = ARM

e Variant

Variant number, the r value in the rnpn product revision identifier:

0x2 =r2p0

e Constant

Reads as OxF

¢ PartNo

Part number of the processor:

0xC23 = Cortex-M3

¢ Revision

Revision number, the p value in the rnpn product revision identifier:

0x0 =r2p0

180 SAM3U Serles |

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.4 Interrupt Control and State Register
The ICSR:

* provides:
— set-pending and clear-pending bits for the PendSV and SysTick exceptions

* indicates:
— the exception number of the exception being processed
— whether there are preempted active exceptions
— the exception number of the highest priority pending exception
— whether any interrupts are pending.

See the register summary in Table 13-30 on page 178, and the Type descriptions in Table 13-33
on page 205, for the ICSR attributes. The bit assignments are:

31 30 29 28 27 26 25 24
Reserved Reserved | PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR | Reserved
23 22 21 20 19 18 17 16
Reserved for | sopENDING VECTPENDING
Debug
15 14 13 12 1 10 9 8
| VECTPENDING | RETTOBASE Reserved | VECTACTIVE |
7 6 5 4 3 2 1 0
| VECTACTIVE |

* PENDSVSET
RW

PendSV set-pending bit.

Write:

0 = no effect

1 = changes PendSV exception state to pending.
Read:

0 = PendSV exception is not pending

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.
e PENDSVCLR

WO

PendSV clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the PendSV exception.

AImEl@ 181

6430F-ATARM-21-Feb-12

* PENDSTSET
RW

SysTick exception set-pending bit.

Write:

0 = no effect

1 = changes SysTick exception state to pending.

Read:

0 = SysTick exception is not pending

1 = SysTick exception is pending.

e PENDSTCLR

WO

SysTick exception clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the SysTick exception.

This bit is WO. On a register read its value is Unknown.

¢ Reserved for Debug use

RO

This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.
¢ ISRPENDING

RO

Interrupt pending flag, excluding Faults:

0 = interrupt not pending

1 = interrupt pending.

e VECTPENDING

RO

Indicates the exception number of the highest priority pending enabled exception:
0 = no pending exceptions

Nonzero = the exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

182 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

* RETTOBASE
RO

Indicates whether there are preempted active exceptions:

0 = there are preempted active exceptions to execute

1 =there are no active exceptions, or the currently-executing exception is the only active exception.
e VECTACTIVE

RO

Contains the active exception number:

0 = Thread mode

Nonzero = The exception number (") of the currently active exception.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” on page 61.

When you write to the ICSR, the effect is Unpredictable if you:

e write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
e write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

Note: 1. This is the same value as IPSR bits [8:0] see “Interrupt Program Status Register” on page 61.

AImEl@ 183

6430F-ATARM-21-Feb-12

ATMEL

13.20.5 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address
0x00000000. See the register summary in Table 13-30 on page 178 for its attributes.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved | TBLOFE |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

[TBLOFF | Reserved |

« TBLOFF

Vector table base offset field. It contains bits[29:7] of the offset of the table base from the bottom of the memory map.
Bit[29] determines whether the vector table is in the code or SRAM memory region:

0 = code

1 = SRAM.

Bit[29] is sometimes called the TBLBASE bit.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. The minimum align-
ment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the alignment by rounding up to the next power
of two. For example, if you require 21 interrupts, the alignment must be on a 64-word boundary because the required table
size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

18 SAM3U Series messsssssssssssssssssss——
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.6 Application Interrupt and Reset Control Register

The AIRCR provides priority grouping control for the exception model, endian status for data
accesses, and reset control of the system. See the register summary in Table 13-30 on page

178 and Table 13-33 on page 205 for its attributes.

To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor

ignores the write.

The bit assignments are:

31 30 29 28 27 26 25 24

| On Read: VECTKEYSTAT, On Write: VECTKEY |
23 22 21 20 19 18 17 16

| On Read: VECTKEYSTAT, On Write: VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANESS | Reserved | PRIGROUP |
7 6 5 4 3 2 1 0

VECTCLR-
Reserved SYSRESETREQ AGTIVE VECTRESET

e VECTKEYSTAT
Register Key:

Reads as OxFA05

¢ VECTKEY

Register key:

On writes, write Ox5FA to VECTKEY, otherwise the write is ignored.

¢ ENDIANESS

RO

Data endianness bit:

0 = Little-endian

ENDIANESS is set from the BIGEND configuration signal during reset.

* PRIGROUP
R/W

Interrupt priority grouping field. This field determines the split of group priority from subpriority, see “Binary point” on page

186.

¢ SYSRESETREQ

WO

System reset request:

0 = no effect

1 = asserts a proc_reset_signal.

This is intended to force a large system reset of all major components except for debug.

This bit reads as 0.
Y)

6430F-ATARM-21-Feb-12

185

* VECTCLRACTIVE
WO

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is

Unpredictable.

* VECTRESET

ATMEL

WO
Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.
13.20.6.1 Binary point
The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the
Interrupt Priority Registers into separate group priority and subpriority fields. Table 13-31 shows
how the PRIGROUP value controls this split.
Table 13-31. Priority grouping
Interrupt priority level value, PRI_N[7:0] Number of
Binary Group priority | Subpriority Group
PRIGROUP | point ™ bits bits priorities Subpriorities
b011 bxxxx.0000 [7:4] None 16 1
b100 bxxx.y0000 [7:5] [4] 8 2
b101 bxx.yy0000 [7:6] [5:4] 4 4
b110 bx.yyy0000 [7] [6:4] 2 8
b111 b.yyyy0000 None [7:4] 1 16
1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a sub-
priority field bit.
Determining preemption of an exception uses only the group priority field, see “Interrupt priority
grouping” on page 82.
186 SAM3U Serles |

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.7 System Control Register
The SCR controls features of entry to and exit from low power state. See the register summary
in Table 13-30 on page 178 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved SEVONPEND Reserved SLEEPDEEP SLEEONEXIT Reserved |

e SEVONPEND
Send Event on Pending bit:

0 = only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded
1 = enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not
waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an sev instruction or an external event.
e SLEEPDEEP

Controls whether the processor uses sleep or deep sleep as its low power mode:

0 = sleep

1 = deep sleep.

e SLEEPONEXIT

Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 = do not sleep when returning to Thread mode.

1 = enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

AImEl@ 187

6430F-ATARM-21-Feb-12

ATMEL

13.20.8 Configuration and Control Register
The CCR controls entry to Thread mode and enables:
¢ the handlers for hard fault and faults escalated by FAULTMASK to ignore bus faults
e trapping of divide by zero and unaligned accesses

¢ access to the STIR by unprivileged software, see “Software Trigger Interrupt Register” on
page 175.

See the register summary in Table 13-30 on page 178 for the CCR attributes.

The bit assignments are:

31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved STKALIGN | BFHFNMIGN |
7 6 5 4 3 2 1 0
UNALIGN_T USERSETM NONBASET
Reserved DIV_O_TRP RP Reserved PEND HRDENA
e STKALIGN

Indicates stack alignment on exception entry:

0 = 4-byte aligned

1 = 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the excep-

tion it uses this stacked bit to restore the correct stack alignment.

* BFHFNMIGN

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0 = data bus faults caused by load and store instructions cause a lock-up

1 = handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.
Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

e DIV_O_TRP

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:
0 = do not trap divide by 0

1 = trap divide by 0.

When this bit is set to 0,a divide by zero returns a quotient of 0.

e UNALIGN_TRP

Enables unaligned access traps:

0 = do not trap unaligned halfword and word accesses

188 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

1 = trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.
e USERSETMPEND

Enables unprivileged software access to the STIR, see “Software Trigger Interrupt Register’ on page 175:

0 = disable

1 =enable.

¢ NONEBASETHRDENA

Indicates how the processor enters Thread mode:

0 = processor can enter Thread mode only when no exception is active.

1 = processor can enter Thread mode from any level under the control of an EXC_RETURN value, see “Exception return”
on page 84.

AImEl@ 189

6430F-ATARM-21-Feb-12

ATMEL

13.20.9 System Handler Priority Registers
The SHPR1-SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have
configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 13-30 on page 178 for
their attributes.

The system fault handlers and the priority field and register for each handler are:

Table 13-32. System fault handler priority fields

Handler Field Register description
Memory management PRI 4
fault
Bus fault PRL5 System Handler Priority Register 1” on page 191
Usage fault PRI_6
SVCall PRI_11 “System Handler Priority Register 2” on page 192
PendSV PRI_14

“System Handler Priority Register 3” on page 192
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:4] of each field, and
bits[3:0] read as zero and ignore writes.

190 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.9.1 System Handler Priority Register 1
The bit assignments are:

31 30 29 28 27 26 25 24
| PRI_7: Reserved |

23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRI 5 |
7 6 5 4 3 2 1 0

| PRI_4 |

e PRL 7

Reserved

* PRI 6

Priority of system handler 6, usage fault

e PRL5
Priority of system handler 5, bus fault

e PRI_4
Priority of system handler 4, memory management fault

AImEl@ 191

6430F-ATARM-21-Feb-12

13.20.9.2 System Handler Priority Register 2
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_11 |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

* PRI_11

Priority of system handler 11, SVCall

13.20.9.3 System Handler Priority Register 3
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

e PRI_15

Priority of system handler 15, SysTick exception

e PRI_14
Priority of system handler 14, PendSV

192 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.10 System Handler Control and State Register
The SHCSR enables the system handlers, and indicates:

¢ the pending status of the bus fault, memory management fault, and SVC exceptions
¢ the active status of the system handlers.

See the register summary in Table 13-30 on page 178 for the SHCSR attributes. The bit assign-

ments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved USGFAULTENA BUSFAULTENA MEMFAULTENA |
15 14 13 12 11 10 9 8
SVCALI[_)PENDE BUSFAEI[_)TPEND MEMFS\EJIID_TPEN USGFAILEJBTPEND SYSTICKACT PENDSVACT Reserved MONITORACT
7 6 5 4 3 2 1 0
| SVCALLAVCT | Reserved USGFAULTACT Reserved BUSFAULTACT MEMFAULTACT

¢ USGFAULTENA
Usage fault enable bit, set to 1 to enable ("

e BUSFAULTENA
Bus fault enable bit, set to 1 to enable®

¢ MEMFAULTENA
Memory management fault enable bit, set to 1 to enable®

e SVCALLPENDED
SVC call pending bit, reads as 1 if exception is pending @

¢ BUSFAULTPENDED
Bus fault exception pending bit, reads as 1 if exception is pending®

¢ MEMFAULTPENDED
Memory management fault exception pending bit, reads as 1 if exception is pending®

e USGFAULTPENDED
Usage fault exception pending bit, reads as 1 if exception is pending®

e SYSTICKACT
SysTick exception active bit, reads as 1 if exception is active

* PENDSVACT

PendSV exception active bit, reads as 1 if exception is active

—_

Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending
status of the exceptions.
3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of

the exceptions, but see the Caution in this section.

6430F-ATARM-21-Feb-12

AImEl@ 193

e MONITORACT
Debug monitor active bit, reads as 1 if Debug monitor is active

e SVCALLACT
SVC call active bit, reads as 1 if SVC call is active

e USGFAULTACT
Usage fault exception active bit, reads as 1 if exception is active

e BUSFAULTACT
Bus fault exception active bit, reads as 1 if exception is active

e MEMFAULTACT
Memory management fault exception active bit, reads as 1 if exception is active

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

» Software that changes the value of an active bit in this register without correct adjustment to the stacked content can
cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently
restores the current active status.

* After you have enabled the system handlers, if you have to change the value of a bit in this register you must use a read-
modify-write procedure to ensure that you change only the required bit.

19 SAM3U Series msssssssssssssssssss———
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.11 Configurable Fault Status Register
The CFSR indicates the cause of a memory management fault, bus fault, or usage fault. See the
register summary in Table 13-30 on page 178 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24
| Usage Fault Status Register: UFSR |

23 22 21 20 19 18 17 16
| Usage Fault Status Register: UFSR |

15 14 13 12 11 10 9 8
| Bus Fault Status Register: BFSR |

7 6 5 4 3 2 1 0
| Memory Management Fault Status Register: MMFSR |

The following subsections describe the subregisters that make up the CFSR:

* “Memory Management Fault Status Register’ on page 196
* “Bus Fault Status Register” on page 197
* “Usage Fault Status Register” on page 199.
The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:

* access the complete CFSR with a word access to 0OXEOOOED28

* access the MMFSR with a byte access to 0OXEOOOED28

e access the MMFSR and BFSR with a halfword access to OXEOOOED28
¢ access the BFSR with a byte access to OxEOOOED29

e access the UFSR with a halfword access to OXEOOOED2A.

AImEl@ 195

6430F-ATARM-21-Feb-12

ATMEL

13.20.11.1 Memory Management Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

7 6 5 4 3 2 1 0
[MMARVALID | Reserved | MSTKERR | wmunstkerr [Reserved [DACCviOL | 1ACCVIOL
e MMARVALID

Memory Management Fault Address Register (MMAR) valid flag:
0 = value in MMAR is not a valid fault address
1 = MMAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose MMAR value
has been overwritten.

e MSTKERR

Memory manager fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to the MMAR.

e MUNSTKERR

Memory manager fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the MMAR.

e DACCVIOL

Data access violation flag:

0 = no data access violation fault

1 = the processor attempted a load or store at a location that does not permit the operation.
When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the MMAR with the address of the attempted access.

e IACCVIOL

Instruction access violation flag:

0 = no instruction access violation fault

1 = the processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the MMAR.

196 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.11.2 Bus Fault Status Register
The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

7 6 5 4 3 2 1 0
[BFRVALID | Reserved | STKERR | UNSTKERR | mpreciserr | PRECISERR | IBUSERR
» BFARVALID

Bus Fault Address Register (BFAR) valid flag:
0 = value in BFAR is not a valid fault address
1 = BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This pre-
vents problems if returning to a stacked active bus fault handler whose BFAR value has been overwritten.

e STKERR

Bus fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the BFAR.

e UNSTKERR

Bus fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

e IMPRECISERR
Imprecise data bus error:
0 = no imprecise data bus error

1 = a data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
both IMPRECISERR set to 1 and one of the precise fault status bits set to 1.

AImEl@ 197

6430F-ATARM-21-Feb-12

ATMEL

¢ PRECISERR
Precise data bus error:

0 = no precise data bus error

1 = a data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit is 1, it writes the faulting address to the BFAR.

* IBUSERR
Instruction bus error:

0 = no instruction bus error
1 = instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.

198 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.11.3 Usage Fault Status Register
The UFSR indicates the cause of a usage fault. The bit assignments are:

15 14 13 12 11 10 9 8
| Reserved | DIVBYZERO | UNALIGNED |
7 6 5 4 3 2 1 0
| Reserved | NOCP | INVPC | INVSTATE | UNDEFINSTR |
e DIVBYZERO

Divide by zero usage fault:
0 = no divide by zero fault, or divide by zero trapping not enabled
1 = the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see “Configuration and Control Register’
on page 188.

e UNALIGNED

Unaligned access usage fault:

0 = no unaligned access fault, or unaligned access trapping not enabled

1 =the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR to 1, see “Configuration and Control
Register” on page 188.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.
¢ NOCP

No coprocessor usage fault. The processor does not support coprocessor instructions:

0 = no usage fault caused by attempting to access a coprocessor

1 = the processor has attempted to access a coprocessor.

e INVPC

Invalid PC load usage fault, caused by an invalid PC load by EXC_RETURN:

0 = no invalid PC load usage fault

1 = the processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

¢ INVSTATE
Invalid state usage fault:

0 = no invalid state usage fault

1 = the processor has attempted to execute an instruction that makes illegal use of the EPSR.

AI“"E',® 199

6430F-ATARM-21-Feb-12

ATMEL

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use
of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

¢ UNDEFINSTR

Undefined instruction usage fault:

0 = no undefined instruction usage fault

1 = the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

200 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.20.12 Hard Fault Status Register
The HFSR gives information about events that activate the hard fault handler. See the register
summary in Table 13-30 on page 178 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing
1 to any bit clears that bit to 0. The bit assignments are:

31 30 29 28 27 26 25 24

| DEBUGEVT FORCED | Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | VECTTBL | Reserved |

e DEBUGEVT

Reserved for Debug use. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.

* FORCED

Indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0 = no forced hard fault

1 = forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.
e VECTTBL

Indicates a bus fault on a vector table read during exception processing:

0 = no bus fault on vector table read

1 = bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

AImEl@ 201

6430F-ATARM-21-Feb-12

ATMEL

13.20.13 Memory Management Fault Address Register
The MMFAR contains the address of the location that generated a memory management fault.
See the register summary in Table 13-30 on page 178 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated the memory
management fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See “Memory Manage-
ment Fault Status Register” on page 196.

202 SAMSIU SerieS e —

6430F-ATARM-21-Feb-12

s SAM3U Series

13.20.14 Bus Fault Address Register

The BFAR contains the address of the location that generated a bus fault. See the register sum-
mary in Table 13-30 on page 178 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the bus fault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the

address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See “Bus Fault Status Regis-

ter” on page 197.

6430F-ATARM-21-Feb-12

ATMEL

203

ATMEL

13.20.15 Auxiliary Fault Status Register

The AFSR contains additional system fault information. See the register summary in Table 13-
30 on page 178 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing
1 to any bit clears that bit to 0.

The bit assignments are:

31 30 29 28 27 26 25 24

| IMPDEF |
23 22 21 20 19 18 17 16

| IMPDEF |
15 14 13 12 11 10 9 8

| IMPDEF |
7 6 5 4 3 2 1 0

| IMPDEF |

* IMPDEF

Implementation defined. The bits map to the AUXFAULT input signals.

Each AFSR bit maps directly to an AUXFAULT input of the processor, and a single-cycle HIGH signal on the input sets the
corresponding AFSR bit to one. It remains set to 1 until you write 1 to the bit to clear it to zero.

When an AFSR bit is latched as one, an exception does not occur. Use an interrupt if an exception is required.

13.20.16 System control block design hints and tips

204

Ensure software uses aligned accesses of the correct size to access the system control block
registers:

* except for the CFSR and SHPR1-SHPRS3, it must use aligned word accesses

» for the CFSR and SHPR1-SHPRS it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to system control block registers.

In a fault handler. to determine the true faulting address:

¢ Read and save the MMFAR or BFAR value.

¢ Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or
BFAR address is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the
MMFAR or BFAR value. For example, if a higher priority handler preempts the current fault han-
dler, the other fault might change the MMFAR or BFAR value.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.21 System timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to
zero, reloads (wraps to) the value in the LOAD register on the next clock edge, then counts
down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

Table 13-33. System timer registers summary

Required | Reset
Address Name Type privilege value Description
0xEOOOEO10 CTRL RW Privileged | 0x00000004 “SysTick Control and Status Register” on page 206
OxEOOOEO14 LOAD RW Privileged | 0x00000000 “SysTick Reload Value Register” on page 207
OxEOOOEO018 VAL RW Privileged | 0x00000000 “SysTick Current Value Register” on page 208
O0xEO0OE0O1C | CALIB RO Privileged | 0x0002904 (" | “SysTick Calibration Value Register’ on page 209
1. SysTick calibration value.

AImEl@ 205

6430F-ATARM-21-Feb-12

ATMEL

13.21.1 SysTick Control and Status Register
The SysTick CTRL register enables the SysTick features. See the register summary in Table 13-
33 on page 205 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved COUNTFLAG |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved CLKSOURCE TICKINT ENABLE |

¢ COUNTFLAG
Returns 1 if timer counted to 0 since last time this was read.

e CLKSOURCE
Indicates the clock source:

0 =MCK/8
1 =MCK
e TICKINT

Enables SysTick exception request:

0 = counting down to zero does not assert the SysTick exception request

1 = counting down to zero to asserts the SysTick exception request.

Software can use COUNTFLAG to determine if SysTick has ever counted to zero.
e ENABLE

Enables the counter:

0 = counter disabled

1 = counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the LOAD register and then counts down. On reach-
ing 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

206 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.21.2 SysTick Reload Value Register
The LOAD register specifies the start value to load into the VAL register. See the register sum-
mary in Table 13-33 on page 205 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| -RELOAD |

« RELOAD

Value to load into the VAL register when the counter is enabled and when it reaches 0, see “Calculating the RELOAD
value”.

13.21.2.1 Calculating the RELOAD value
The RELOAD value can be any value in the range 0x00000001-0xO0FFFFFF. A start value of O
is possible, but has no effect because the SysTick exception request and COUNTFLAG are acti-
vated when counting from 1 to 0.

The RELOAD value is calculated according to its use:

* To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD
value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set
RELOAD to 99.

* To deliver a single SysTick interrupt after a delay of N processor clock cycles, use a RELOAD
of value N. For example, if a SysTick interrupt is required after 400 clock pulses, set RELOAD
to 400.

AImEl@ 207

6430F-ATARM-21-Feb-12

ATMEL

13.21.3 SysTick Current Value Register
The VAL register contains the current value of the SysTick counter. See the register summary in
Table 13-33 on page 205 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

e CURRENT

Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SysTick CTRL.COUNTFLAG bit to 0.

208 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

s SAM3U Series

13.21.4 SysTick Calibration Value Register
The CALIB register indicates the SysTick calibration properties. See the register summary in
Table 13-33 on page 205 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

[NOREF | skew | Reserved |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

« NOREF

Reads as zero.

e SKEW
Reads as zero

* TENMS

Read as 0x0002904. The SysTick calibration value is fixed at 0x0002904 (10500), which allows the generation of a time
base of 1 ms with SysTick clock at 10.5 MHz (84/8 = 10.5 MHz)

13.21.5 SysTick design hints and tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power
mode, the SysTick counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

AImEl@ 209

6430F-ATARM-21-Feb-12

ATMEL

13.22 Memory protection unit

210

This section describes the Memory protection unit (MPU).

The MPU divides the memory map into a number of regions, and defines the location, size,
access permissions, and memory attributes of each region. It supports:

¢ independent attribute settings for each region

¢ overlapping regions

e export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3
MPU defines:

e eight separate memory regions, 0-7

* a background region.

When memory regions overlap, a memory access is affected by the attributes of the region with
the highest number. For example, the attributes for region 7 take precedence over the attributes
of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but
is accessible from privileged software only.

The Cortex-M3 MPU memory map is unified. This means instruction accesses and data
accesses have same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates
a memory management fault. This causes a fault exception, and might cause termination of the
process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the
process to be executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see “Memory regions, types and attri-
butes” on page 68.

Table 13-34 shows the possible MPU region attributes. These include Share ability and cache
behavior attributes that are not relevant to most microcontroller implementations. See “MPU
configuration for a microcontroller” on page 223 for guidelines for programming such an
implementation.

Table 13-34. Memory attributes summary

Memory
type Shareability | Other attributes Description
All accesses to Strongly-ordered memory occur
Strongly- . :
- - in program order. All Strongly-ordered regions
ordered
are assumed to be shared.
Device Shared i Memory-mapped peripherals that several
processors share.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Table 13-34. Memory attributes summary (Continued)

Memory
type Shareability | Other attributes Description
Non-shared i Memory-mapped peripherals that only a single
processor uses.
Normal Shared Normal memory that is shared between several
processors.
Non-shared Normal memory that only a single processor

uses.

Use the MPU registers to define the MPU regions and their attributes. The MPU registers are:

Table 13-35. MPU registers summary

Required | Reset

Address Name Type privilege value Description

O0xEOOO0ED90 TYPE RO Privileged | 0x00000800 “MPU Type Register” on page 212

OxEOOOED94 CTRL RW Privileged | 0x00000000 “MPU Control Register” on page 213

OxEOOOED98 RNR RW Privileged | 0x00000000 “MPU Region Number Register” on page 215

0xEOO0OED9C RBAR RW Privileged | 0x00000000 “MPU Region Base Address Register” on page 216

OxEOOOEDAO RASR RW Privileged | 0x00000000 “MPU Region Attribute and Size Register” on page 217

OXEOOOEDA4 | RBAR_A1 | RW Privileged | 0x00000000 | Aias of RBAR, see "MPU Region Base Address
Register” on page 216

OXEOOOEDA8 | RASR_A1 | RW Privileged | 0x00000000 | Alias of RASR, see "MPU Region Attribute and Size
Register” on page 217

OXEOOOEDAC | RBAR_A2 | RW Privileged | 0x00000000 | Alias of RBAR, see "MPU Region Base Address
Register’ on page 216

OXEQ0OEDBO | RASR_A2 | RW Privileged | 0x00000000 | Alias of RASR, see "MPU Region Attribute and Size
Register” on page 217

OXEOOOEDB4 | RBAR_A3 | RW Privileged | 0x00000000 | Alias of RBAR, see "MPU Region Base Address
Register” on page 216

OXEOOOEDB8 | RASR_A3 | RW Privileged | 0x00000000 | Alias of RASR, see "MPU Region Attribute and Size
Register” on page 217

6430F-ATARM-21-Feb-12

ATMEL

211

ATMEL

13.22.1 MPU Type Register
The TYPE register indicates whether the MPU is present, and if so, how many regions it sup-
ports. See the register summary in Table 13-35 on page 211 for its attributes. The bit
assignments are:
31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| IREGION |
15 14 13 12 11 10 9 8
| DREGION |
7 6 5 4 3 2 1 0
| Reserved | SEPARATE |
¢ IREGION

Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

* DREGION
Indicates the number of supported MPU data regions:

0x08 = Eight MPU regions.

e SEPARATE
Indicates support for unified or separate instruction and date memory maps:

0 = unified.

212

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.22.2 MPU Control Register
The MPU CTRL register:
* enables the MPU
* enables the default memory map background region

* enables use of the MPU when in the hard fault, Non-maskable Interrupt (NMI), and
FAULTMASK escalated handlers.

See the register summary in Table 13-35 on page 211 for the MPU CTRL attributes. The bit
assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIVDEFENA | HFNMIENA ENABLE |

¢ PRIVDEFENA
Enables privileged software access to the default memory map:

0 = If the MPU is enabled, disables use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1 = If the MPU is enabled, enables use of the default memory map as a background region for privileged software
accesses.

When enabled, the background region acts as if it is region number -1. Any region that is defined and enabled has priority
over this default map.

If the MPU is disabled, the processor ignores this bit.

e HFNMIENA

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.
When the MPU is enabled:

0 = MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit
1 =the MPU is enabled during hard fault, NMI, and FAULTMASK handlers.
When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

e ENABLE

Enables the MPU:

0 = MPU disabled

1 = MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

For privileged accesses, the default memory map is as described in “Memory model” on page 68. Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

AImEl@ 213

6430F-ATARM-21-Feb-12

ATMEL

Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless
the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged soft-
ware can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented, see Table 13-34 on page 210. The default memory map applies to accesses from both privileged
and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority —1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

214 SAM3U Series msssssssssssssssssssssss——
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.22.3 MPU Region Number Register

The RNR selects which memory region is referenced by the RBAR and RASR registers. See the
register summary in Table 13-35 on page 211 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| REGION |

¢ REGION

Indicates the MPU region referenced by the RBAR and RASR registers.

The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, you write the required region number to this register before accessing the RBAR or RASR. However you can
change the region number by writing to the RBAR with the VALID bit set to 1, see “MPU Region Base Address Register” on
page 216. This write updates the value of the REGION field.

6430F-ATARM-21-Feb-12

ATMEL

215

ATMEL

13.22.4 MPU Region Base Address Register
The RBAR defines the base address of the MPU region selected by the RNR, and can update
the value of the RNR. See the register summary in Table 13-35 on page 211 for its attributes.

Write RBAR with the VALID bit set to 1 to change the current region number and update the
RNR. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 N

| ADDR |
N-1 6 5 4 3 2 1 0

| Reserved [vaup | REGION |

« ADDR

Region base address field. The value of N depends on the region size. For more information see “The ADDR field”.
e VALID

MPU Region Number valid bit:

Write:

0 = RNR not changed, and the processor:

updates the base address for the region specified in the RNR

ignores the value of the REGION field

1 = the processor:

updates the value of the RNR to the value of the REGION field
updates the base address for the region specified in the REGION field.
Always reads as zero.

¢ REGION

MPU region field:

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the RNR.

13.22.4.1 The ADDR field

The ADDR field is bits[31:N] of the RBAR. The region size, as specified by the SIZE field in the
RASR, defines the value of N:

N = Log,(Region size in bytes),
If the region size is configured to 4GB, in the RASR, there is no valid ADDR field. In this case,
the region occupies the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64KB region must be
aligned on a multiple of 64KB, for example, at 0x00010000 or 0x00020000.

216 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.22.5 MPU Region Attribute and Size Register

The RASR defines the region size and memory attributes of the MPU region specified by the
RNR, and enables that region and any subregions. See the register summary in Table 13-35 on

page 211 for its attributes.
RASR is accessible using word or halfword accesses:

* the most significant halfword holds the region attributes

* the least significant halfword holds the region size and the region and subregion enable bits.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved | XN Reserved | AP |
23 22 21 20 19 18 17 16

| Reserved TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| Reserved | SIZE ENABLE |

e XN
Instruction access disable bit:

0 = instruction fetches enabled
1 = instruction fetches disabled.

e AP
Access permission field, see Table 13-39 on page 219.

e TEX,C,B
Memory access attributes, see Table 13-37 on page 218.

e S
Shareable bit, see Table 13-36 on page 218.

e SRD

Subregion disable bits. For each bit in this field:
0 = corresponding sub-region is enabled

1 = corresponding sub-region is disabled

See “Subregions” on page 222 for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD

field as 0x00.

e SIZE

Specifies the size of the MPU protection region. The minimum permitted value is 3 (b00010), see See “SIZE field values”

on page 218 for more information.

e ENABLE

ATMEL

6430F-ATARM-21-Feb-12

217

ATMEL

Region enable bit.
For information about access permission, see “MPU access permission attributes”.
13.22.5.1 SIZE field values
The SIZE field defines the size of the MPU memory region specified by the RNR. as follows:

(Region size in bytes) = 2GIZ&D
The smallest permitted region size is 32B, corresponding to a SIZE value of 4. Table 13-36 gives
example SIZE values, with the corresponding region size and value of N in the RBAR.

Table 13-36. Example SIZE field values

Value of

SIZE value | Regionsize | N(Note

b00100 (4) 308 5 Mlnlmum permitted
size

b01001 (9) 1KB 10 -

b10011 (19) | 1MB 20 -

b11101 (29) | 1GB 30 .

b11111 (31) | 4GB b01100 Maximum possible
size

1. In the RBAR, see “MPU Region Base Address Register” on

page 216.

13.22.6 MPU access permission attributes
This section describes the MPU access permission attributes. The access permission bits, TEX,
C, B, S, AP, and XN, of the RASR, control access to the corresponding memory region. If an
access is made to an area of memory without the required permissions, then the MPU generates
a permission fault.

Table 13-37 shows the encodings for the TEX, C, B, and S access permission bits.

Table 13-37. TEX, C, B, and S encoding

TEX | C B S Memory type Shareability | Other attributes
Strongly-
™ -
0 0 X ordered Shareable
1 x| Device Shareable -
0 Not)))
b000 0 Normal shareable Outer and inner write-through. No write
allocate.
1 Shareable
1
Not
1 0 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable
218 SAM3U Serles |

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Table 13-37. TEX, C, B, and S encoding (Continued)

TEX | C B S Memory type Shareability | Other attributes
0 Not
0 0 Normal shareable
1 Shareable
1 x| Reserved encoding -
b001 0 XM Implementation defined i
attributes.
1 Not
1 0 Normal shareable Outer and inner write-back. Write and
read allocate.
1 Shareable
1) . Not .
0 X Device Nonshared Device.
0 shareable
b010 1 x™M | Reserved encoding -
1 xM | x| Reserved encoding -
0 Not
31 B Ao |a Normal shareable
1 Shareable
1. The MPU ignores the value of this bit.

Table 13-38 shows the cache policy for memory attribute encodings with a TEX value is in the
range 4-7.

Table 13-38. Cache policy for memory attribute encoding

Encoding, AA or BB

Corresponding cache policy

00

Non-cacheable

01

Write back, write and read allocate

10

Write through, no write allocate

11

Write back, no write allocate

Table 13-39 shows the AP encodings that define the access permissions for privileged and
unprivileged software.

Table 13-39. AP encoding

Privileged Unprivileged
AP[2:0] | permissions permissions Description
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission
fault
011 RW RW Full access
100 Unpredictable Unpredictable | Reserved

6430F-ATARM-21-Feb-12

ATMEL

219

ATMEL

Table 13-39. AP encoding (Continued)

Privileged Unprivileged
AP[2:0] | permissions permissions Description

101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

13.22.7 MPU mismatch
When an access violates the MPU permissions, the processor generates a memory manage-
ment fault, see “Exceptions and interrupts” on page 66. The MMFSR indicates the cause of the
fault. See “Memory Management Fault Status Register” on page 196 for more information.

13.22.8 Updating an MPU region
To update the attributes for an MPU region, update the RNR, RBAR and RASR registers. You
can program each register separately, or use a multiple-word write to program all of these regis-
ters. You can use the RBAR and RASR aliases to program up to four regions simultaneously
using an STM instruction.

13.22.8.1 Updating an MPU region using separate words
Simple code to configure one region:

; R1 = region number
; R2 = size/enable

; R3 = attributes

; R4 = address

LDR RO,=MPU_RNR ; OXEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R4, [RO, #0x4] ; Region Base Address

STRH R2, [RO, #0x8] ; Region Size and Enable

STRH R3, [RO, #OxA] ; Region Attribute

Disable a region before writing new region settings to the MPU if you have previously enabled
the region being changed. For example:

; R1 = region number
; R2 = size/enable

; R3 = attributes

; R4 = address

LDR RO,=MPU_RNR ; OXEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

BIC R2, R2, #1 ; Disable

STRH R2, [RO, #0x8] ; Region Size and Enable

STR R4, [RO, #0x4] ; Region Base Address

STRH R3, [RO, #OxA] ; Region Attribute

ORR R2, #1 ; Enable

STRH R2, [RO, #0x8] ; Region Size and Enable

Software must use memory barrier instructions:

220 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

* before MPU setup if there might be outstanding memory transfers, such as buffered writes,
that might be affected by the change in MPU settings

e after MPU setup if it includes memory transfers that must use the new MPU settings.
However, memory barrier instructions are not required if the MPU setup process starts by enter-

ing an exception handler, or is followed by an exception return, because the exception entry and
exception return mechanism cause memory barrier behavior.

Software does not need any memory barrier instructions during MPU setup, because it accesses
the MPU through the PPB, which is a Strongly-Ordered memory region.

For example, if you want all of the memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction. A DSB is required after
changing MPU settings, such as at the end of context switch. An ISB is required if the code that
programs the MPU region or regions is entered using a branch or call. If the programming
sequence is entered using a return from exception, or by taking an exception, then you do not
require an ISB.

13.22.8.2 Updating an MPU region using multi-word writes
You can program directly using multi-word writes, depending on how the information is divided.
Consider the following reprogramming:

; R1 = region number
; R2 = address
; R3 = size, attributes iIn one
LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number
STR R2, [RO, #0x4] ; Region Base Address
STR R3, [RO, #0x8] ; Region Attribute, Size and Enable
Use an STM instruction to optimize this:

; R1 = region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register

STM RO, {R1-R3} ; Region Number, address, attribute, size and enable
You can do this in two words for pre-packed information. This means that the RBAR contains the
required region number and had the VALID bit set to 1, see “MPU Region Base Address Regis-
ter” on page 216. Use this when the data is statically packed, for example in a boot loader:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Region Base register
STR R1, [RO, #0x0] ; Region base address and

; region number combined with VALID (bit 4) set to 1

STR R2, [RO, #0x4] ; Region Attribute, Size and Enable
Use an STM instruction to optimize this:

; R1 = address and region number in one

; R2 = size and attributes in one

LDR RO,=MPU_RBAR ; OXEOOOED9C, MPU Region Base register
STM RO, {R1-R2} ; Region base address, region number and VALID bit,

AImEl@ 221

6430F-ATARM-21-Feb-12

ATMEL

; and Region Attribute, Size and Enable

13.22.8.3 Subregions
Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the correspond-
ing bit in the SRD field of the RASR to disable a subregion, see “MPU Region Attribute and Size
Register” on page 217. The least significant bit of SRD controls the first subregion, and the most
significant bit controls the last subregion. Disabling a subregion means another region overlap-
ping the disabled range matches instead. If no other enabled region overlaps the disabled
subregion the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes, you
must set the SRD field to 0x00, otherwise the MPU behavior is Unpredictable.

13.22.8.4 Example of SRD use
Two regions with the same base address overlap. Region one is 128KB, and region two is
512KB. To ensure the attributes from region one apply to the first128KB region, set the SRD
field for region two to b00000011 to disable the first two subregions, as Figure 13-9 shows

Figure 13-9. SRD use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB

128KB
Disabled subregion

- - 64KB
Base address of both regions Disabled subregion 0

13.22.9 MPU design hints and tips
To avoid unexpected behavior, disable the interrupts before updating the attributes of a region
that the interrupt handlers might access.

Ensure software uses aligned accesses of the correct size to access MPU registers:

* except for the RASR, it must use aligned word accesses
» for the RASR it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused
regions to prevent any previous region settings from affecting the new MPU setup.

229 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

13.22.9.1 MPU configuration for a microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system,
program the MPU as follows:

Table 13-40. Memory region attributes for a microcontroller

Memory region | TEX C B S Memory type and attributes

Flash memory b000 1 | 0 | 0 | Normal memory, Non-shareable, write-through
Internal SRAM b000 1 0 | 1 | Normal memory, Shareable, write-through

External SRAM b000 1 1 1 | Normal memory, Shareable, write-back, write-allocate
Peripherals b000 0 |1 1 Device memory, Shareable

In most microcontroller implementations, the share ability and cache policy attributes do not
affect the system behavior. However, using these settings for the MPU regions can make the
application code more portable. The values given are for typical situations. In special systems,
such as multiprocessor designs or designs with a separate DMA engine, the share ability attri-
bute might be important. In these cases refer to the recommendations of the memory device
manufacturer.

AImEl@ 223

6430F-ATARM-21-Feb-12

13.23 Glossary

ATMEL

This glossary describes some of the terms used in technical documents from ARM.
Abort

A mechanism that indicates to a processor that the value associated with a memory access is
invalid. An abort can be caused by the external or internal memory system as a result of
attempting to access invalid instruction or data memory.

Aligned

A data item stored at an address that is divisible by the number of bytes that defines the data
size is said to be aligned. Aligned words and halfwords have addresses that are divisible by four
and two respectively. The terms word-aligned and halfword-aligned therefore stipulate
addresses that are divisible by four and two respectively.

Banked register

A register that has multiple physical copies, where the state of the processor determines which
copy is used. The Stack Pointer, SP (R13) is a banked register.

Base register

In instruction descriptions, a register specified by a load or store instruction that is used to hold
the base value for the instruction’s address calculation. Depending on the instruction and its
addressing mode, an offset can be added to or subtracted from the base register value to form
the address that is sent to memory.

See also “Index register”
Breakpoint

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of
register contents, memory locations, variable values at fixed points in the program execution to
test that the program is operating correctly. Breakpoints are removed after the program is suc-
cessfully tested.

Condition field

A four-bit field in an instruction that specifies a condition under which the instruction can
execute.

Conditional execution

If the condition code flags indicate that the corresponding condition is true when the instruction
starts executing, it executes normally. Otherwise, the instruction does nothing.

Context

The environment that each process operates in for a multitasking operating system. In ARM pro-
cessors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

Coprocessor

A processor that supplements the main processor. Cortex-M3 does not support any
COprocessors.

Debugger

224 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

6430F-ATARM-21-Feb-12

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

Direct Memory Access (DMA)

An operation that accesses main memory directly, without the processor performing any
accesses to the data concerned.

Doubleword

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

Doubleword-aligned
A data item having a memory address that is divisible by eight.
Endianness

Byte ordering. The scheme that determines the order that successive bytes of a data word are
stored in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)”
Exception

An event that interrupts program execution. When an exception occurs, the processor suspends
the normal program flow and starts execution at the address indicated by the corresponding
exception vector. The indicated address contains the first instruction of the handler for the
exception.

An exception can be an interrupt request, a fault, or a software-generated system exception.
Faults include attempting an invalid memory access, attempting to execute an instruction in an
invalid processor state, and attempting to execute an undefined instruction.

Exception service routine
See “Interrupt handler”.
Exception vector

See “Interrupt vector”.
Flat address mapping

A system of organizing memory in which each physical address in the memory space is the
same as the corresponding virtual address.

Halfword

A 16-bit data item.

lllegal instruction

An instruction that is architecturally Undefined.
Implementation-defined

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific

AImEl@ 225

ATMEL

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the
option chosen does not affect software compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to
be added to or subtracted from the base register value to form the address that is sent to mem-
ory. Some addressing modes optionally enable the index register value to be shifted prior to the
addition or subtraction.

See also “Base register”

Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.
Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.
Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are config-
ured, that contains the first instruction of the corresponding interrupt handler.

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at
increasing addresses in memory.

See also “Condition field”, “Endianness”.
Little-endian memory
Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the
word at that address

a byte at a halfword-aligned address is the least significant byte within the halfword at that
address.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents,
not directly on memory contents.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline
before the preceding instructions have finished executing. Prefetching an instruction does not
mean that the instruction has to be executed.

Read

Reads are defined as memory operations that have the semantics of a load. Reads include the
Thumb instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

226 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Region
A partition of memory space.
Reserved

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These
fields are reserved for use in future extensions of the architecture or are implementation-specific.
All reserved bits not used by the implementation must be written as 0 and read as 0.

Should Be One (SBO)

Write as 1, or all 1s for bit fields, by software. Writing as 0 produces Unpredictable results.
Should Be Zero (SBZ)

Write as 0, or all Os for bit fields, by software. Writing as 1 produces Unpredictable results.
Should Be Zero or Preserved (SBZP)

Write as 0, or all Os for bit fields, by software, or preserved by writing the same value back that
has been previously read from the same field on the same processor.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when access-
ing shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions
must be halfword-aligned.

Unaligned

A data item stored at an address that is not divisible by the number of bytes that defines the data
size is said to be unaligned. For example, a word stored at an address that is not divisible by
four.

Undefined
Indicates an instruction that generates an Undefined instruction exception.
Unpredictable (UNP)

You cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset

Also known as a core reset. Initializes the majority of the processor excluding the debug control-
ler and debug logic. This type of reset is useful if you are using the debugging features of a
processor.

Word
A 32-bit data item.
Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

AImEl@ 227

6430F-ATARM-21-Feb-12

ATMEL

228 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

14. Debug and Test Features

14.1 Overview

6430F-ATARM-21-Feb-12

The SAM3U Series Microcontrollers feature a number of complementary debug and test
capabilities. The Serial Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port
(SW-DP) and JTAG Debug (JTAG-DP) port is used for standard debugging functions, such as

downloading code and single-stepping through programs. It also embeds a serial wire trace.

Figure 14-1. Debug and Test Block Diagram

L
L

Boundary
TAP

SWJ-DP

ATMEL

[l

TMS

TCK/SWCLK

TDI

JTAGSEL

TDO/TRACESWO

Reset
and
Test

POR

TST

229

ATMEL

14.2 Application Examples

14.2.1 Debug Environment
Figure 14-2 shows a complete debug environment example. The SWJ-DP interface is used for
standard debugging functions, such as downloading code and single-stepping through the pro-
gram and viewing core and peripheral registers.

Figure 14-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM3

SAMS3-based Application Board

14.2.2 Test Environment
Figure 14-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent
and interpreted by the tester. In this example, the “board in test” is designed using a number of
JTAG-compliant devices. These devices can be connected to form a single scan chain.

230 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

Figure 14-3. Application Test Environment Example

Test Adaptor Tester
JTAG
Probe
JTAG .)
Connector | | Chip ny == Chip 2
I
SAMB-based Application Board In Test
14.3 Debug and Test Pin Description
Table 14-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input
SWD/NTAG

TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Output™

Data Out
TMS/SWDIO Test Mode Select/Serial Wire Input

Input/Output
JTAGSEL JTAG Selection Input High

Note: 1. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus an external
pull-up (100 kQ) must be added to avoid current consumption due to floating input.

14.4 Functional Description

14.41 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low
level during power-up, the device is in normal operating mode. When at high level, the device is
in test mode or FFPI mode. The TST pin integrates a permanent pull-down resistor of about
15 k€, so that it can be left unconnected for normal operation. Note that when setting the TST pin

6430F-ATARM-21-Feb-12

ATMEL

231

14.4.2

ATMEL

to low or high level at power up, it must remain in the same state during the duration of the whole
operation.

Debug Architecture

Figure 14-4 shows the Debug Architecture used in the SAM3. The Cortex-M3 embeds four func-
tional units for debug:

e SWJ-DP (Serial Wire/JTAG Debug Port)

¢ FPB (Flash Patch Breakpoint)

* DWT (Data Watchpoint and Trace)

¢ ITM (Instrumentation Trace Macrocell)

¢ TPIU (Trace Port Interface Unit)

The debug architecture information that follows is mainly dedicated to developers of SWJ-DP
Emulators/Probes and debugging tool vendors for Cortex M3-based microcontrollers. For further
details on SWJ-DP see the Cortex M3 technical reference manual.

Figure 14-4. Debug Architecture

DWT

4 watchpoints

PC sampler

data address sampler

data sampler

interrupt trace

CPU statistics

FPB
SWJ-DP
6 breakpoints
SWD/TAG
IT™M
software trace SWO trace
32 channels
TPIU
time stamping

14.4.3

232

Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M3 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It
combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP),
5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables JTAG-DP and enables SW-DP.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asyn-
chronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace
can only be used with SW-DP, not JTAG-DP.

Table 14-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO TMS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI

TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly
between SWJ-DP and JTAG boundary scan operations. A chip reset must be performed after
JTAGSEL is changed.

14.4.3.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-
DP is selected by default after reset.
¢ Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
— Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (Ox79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
* Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (Ox3CE7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

14.4.4 FPB (Flash Patch Breakpoint)
The FPB:
* Implements hardware breakpoints
¢ Patches code and data from code space to system space.
The FPB unit contains:
* Two literal comparators for matching against literal loads from Code space, and remapping to
a corresponding area in System space.

¢ Six instruction comparators for matching against instruction fetches from Code space and
remapping to a corresponding area in System space.

e Alternatively, comparators can also be configured to generate a Breakpoint instruction to the
processor core on a match.

14.45 DWT (Data Watchpoint and Trace)
The DWT contains four comparators which can be configured to generate the following:

¢ PC sampling packets at set intervals
¢ PC or Data watchpoint packets

AImEl@ 233

6430F-ATARM-21-Feb-12

ATMEL

¢ Watchpoint event to halt core
The DWT contains counters for the items that follow:

¢ Clock cycle (CYCCNT)

* Folded instructions

* Load Store Unit (LSU) operations

¢ Sleep Cycles

¢ CPI (all instruction cycles except for the first cycle)
* Interrupt overhead

14.4.6 ITM (Instrumentation Trace Macrocell)
The ITM is an application driven trace source that supports printf style debugging to trace Oper-
ating System (OS) and application events, and emits diagnostic system information. The ITM
emits trace information as packets which can be generated by three different sources with sev-
eral priority levels:

» Software trace: Software can write directly to ITM stimulus registers. This can be done
thanks to the “printf” function. For more information, refer to Section 14.4.6.1 “How to
Configure the ITM”.

* Hardware trace: The ITM emits packets generated by the DWT.

* Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp.

14.4.6.1 How to Configure the ITM
The following example describes how to output trace data in asynchronous trace mode.

* Configure the TPIU for asynchronous trace mode (refer to Section 14.4.6.3 “5.4.3. How to
Configure the TPIU”)

* Enable the write accesses into the ITM registers by writing “OXxC5ACCES5” into the
Lock Access Register (Address: 0xEOOOOFBO)

e Write 0x00010015 into the Trace Control Register:
— Enable ITM
— Enable Synchronization packets
— Enable SWO behavior
— Fixthe ATB ID to 1
* Write 0x1 into the Trace Enable Register:
— Enable the Stimulus port 0
* Write 0x1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will
result in the corresponding stimulus port being accessible in user mode.)

* Write into the Stimulus port 0 register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macro-
cell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

23¢ SAM3U Series sssssssssssssssssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

14.4.6.2

14.4.6.3

14.4.7

14.4.7.1

6430F-ATARM-21-Feb-12

Asynchronous Mode
The TPIU is configured in asynchronous mode, trace data are output using the single TRAC-
ESWO pin. The TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port.
As a consequence, asynchronous trace mode is only available when the Serial Wire Debug
mode is selected since TDO signal is used in JTAG debug mode.

Two encoding formats are available for the single pin output:

¢ Manchester encoded stream. This is the reset value.
* NRZ_based UART byte structure

5.4.3. How to Configure the TPIU
This example only concerns the asynchronous trace mode.

* Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to
enable the use of trace and debug blocks.
* Write 0x2 into the Selected Pin Protocol Register
— Select the Serial Wire Output — NRZ
* Write 0x100 into the Formatter and Flush Control Register

* Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the
baud rate of the asynchronous output (this can be done automatically by the debugging tool).

IEEE 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when FWUP, NRSTB and JTAGSEL are high
while TST is tied low during power-up and must be kept in this state during the whole boundary
scan operation. The SAMPLE, EXTEST and BYPASS functions are implemented. In
SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID that identifies
the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port opera-
tions. A chip reset must be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided on Atmel’s web site to set up the
test.

JTAG Boundary-scan Register
The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins
and associated control signals.

Each SAMS input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit con-
tains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CONTROL bit selects the direction of the pad.

For more information, please refer to BDSL files available for the SAM3U Series.

AImEl@ 235

14.4.8 ID Code Register
Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |

15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

¢ VERSION[31:28]: Product Version Number
Set to 0x0.

e PART NUMBER[27:12]: Product Part Number

Chip Name Chip ID
SAM3U 0x5B2A

e MANUFACTURER IDENTITY[11:1]
Set to Ox01F.

* Bit[0] Required by IEEE Std. 1149.1

Set to 0x1.
Chip Name JTAG ID Code
SAM3U 05B2_A03F

236 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

15. Watchdog Timer (WDT)

15.1 Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds
(slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition,
it can be stopped while the processor is in debug mode or idle mode.

15.2 Block Diagram

Figure 15-1. Watchdog Timer Block Diagram

write WDT_MR
WDT_MR
WDT_CR Wov
|WDRSTT | reload - l

o \1_0;

12-bit Down
Counter
WDT_MR
reload
WDD Current .
Value < 1128 SLCK
A
<=WDD
WDT_MR
1 WDRSTEN
-0
:' N\ wdt_fault
I_J N (to Reset Controller)

\ set

WDLE')) wdt_int
set reset

WDERRI r
read WDT_SR reset WDFIEN
or

reset WDT_MR

AI“IE'.@ 237

6430F-ATARM-21-Feb-12

ATMEL

15.3 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is OxFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer under-
flow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an inter-
rupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer Datasheet. In that case, the processor and the Watchdog Timer are
reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on
the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

238 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

Figure 15-2. Watchdog Behavior

Watchdog Error

Watchdog Underflow

if WDRSTEN is 1
FFF.
Normal behavior if WDRSTEN is 0
WDV \ ~
Forbidden
Window -t
WDD ad
Permitted \ \ \ \
0
Watchd WDT_CR =WDRSTT
o atchdog

Fault

6430F-ATARM-21-Feb-12

ATMEL

SAM3U Series

239

ATMEL

15.4 Watchdog Timer (WDT) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read-write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

240 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

15.4.1 Watchdog Timer Control Register

Register Name: WDT_CR

Address: 0x400E1250

Access Type: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- T - T - -~ T - - — -]
15 14 13 12 11 10 9 8

- T - T - — T - - — T -]
7 4 2 1 0

| - | - | - - | - - - [WDRSTT |

e WDRSTT: Watchdog Restart

0: No effect.

1: Restarts the Watchdog.

e KEY: Password

Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

6430F-ATARM-21-Feb-12

ATMEL

241

15.4.2 Watchdog Timer Mode Register

Register Name: WDT_MR

Address: 0x400E1254

Access Type: Read-write Once
31 30 29 28 27 26 25 24

| | | WDIDLEHLT WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

| WDDIS | wprPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

e WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.

e WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

e WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

e WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

e WDD: Watchdog Delta Value
Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

e WDDBGHLT: Watchdog Debug Halt
0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

e WDIDLEHLT: Watchdog Idle Halt
0: The Watchdog runs when the system is in idle mode.

1: The Watchdog stops when the system is in idle state.

e WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.

1: Disables the Watchdog Timer.

242 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

15.4.3 Watchdog Timer Status Register

Register Name: WDT_SR

Address: 0x400E1258

Access Type: Read-only
31 30 29 28 27 26 25 24

- T - T - — T - — 1 - T -]
23 22 21 20 19 18 17 16

- T - T - -~ T - — [- T -]
15 14 13 12 11 10 9 8

- T - T - — T - — 1 - T -]
7 6 5 4 3 2 1 0

| - [- | - - [- - [WDERR [WDUNF |

e WDUNF: Watchdog Underflow

0: No Watchdog underflow occurred since the last read of WDT_SR.

1: At least one Watchdog underflow occurred since the last read of WDT_SR.

¢ WDERR: Watchdog Error

0: No Watchdog error occurred since the last read of WDT_SR.

1: At least one Watchdog error occurred since the last read of WDT_SR.

6430F-ATARM-21-Feb-12

ATMEL

243

ATMEL

244 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

16. Reset Controller (RSTC)

16.1 Overview

The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the sys-
tem without any external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the
peripheral and processor resets.

16.2 Block Diagram

Figure 16-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset >

——> rstc_irq

vddcore_nreset >

Reset > proc_nreset
user_reset State
NRST Manager
NRST 9 .
D > periph_nreset
Manager
nrst_out
exter_nreset

WDRPROC

wd_fault >

SLCK

16.3 Functional Description

16.3.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at

Slow Clock and generates the following reset signals:
* proc_nreset: Processor reset line. It also resets the Watchdog Timer.
* periph_nreset: Affects the whole set of embedded peripherals.
* nrst_out: Drives the NRST pin.

These reset signals are asserted by the Reset Controller, either on external events or on soft-
ware action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.

AImEl@ 245

6430F-ATARM-21-Feb-12

ATMEL

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Con-
troller, is powered with VDDBU, so that its configuration is saved as long as VDDBU is on.

16.3.2 NRST Manager

The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 16-2 shows the block diagram of the NRST Manager.

Figure 16-2. NRST Manager

RSTC_MR
RSTC_ SR URSTIEN
URSTS

—> rstc_irq
NRSTL | rsTC_MR Other [2

interrupt
URSTEN sources
4| >» user_reset

NRST RSTC_MR
Dﬁ ERSTL
| nrst_out

I External Reset Timer l«—————— exter_nreset

16.3.2.1 NRST Signal or Interrupt
The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low,
a User Reset is reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of
NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a
reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.

16.3.2.2 NRST External Reset Control
The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts
2(ERSTL+1) Slow Clock cycles. This gives the approximate duration of an assertion between 60 ps
and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the
system power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.

246 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

Please note that the NRST output is in high impedance state when the chip is in OFF mode.

16.3.3 Brownout Manager

The Brownout manager is embedded within the Supply Controller, please refer to the Supply
Controller section for a detailed description.

16.3.4 Reset States

The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.

16.3.4.1 General Reset
A general reset occurs when a Power-on-reset is detected, an Asynchronous Master Reset
(NRSTB pin) is requested, a Brownout or a Voltage regulation loss is detected by the Supply
controller. The vddcore_nreset signal is asserted by the Supply Controller when a general reset
occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset.
As the RSTC_MR is reset, the NRST line rises 2 cycles after the vddcore_nreset, as ERSTL
defaults at value 0x0.

Figure 16-3 shows how the General Reset affects the reset signals.

Figure 16-3. General Reset State

appepey inininininipipininiiininl

backup_nreset

=2 cycles
proc_nreset < >

RSTTYP XXX 0x0 = General Reset XXX

periph_nreset

NRST
(nrst_out)

]
|
P S S S
]
i
j

<
<

EXTERNAL RESET LENGTH
=2 cycles

Y

AI“IE'.@ 247

6430F-ATARM-21-Feb-12

ATMEL

16.3.4.2 Backup Reset

16.3.4.3 User Reset

A Backup reset occurs when the chip returns from Backup mode. The vddcore_nreset signal is
asserted by the Supply Controller when a Backup reset occurs.

The field RSTTYP in RSTC_SR is updated to report a Backup Reset.

The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in
RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behav-
ior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset
and the Peripheral Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle
processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. How-
ever, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.

Figure 16-4. User Reset State

se« L[LI LMLy g

MCK

NRST

proc_nreset

RSTTYP

periph_nreset

Any
Freq.

-\

/

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2 cycles
> < >l >

< -t .

Any XXX 0x4 = User Reset

S
(nrs’t\liug /
- >= EXTERNAL RESET LENGTHF
248 SAM3U Series masssssss——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

16.3.4.4 Software Reset

6430F-ATARM-21-Feb-12

The Reset Controller offers several commands used to assert the different reset signals. These
commands are performed by writing the Control Register (RSTC_CR) with the following bits at
1:

* PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

* PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.

e EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these com-
mands can be performed independently or simultaneously. The software reset lasts 3 Slow
Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is
detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; syn-
chronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in
RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Prog-
ress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left.
No other software reset can be performed while the SRCMP bit is set, and writing any value in
RSTC_CR has no effect.

AImEl@ 249

Figure 16-5. Software Reset

SLCK

MCK

Write RSTC_CR

proc_nreset
if PROCRST=1

RSTTYP

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1

SRCMP in RSTC_SR

16.3.4.5

250

5 I 6 B S R O R

Any
Freq.

o C

Resynch|Processor Startup
1 cycle =2 cycles
Any XXX 0x3 = Software Reset

S XK A D

A

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

Y

S

Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock
cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR:

¢ If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.
¢ [f WDRPROC = 1, only the processor reset is asserted.
The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset, and the Watchdog is enabled by default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

SAM3U Series

Figure 16-6. Watchdog Reset

s LTI L L L L L L
[L
N

Any
MCK Freq.

1]

wd_fault /

Processor Startup|
2cycles

proc_nreset /

RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC = 0

NRST
(nrst_out)

A
A

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

16.3.5 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,

given in descending order:
* General Reset
¢ Backup Reset
¢ Watchdog Reset
* Software Reset
* User Reset
Particular cases are listed below:

e When in User Reset:

— A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.

— A software reset is impossible, since the processor reset is being activated.
¢ When in Software Reset:
— A watchdog event has priority over the current state.
— The NRST has no effect.
* When in Watchdog Reset:
— The processor reset is active and so a Software Reset cannot be programmed.
— A User Reset cannot be entered.

16.3.6 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

* RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

AImEl@ 251

6430F-ATARM-21-Feb-12

ATMEL

* SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.

* NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.

e URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
16-7). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the
URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an interrupt. Reading the
RSTC_SR status register resets the URSTS bit and clears the interrupt.

Figure 16-7. Reset Controller Status and Interrupt

weo [LT L LU L O Loy L L
read
Peripheral Access RSTC SR
2 cycle 2 cycle
resync¢hronizatipn resynchionizatior
NRST _\/‘f\ /——\
NRSTL
URSTS /
rstc_irq
if (URSTEN = 0) and
(URSTIEN = 1) —
252 SAM3U Series masssssss——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

16.4 Reset Controller (RSTC) User Interface

Table 16-1. Register Mapping
Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -
0x04 Status Register RSTC_SR Read-only 0x0000_0000
0x08 Mode Register RSTC_MR Read-write 0x0000_0000

6430F-ATARM-21-Feb-12

ATMEL

253

16.4.1 Reset Controller Control Register

Name: RSTC_CR

Address: 0x400E1200

Access Type: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I I - |
7 6 5 4 3 2 1 0

| = | - | - | - [EXTRST | PERRST | - [PROCRST |

e PROCRST: Processor Reset
0 = No effect.

1 = If KEY is correct, resets the processor.
¢ PERRST: Peripheral Reset

0 = No effect.

1 = If KEY is correct, resets the peripherals.
e EXTRST: External Reset

0 = No effect.

1 = If KEY is correct, asserts the NRST pin.

* KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

254 SAMSU Series s —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

16.4.2 Reset Controller Status Register

Name: RSTC_SR
Address: 0x400E1204
Access Type: Read-only

31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
| - | - | - | - | - | - |SRCMP | NRSTL |
15 14 13 12 11 10 9 8
I - I - I - I - I - I RSTTYP |
7 6 5 4 3 2 1 0
- 1 - T - T - T - T = - URSTS]

* URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.

1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

e RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

RSTTYP Reset Type Comments
0 0 0 General Reset First power-up Reset
0 0 1 Backup Reset Return from Backup mode
0 1 0 Watchdog Reset Watchdog fault occurred
0 1 1 Software Reset Processor reset required by the software
1 0 0 User Reset NRST pin detected low

e NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

¢ SRCMP: Software Reset Command in Progress
0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

AImEl@ 255

6430F-ATARM-21-Feb-12

ATMEL

16.4.3 Reset Controller Mode Register
Name: RSTC_MR
Address: 0x400E1208
Access Type: Read-write
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
I - I - I - I - I ERSTL |
7 6 5 4 3 2 1 0
| - | - | | URSTIEN | - - - URSTEN |
e URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.
1 = The detection of a low level on the pin NRST triggers a User Reset.
¢ URSTIEN: User Reset Interrupt Enable
0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.
1 = USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.
e ERSTL: External Reset Length
ERSTL+1

This field defines the external reset length. The external reset is asserted during a time of 2!
allows assertion duration to be programmed between 60 ys and 2 seconds.

¢ KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

256

) Slow Clock cycles. This

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

17. Real-time Timer (RTT)

17.1 Description

The Real-time Timer is built around a 32-bit counter used to count roll-over events of the pro-
grammable 16-bit prescaler which enables counting elapsed seconds from a 32 kHz slow clock
source. It generates a periodic interrupt and/or triggers an alarm on a programmed value.

17.2 Embedded Characteristics

¢ 32-bit Free-running Counter on prescaled slow clock

* 16-bit Configurable Prescaler
e Interrupt on Alarm

17.3 Block Diagram

Figure 17-1. Real-time Timer

RTT_MR RTT_MR
| RTTRSTl |RTPRES

reload

SLCK | 16-bit

Divider

0

RTT_MR l

—

RTTRST [—\ 1

IO/

> Counter

32-bit

RTT_VR

RTT_AR

set

RTT_SR
reset

read ¢

RTT_SR

reset
RTT_SR

> set

RTT_MR

RTTINCIEN

[Frmne |

rtt_int

] —

RTT_MR

ALMIEN

6430F-ATARM-21-Feb-12

ATMEL

rtt_alarm

257

ATMEL

17.4 Functional Description

258

The Real-time Timer can be used to count elapsed seconds. It is built around a 32-bit counter
fed by Slow Clock divided by a programmable 16-bit value. The value can be programmed in the
field RTPRES of the Real-time Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz
signal (if the Slow Clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corre-
sponding to more than 136 years, then roll over to 0.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best
accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but
may result in losing status events because the status register is cleared two Slow Clock cycles
after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow
Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the
interrupt must be disabled in the interrupt handler and re-enabled when the status register is
clear.

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time
Value Register). As this value can be updated asynchronously from the Master Clock, it is advis-
able to read this register twice at the same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register
RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
RTT_SR is set. The alarm register is set to its maximum value, corresponding to OxFFFF_FFFF,
after a reset.

The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit
can be used to start a periodic interrupt, the period being one second when the RTPRES is pro-
grammed with 0x8000 and Slow Clock equal to 32.768 Hz.

Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the
new programmed value. This also resets the 32-bit counter.

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2
slow clock cycles after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the
RTT_SR (Status Register).

SAMSIU S eri e S e —

6430F-ATARM-21-Feb-12

SAM3U Series

Figure 17-2. RTT Counting

APB cycle APB cycle
<> <>
o (WUUUUTIYUUUTTUUUUUT UYL
RTPRES - 1
1
Prescaler / / / /
0] 1
RTT 0 Amvit X aumy [Xatmvar X a2 [aimy+a
RTTINC (RTT_SR) / /
ALMS (RTT_SR) / N
APB Interface LN
read RTT_SR

AImEl@ 259

6430F-ATARM-21-Feb-12

17.5 Real-time Timer (RTT) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read-write 0x0000_8000
0x04 Alarm Register RTT_AR Read-write OxFFFF_FFFF
0x08 Value Register RTT_VR Read-only 0x0000_0000
0x0C Status Register RTT_SR Read-only 0x0000_0000

260 SAMSIU S eri e S e —

6430F-ATARM-21-Feb-12

EEEssssssssssssssssssseeeeeeeeeeeeesssssssss SAM3U Series

17.5.1 Real-time Timer Mode Register
Name: RTT_MR

Address: 0x400E1230

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | RTTRST | RTTINCIEN | ALMIEN |
15 14 13 12 11 10 9 8

| RTPRES |
7 6 5 4 3 2 1 0

| RTPRES |

¢ RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 2'® * SCLK period.
RTPRES = 0: The prescaler period is equal to RTPRES * SCLK period.
e ALMIEN: Alarm Interrupt Enable

0 = The bit ALMS in RTT_SR has no effect on interrupt.

1 = The bit ALMS in RTT_SR asserts interrupt.

¢ RTTINCIEN: Real-time Timer Increment Interrupt Enable

0 =The bit RTTINC in RTT_SR has no effect on interrupt.

1 = The bit RTTINC in RTT_SR asserts interrupt.

e RTTRST: Real-time Timer Restart

0 = No effect.

1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

AImEl@ 261

6430F-ATARM-21-Feb-12

17.5.2 Real-time Timer Alarm Register
Name: RTT_AR

Address: 0x400E1234

Access: Read-write
31 30 29 28 27 26 25 24
| ALMV |
23 22 21 20 19 18 17 16
| ALMV |
15 14 13 12 11 10 9 8
| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

e ALMYV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.

262 SAM3U Series messssssssssssssss——
6430F—ATARM-21-Feb-12

EEEssssssssssssssssssseeeeeeeeeeeeesssssssss SAM3U Series

17.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1238

Access: Read-only
31 30 29 28 27 26 25 24

| CRTV |
23 22 21 20 19 18 17 16

| CRTV |
15 14 13 12 11 10 9 8

| CRTV |
7 6 5 4 3 2 1 0

| CRTV |

e CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

6430F-ATARM-21-Feb-12

ATMEL

263

EEEssssssssssssssssssseeeeeeeeeeeeesssssssss SAM3U Series

17.5.4 Real-time Timer Status Register
Name: RTT_SR

Address: 0x400E123C

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| — | — | — | - | - | - | RTTINC| ALMS |

e ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.

1 = The Real-time Alarm occurred since the last read of RTT_SR.
¢ RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.

1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

ATMEL

6430F-ATARM-21-Feb-12

264

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

18. Real Time Clock (RTC)

18.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian calen-
dar, complemented by a programmable periodic interrupt. The alarm and calendar registers are
accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format
can be 24-hour mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.

18.2 Block Diagram

Figure 18-1. RTC Block Diagram

Slow Clock: SLCK 32768 Divider Time Date
Bus Interface «@mm==Pp| Bus Interface |«= % % —p
Entry Interrupt RTC Interrupt
Control Control

18.3 Product Dependencies

18.3.1 Power Management
The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.

18.3.2 Interrupt
RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC
interrupt requires the interrupt controller to be programmed first.

AImEl@ 265

6430F-ATARM-21-Feb-12

ATMEL

18.4 Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar.
The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years). This is correct
up to the year 2099.

18.4.1 Reference Clock
The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768
kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical.
The crystal selection has to take into account the current consumption for power saving and the
frequency drift due to temperature effect on the circuit for time accuracy.

18.4.2 Timing
The RTC is updated in real time at one-second intervals in normal mode for the counters of sec-
onds, at one-minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain
that the value read in the RTC registers (century, year, month, date, day, hours, minutes, sec-
onds) are valid and stable, it is necessary to read these registers twice. If the data is the same
both times, then it is valid. Therefore, a minimum of two and a maximum of three accesses are
required.

18.4.3 Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:
* If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.
¢ If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to
the user ranging from minutes to 365/366 days.

18.4.4 Error Checking
Verification on user interface data is performed when accessing the century, year, month, date,
day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries such as
illegal date of the month with regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is
set in the validity register. The user can not reset this flag. It is reset as soon as an acceptable
value is programmed. This avoids any further side effects in the hardware. The same procedure
is done for the alarm.

The following checks are performed:

1. Century (check if it is in range 19 - 20)
2. Year (BCD entry check)

266 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Date (check range 01 - 31)
Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
Day (check range 1 - 7)

Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is
not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)
8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be pro-
grammed and the returned value on RTC_TIME will be the corresponding 24-hour value. The
entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIME register) to determine
the range to be checked.

ook~ w

18.4.5 Updating Time/Calendar

6430F-ATARM-21-Feb-12

To update any of the time/calendar fields, the user must first stop the RTC by setting the corre-
sponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Regis-
ter. Once the bit reads 1, it is mandatory to clear this flag by writing the corresponding bit in
RTC_SCCR. The user can now write to the appropriate Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When
entering the programming mode of the time fields, both time and calendar fields are stopped.
This is due to the location of the calendar logic circuity (downstream for low-power consider-
ations). It is highly recommended to prepare all the fields to be updated before entering
programming mode. In successive update operations, the user must wait at least one second
after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting
UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

AImEl@ 267

A “'|||E|%D O

Figure 18-2. Update Sequence
Begin

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<€
Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=17
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC_CR

End

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

18.5 Real Time Clock (RTC) User Interface

Table 18-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RTC_CR Read-write 0x0
0x04 Mode Register RTC_MR Read-write 0x0
0x08 Time Register RTC_TIMR Read-write 0x0
0x0C Calendar Register RTC_CALR Read-write 0x01210720
0x10 Time Alarm Register RTC_TIMALR Read-write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0

0x30-0xEO Reserved Register - - -
OxE4 Write Protect Mode Register RTC_WPMR Read-write 0x00000000

OxE8-0xF8 Reserved Register - - -
OxFC Reserved Register - - -

Note: if an offset is not listed in the table it must be considered as reserved.

6430F-ATARM-21-Feb-12

ATMEL

269

ATMEL

18.5.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1260

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - [- [- [TIMEVSEL |
7 6 5 4 3 2 1 0

| _ [_ [_ [— [= | - | upbcAL | upDTIM |

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 282.
* UPDTIM: Update Request Time Register

0 = No effect.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

e UPDCAL: Update Request Calendar Register
0 = No effect.

1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.

e TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon

e CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)
3 —

270 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

18.5.2 RTC Mode Register

Name: RTC_MR
Address: 0x400E1264
Access: Read-write
31 30 29 28 27 26 25 24
T -1 - - - -]
23 22 21 20 19 18 17 16
T 71 - - - —]
15 14 13 12 11 10
I S S - —]
7 6 0
- T - T — - - — [nawop |

e HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

All non-significant bits read zero.

6430F-ATARM-21-Feb-12

ATMEL

271

ATMEL

18.5.3 RTC Time Register

Name: RTC_TIMR

Address: 0x400E1268

Access: Read-write
31 30 29 28 27 26 25 24

I R - - - -]
23 22 21 20 19 18 17 16

| — | Awpm | HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| - | SEC |

e SEC: Current Second
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e MIN: Current Minute
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e HOUR: Current Hour
The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

e AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.

0=AM.
1=PM.

All non-significant bits read zero.

272 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

s SAM3U Series

18.5.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E126C

Access: Read-write
31 30 29 28 27 26 25 24

| - | - | DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| - | CENT |

e CENT: Current Century
The range that can be set is 19 - 20 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e MONTH: Current Month
The range that can be set is 01 - 12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e DAY: Current Day in Current Week
The range that can be setis 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

e DATE: Current Day in Current Month
The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

AIMEL 273

6430F-ATARM-21-Feb-12

ATMEL

18.5.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: 0x400E1270

Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| HOUREN | AmpPm | HOUR |
15 14 13 12 11 10 9 8

[MINEN | MIN |
7 6 5 4 3 2 1 0

[SECEN | SEC |

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 282.

e SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

e SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.

1 = The second-matching alarm is enabled.

¢ MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

¢ MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.

1 = The minute-matching alarm is enabled.

¢ HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

e AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

e HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

274 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

18.5.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1274

Access: Read-write
31 30 29 28 27 26 25 24

| DATEEN | — | DATE |
23 22 21 20 19 18 17 16

| MTHEN | - | - MONTH |
15 14 13 12 11 10 9 8

I = I = I - - I = I = - I - |
7 6 5 4 3 2 1 0

This register can only be written if the WPEN bit is cleared in “RTC Write Protect Mode Register” on page 282.

¢ MONTH: Month Alarm

This field is the alarm field corresponding to the BCD-coded month counter.

¢ MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.

1 = The month-matching alarm is enabled.

e DATE: Date Alarm

This field is the alarm field corresponding to the BCD-coded date counter.

e DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

6430F-ATARM-21-Feb-12

ATMEL

275

18.5.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1278

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [_ | - | cAlev | TMEV | SEC | ALARM | AckupD |

e ACKUPD: Acknowledge for Update
0 = Time and calendar registers cannot be updated.

1 = Time and calendar registers can be updated.

e ALARM: Alarm Flag
0 = No alarm matching condition occurred.

1 = An alarm matching condition has occurred.

e SEC: Second Event
0 = No second event has occurred since the last clear.

1 = At least one second event has occurred since the last clear.

e TIMEV: Time Event
0 = No time event has occurred since the last clear.

1 = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).

e CALEV: Calendar Event
0 = No calendar event has occurred since the last clear.

1 = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

276 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

18.5.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E127C

Access: Write-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1}
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | cActR | TmMCLR | SECCLR | ALRCLR | ACKCLR |

0 = No effect.

ACKCLR: Acknowledge Clear

1 = Clears corresponding status flag in the Status Register (RTC_SR).

e ALRCLR: Alarm Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

0 = No effect.

SECCLR: Second Clear

1 = Clears corresponding status flag in the Status Register (RTC_SR).

¢ TIMCLR: Time Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

CALCLR: Calendar Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

6430F-ATARM-21-Feb-12

ATMEL

277

18.5.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1280

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

[- [- | - | CALEN | TIMEN [SECEN | ALREN | ACKEN |

ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.

e ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

¢ TIMEN: Time Event Interrupt Enable
0 = No effect.

1 = The selected time event interrupt is enabled.

e CALEN: Calendar Event Interrupt Enable
0 = No effect.

* 1 =The selected calendar event interrupt is enabled.

278 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

18.5.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1284

Access: Write-only
31 30 29 28 27 26 25 24

. - r - r - r -+ - 1 - @ - [- |
23 22 21 20 19 18 17 16

. - r - r - -+ - ;r - ¢ - [- |
15 14 13 12 11 10 9 8

| - | - I - | - | - | - | - | - |
7 6 5 4 3 2 1 0

| - | — | - | cabis | Twmpis [secDis | ALRDIS | ACKDIS |

ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.

1 = The alarm interrupt is disabled.

1 = The second periodic interrupt is disabled.

e TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

ALRDIS: Alarm Interrupt Disable
0 = No effect.

SECDIS: Second Event Interrupt Disable
0 = No effect.

CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

6430F-ATARM-21-Feb-12

ATMEL

279

18.5.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1288

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | CAL | TIM | SEC | ALR | ACK |

¢ ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

e ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

e SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

¢ TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

e CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

280 SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

18.5.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E128C

Access: Read-only
31 30 29 28 27 26 25 24

r - - r - r - r - 1 - [- [- /]
23 22 21 20 19 18 17 16

. - - r - r - r - 1 - | - | - /]
15 14 13 12 11 10 9 8

. - - ¢ - - r -’ - {r - [- /]
7 6 5 4 3 2 1 0

| - | - | - | - | NVCALALR [NVTIMALR | NvCAL | NvTIM |

¢ NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 = RTC_TIMR has contained invalid data since it was last programmed.

* NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

* NVTIMALR: Non-valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

e NVCALALR: Non-valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 = RTC_CALALR has contained invalid data since it was last programmed.

ATMEL

6430F-ATARM-21-Feb-12

281

18.5.13 RTC Write Protect Mode Register
Name: RTC_WPMR

Address: 0x400E1344

Access: Read-write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

= 1 - 1 = 1 = [= 1 = T = T W]

¢ WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII).
Protects the registers:

“RTC Mode Register” on page 271

“RTC Time Alarm Register” on page 274

“RTC Calendar Alarm Register” on page 275

282 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

19. Supply Controller (SUPC)

19.1 Description
The Supply Controller (SUPC) controls the supply voltage of the Core of the system and man-
ages the Backup Low Power Mode. In this mode, the current consumption is reduced to a few
microamps for Backup power retention. Exit from this mode is possible on multiple wake-up
sources including events on FWUP or WKUP pins, or a Clock alarm. The SUPC also generates
the Slow Clock by selecting either the Low Power RC oscillator or the Low Power Crystal
oscillator.

19.2 Embedded Characteristics

* Manages the Core Power Supply VDDCORE and the Backup Low Power Mode by
Controlling the Embedded Voltage Regulator

* Generates the Slow Clock SLCK, by Selecting Either the 22-42 kHz Low Power RC Oscillator
or the 32 kHz Low Power Crystal Oscillator

¢ Supports Multiple Wake Up Sources, for Exit from Backup Low Power Mode
— Force Wake Up Pin, with Programmable Debouncing
— 16 Wake Up Inputs, with Programmable Debouncing
— Real Time Clock Alarm
— Real Time Timer Alarm

— Supply Monitor Detection on VDDUTMI, with Programmable Scan Period and
Voltage Threshold

¢ A Supply Monitor Detection on VDDUTMI or a Brownout Detection on VDDCORE can Trigger
a Core Reset

* Embeds:
— One 22 to 42 kHz Low Power RC Oscillator
— One 32 kHz Low Power Crystal Oscillator
— One Zero-Power Power-On Reset Cell

— One Software Programmable Supply Monitor, on VDDUTMI Located in Backup
Section

— One Brownout Detector on VDDCORE Located in the Core

AImEl@ 283

6430F-ATARM-21-Feb-12

ATMEL

19.3 Block Diagram

Figure 19-1. Supply Controller Block Diagram

VDDBU VDDIN

T Software Controlled VhDOUT
vr_vdd oftware Controlle
FWLS vr_deep Voltage Regulator | I- e
B 1
SHDN 1
< WKUPO - WKUP15
NRSTB Supply 1
Controller VDDIO 1
1
1
PIOABIC
Input/ Output Buffers RIOx 1
Zero-Power 1
Power-on Reset 1
VDDANA .
I D 1
1
General Purpose 1
: ADVREF
Backup Registers ADC (front-end) _D 1
1
SLCK RTC rtc_alarm i .
— VDDUTMI
Supply 1
sm_on Monitor I 1
. 1
SLCK rtt_alarm 1
.RTT | I
usB USBx 1
1
1
0sc32k_xtal_en 1
vddcore_nreset VDDCORE I
XTALSEL
XING2 Xtal 32 kHZ -
Oscillator
XOUT32
bodcore_on Brownout
Embedded bodcore_in Detector
32kHz RC _rc_ supc_interrupt
Oscillator
<

<> SRAM e

Backup Power Supply

Peripherals [

—> proc_nreset
vddcore_nreset Reset PR = i
= Controller [periph_nreset Cortex-M3 Matrix

—> ice_nreset
NRST | |‘ = - _ | Peripheral

e Bridge

FSTTO - FSTT150) D > [<€@=P>| Flash
Embedded SLCK—>
12/8/4 MHz N
RC Main Clock o Sk
Oscillator MAINCK Power as't;éK ocl
1
N s oo |, ¥ Gonvoller
XOUT D XTAL Oscillator
MAINCK PLLACK Watchdog
PLLA SlE— Timer
MAINCK UPLL UPLLCK Core Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins,
but are not physical pins.

284 SAM3U Series messssssssssssssss——
6430F—ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

19.4 Supply Controller Functional Description

19.4.1 Supply Controller Overview
The device can be divided into two power supply areas:

* The Backup VDDBU Power Supply: including the Supply Controller, a part of the Reset
Controller, the Slow Clock switch, the General Purpose Backup Registers, the Supply
Monitor and the Clock which includes the Real Time Timer and the Real Time Clock

e The Core Power Supply: including the other part of the Reset Controller, the Brownout
Detector, the Processor, the SRAM memory, the FLASH memory and the Peripherals

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC
intervenes when the VDDUTMI power supply rises (when the system is starting) or when the
Backup Low Power Mode is entered.

The SUPC also integrates the Slow Clock generator which is based on a 32 kHz crystal oscilla-
tor and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the
software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller and the VDDUTMI power supply have a reset circuitry based on the
NRSTB pin and a zero-power power-on reset cell. The zero-power power-on reset allows the
SUPC to start properly as soon as the VDDUTMI voltage becomes valid. The NRSTB pin allows
to reset the system from outside.

At startup of the system, once the backup voltage VDDUTMI is valid and the reset pin NRSTB is
not driven low and the embedded 32 kHz RC oscillator is stabilized, the SUPC starts up the core
by sequentially enabling the internal Voltage Regulator, waiting that the core voltage VDDCORE
is valid, then releasing the reset signal of the core “vddcore_nreset” signal.

Once the system has started, the user can program a supply monitor and/or a brownout detec-
tor. If the supply monitor detects a voltage on VDDUTMI that is too low, the SUPC can assert the
reset signal of the core “vddcore_nreset” signal until VDDUTMI is valid. Likewise, if the brownout
detector detects a core voltage VDDCORE that is too low, the SUPC can assert the reset signal
“vddcore_nreset” until VDDCORE is valid.

When the Backup Low Power Mode is entered, the SUPC sequentially asserts the reset signal
of the core power supply “vddcore_nreset” and disables the voltage regulator, in order to supply
only the VDDUTMI power supply. In this mode the current consumption is reduced to a few
microamps for Backup part retention. Exit from this mode is possible on multiple wake-up
sources including an event on FWUP pin or WKUP pins, or a Clock alarm. To exit this mode, the
SUPC operates in the same way as system startup.

AImEl@ 285

6430F-ATARM-21-Feb-12

19.4.2

19.4.3

286

ATMEL

Slow Clock Generator

The Supply Controller embeds a slow clock generator that is supplied with the VDDUTMI power
supply. As soon as the VDDUTMI is supplied, both the crystal oscillator and the embedded RC
oscillator are powered up, but only the embedded RC oscillator is enabled. This allows the slow
clock to be valid in a short time (about 100 ps).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more
accurate frequency. The command is made by writing the Supply Controller Control Register
(SUPC_CR) with the XTALSEL bit at 1. This results in a sequence which first enables the crystal
oscillator, then waits for 32,768 slow clock cycles, then switches the slow clock on the output of
the crystal oscillator and then disables the RC oscillator to save power. The switch of the slow
clock source is glitch free. The OSCSEL bit of the Supply Controller Status Register (SUPC_SR)
allows knowing when the switch sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDUTMI power supply.

If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left
unconnected.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of
the XIN32 pin are given in the product electrical characteristics section. In order to set the
bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs
to be set at 1.

Voltage Regulator Control/Backup Low Power Mode

The Supply Controller can be used to control the embedded 1.8V voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load
current. Please refer to the electrical characteristics section.

The programmer can switch off the voltage regulator, and thus put the device in Backup mode,
by writing the Supply Controller Control Register (SUPC_CR) with the VROFF bit at 1.

This can be done also by using WFE (Wait for Event) Cortex-M3 instruction with the deep mode
bit set to 1.

The Backup mode can also be entered by executing the WFI (Wait for Interrupt) or WFE (Wait for
Event) Cortex-M3 instructions. To select the Backup mode entry mechanism, two options are
available, depending on the SLEEPONEXIT bit in the Cortex-M3 System Control register:
¢ Sleep-now: if the SLEEPONEXIT bit is cleared, the device enters Backup mode as soon as
the WFI or WFE instruction is executed.

¢ Sleep-on-exit: if the SLEEPONEXIT bit is set when the WFI instruction is executed, the
device enters Backup mode as soon as it exits the lowest priority ISR.

This asserts the vddcore_nreset signal after the write resynchronization time which lasts, in the
worse case, two slow clock cycles. Once the vddcore_nreset signal is asserted, the processor
and the peripherals are stopped one slow clock cycle before the core power supply shuts off.

When the user does not use the internal voltage regulator and wants to supply VDDCORE by an
external supply, it is possible to disable the voltage regulator. Note that it is different from the
Backup mode. Depending on the application, disabling the voltage regulator can reduce power
consumption as the voltage regulator input (VDDIN) is shared with the ADC and DAC. This is
done through ONREG bit in SUPC_MR.

SAMSIU S eri e S e —

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

19.44 Using Backup Batteries/Backup Supply

6430F-ATARM-21-Feb-12

The product can be used with or without backup batteries, or more generally a backup supply.
When a backup supply is used (See Figure 19-2), only VDDBU voltage is present in Backup
mode and no other external supply is applied on the chip. In this case the user needs to clear
VDDIORDY bit in the Supply Controller Mode Register (SUPC_MR) at least two slow clock peri-
ods before VDDIO voltage is removed. When waking up from Backup mode, the programmer
needs to set VDDIORDY.

Figure 19-2. Separated Backup Supply Powering Scheme
FWUP III:
SHDN E:l

Backup Batteries VDDBU :
' :
VDDUTMI |1—|

E—

VDDANA
——{]

VDDIO .
— (]
/ VDDIN |I|
. : Voltage
Main Supply (1.8V-3.6V) ! Regulator

VDDOUT

I

VDDCORE [E:l

VDDPLL I_T_l:

Note: Restrictions: With Main Supply < 3V, some peripherals such as USB and ADC might not be oper-
ational. Refer to the DC Characteristics of the product for actual possible ranges for such
peripherals.

When a separated backup supply for VDDBU is not used (See Figure 19-3), since the external

voltage applied on VDDIO is kept, all of the I/O configurations (i.e. WKUP pin configuration) are

kept during backup mode. When not using backup batteries, VDDIORDY is set so the user does
not need to program it.

AImEl@ 287

ATMEL

Figure 19-3. No Separated Backup Supply Powering Scheme

VDDBU
—{]

VDDUTMI —
—{]
VDDANA
—]

VDDIO .
— [

Main Supply (1.8V-3.6V) VDDIN D
IIII '
' Voltage
i Regulator
VDDOUT I:Ej

VDDCORE m

VDDPLL I_T_l:

Note: Restrictions: With Main Supply < 3V, some peripherals such as USB and ADC might not be oper-
ational. Refer to the DC Characteristics of the product for actual possible ranges for such
peripherals.

19.45 Supply Monitor
The Supply Controller embeds a supply monitor which is located in the VDDBU Backup Power
Supply and which monitors VDDUTMI power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state
if the Main power supply drops below a certain level.

The threshold of the supply monitor is programmable. It can be selected from 1.9V to 3.4V by
steps of 100 mV. This threshold is programmed in the SMTH field of the Supply Controller Sup-
ply Monitor Mode Register (SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32,
256 or 2048 slow clock periods, according to the choice of the user. This can be configured by
programming the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times allows to divide the typical supply monitor
power consumption respectively by factors of 32, 256 or 2048, if the user does not need a con-
tinuous monitoring of the VDDUTMI power supply.

288 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

A supply monitor detection can either generate a reset of the core power supply or a wake up of
the core power supply. Generating a core reset when a supply monitor detection occurs is
enabled by writing the SMRSTEN bit to 1 in SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by
programming the SMEN bit to 1 in the Supply Controller Wake Up Mode Register
(SUPC_WUMR).

The Supply Controller provides two status bits in the Supply Controller Status Register for the
supply monitor which allows to determine whether the last wake up was due to the supply
monitor:

* The SMOS bit provides real time information, which is updated at each measurement cycle
or updated at each Slow Clock cycle, if the measurement is continuous.

¢ The SMS bit provides saved information and shows a supply monitor detection has occurred
since the last read of SUPC_SR.

The SMS bit can generate an interrupt if the SMIEN bit is set to 1 in the Supply Controller Supply
Monitor Mode Register (SUPC_SMMR).

Figure 19-4. Supply Monitor Status Bit and Associated Interrupt

| | A Continuous Sampling (SMSMPL = 1)

Supply Monitor ON ! [] [|4 Periodic Sampling []

SMS and SUPC interrupt

6430F-ATARM-21-Feb-12

|
Threshold 'f\

3.3V

oV

l Read SUPC_SR

AI“"E',® 289

ATMEL

19.4.6 Backup Power Supply Reset

19.4.6.1 Raising the Backup Power Supply
As soon as the backup voltage VDDUTMI rises, the RC oscillator is powered up and the zero-
power power-on reset cell maintains its output low as long as VDDUTMI has not reached its tar-
get voltage. During this time, the Supply Controller is entirely reset. When the VDDUTMI voltage
becomes valid and zero-power power-on reset signal is released, a counter is started for 5 slow
clock cycles. This is the time it takes for the 32 kHz RC oscillator to stabilize.

After this time, the SHDN pin is asserted and the voltage regulator is enabled. The core power
supply rises and the brownout detector provides the bodcore_in signal as soon as the core volt-
age VDDCORE is valid. This results in releasing the vddcore_nreset signal to the Reset
Controller after the bodcore_in signal has been confirmed as being valid for at least one slow
clock cycle.

Figure 19-5. Raising the VDDUTMI Power Supply

7 x Slow Clock Cycles Ton Voltage 3 x Slow Clock 3 x Slow Clock 6.5 x Slow Clock
Regulator Cycles Cycles Cycles

uUuuryryryry gy Ly e

Backup Power Supply R—

Zero-Power Power-On
Reset Cell output A

|
|
|
|
Zero-Power POR |
|
|
|
|

22 -42 kHz RC / ”lll”ll”

Oscillator output M

T I

SHDN / vr_on

Core Power Supply

Oscillator output
LI i

I
|1
11
I
|1
|l
NRST Il | 1
(|
I
T
(|
I
[

bodcore_in

vddcore_nreset

LT

periph_nreset

proc_nreset

Note: After “proc_nreset” rising, the core starts fecthing instructions from Flash at 4 MHz.

290 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

19.4.6.2 NRSTB Asynchronous Reset Pin
The NRSTB pin is an asynchronous reset input, which acts exactly like the zero-power power-on
reset cell.

As soon as NRSTB is tied to GND, the supply controller is reset generating in turn, a reset of the
whole system.

When NRSTB is released, the system can start as described in Section 19.4.6.1 "Raising the
Backup Power Supply”.

The NRSTB pin does not need to be driven during power-up phase to allow a reset of the sys-
tem, it is done by the zero-power power-on cell.

Figure 19-6. NRSTB Reset

30 Slow Clock Cycles = about 1ms between 2 and 3 Slow Clock Cycles
< [

< I e

NRSTB

32 kHz Low Power Crystal I"l_l‘\

Oscillator output

FU L

SHDN / vr_standby

vddcore_nreset

SplpBalpiRiyEnlnliy

|
|
|
|
I
bodcore_in |
|
I
|
1
I

Note: periph_nreset, ice_reset and proc_nreset are not shown, but are asserted low thanks to the vddcore_nreset signal controlling
the Reset controller.

19.4.6.3 SHDN output pin
As shown in Figure 19-6, the SHDN pin acts like the vr_standby signal making it possible to use
the SHDN pin to control external voltage regulator with shutdown capabilities.

19.4.7 Core Reset
The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described
previously in Section 19.4.6 "Backup Power Supply Reset”. The vddcore_nreset signal is nor-
mally asserted before shutting down the core power supply and released as soon as the core
power supply is correctly regulated.

There are two additional sources which can be programmed to activate vddcore_nreset:

¢ a supply monitor detection
¢ a brownout detection

19.4.7.1 Supply Monitor Reset

The supply monitor is capable of generating a reset of the system. This can be enabled by set-
ting the SMRSTEN bit in the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is imme-
diately activated for a minimum of 1 slow clock cycle.

AImEl@ 291

6430F-ATARM-21-Feb-12

ATMEL

19.4.7.2 Brownout Detector Reset
The brownout detector provides the bodcore_in signal to the SUPC which indicates that the volt-
age regulation is operating as programmed. If this signal is lost for longer than 1 slow clock
period while the voltage regulator is enabled, the Supply Controller can assert vddcore_nreset.
This feature is enabled by writing the bit, BODRSTEN (Brownout Detector Reset Enable) to 1 in
the Supply Controller Mode Register (SUPC_MR).

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low),
the vddcore_nreset signal is asserted for a minimum of 1 slow clock cycle and then released if
bodcore_in has been reactivated. The BODRSTS bit is set in the Supply Controller Status Reg-
ister (SUPC_SR) so that the user can know the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

19.4.8 Wake Up Sources

The wake up events allow the device to exit backup mode. When a wake up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power

supply.

Figure 19-7. Wake Up Sources

EET S N
sm_int -
e
rtc_alarm
Core
RTTEN N
rtt_alarm)} gUpfl)’t
estar
SLCK
L) FWUP
Falling —\ Debouncer
| I Edge ®
FWUP Detector _/
WKUPT!
[wkuPENo | | wkuPISo
Falling/Rising |_
WKUPO | |— Edge
Detector
[wkuPENT | | wkuPist | S'i'i>
Falling/Rising L Debouncer ®
WKUP1 | |— Edge
| Detector
I
' [WKUPEN15] [WKUPIS15]
I
Falling/Rising I_
wkupts [|— Edge
Detector
292 S A M3 U S i ©S 1000000000000

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

19.4.8.1 Force Wake Up

The FWUP pin is enabled as a wake up source by writing the FWUPEN bit to 1 in the Supply
Controller Wake Up Mode Register (SUPC_WUMR). Then, the FWUPDBC field in the same
register selects the debouncing period, which can be selected between 3, 32, 512, 4,096 or
32,768 slow clock cycles. This corresponds respectively to about 100 ps, about 1 ms, about 16
ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Program-
ming FWUPDBC to 0x0 selects an immediate wake up, i.e., the FWUP must be low during a
minimum of one slow clock period to wake up the core power supply.

If the FWUP pin is asserted for a time longer than the debouncing period, a wake up of the core
power supply is started and the FWUP bit in the Supply Controller Status Register (SUPC_SR)
is set and remains high until the register is read.

19.4.8.2 Wake Up Inputs

The wake up inputs, WKUPO to WKUP15, can be programmed to perform a wake up of the core
power supply. Each input can be enabled by writing to 1 the corresponding bit, WKUPENO to
WKUPEN 15, in the Wake Up Inputs Register (SUPC_WUIR). The wake up level can be
selected with the corresponding polarity bit, WKUPPLO to WKUPPL15, also located in
SUPC_WUIR.

All the resulting signals are wired-ORed to trigger a debounce counter, which can be pro-
grammed with the WKUPDBC field in the Supply Controller Wake Up Mode Register
(SUPC_WUMR). The WKUPDBC field can select a debouncing period of 3, 32, 512, 4,096 or
32,768 slow clock cycles. This corresponds respectively to about 100 ps, about 1 ms, about
16 ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Pro-
gramming WKUPDBC to 0x0 selects an immediate wake up, i.e., an enabled WKUP pin must be
active according to its polarity during a minimum of one slow clock period to wake up the core
power supply.

If an enabled WKUP pin is asserted for a time longer than the debouncing period, a wake up of
the core power supply is started and the signals, WKUPO to WKUP15 as shown in Figure 19-7,
are latched in the Supply Controller Status Register (SUPC_SR). This allows the user to identify
the source of the wake up, however, if a new wake up condition occurs, the primary information
is lost. No new wake up can be detected since the primary wake up condition has disappeared.

19.4.8.3 Clock Alarms

The RTC and the RTT alarms can generate a wake up of the core power supply. This can be
enabled by writing respectively, the bits RTCEN and RTTEN to 1 in the Supply Controller Wake
Up Mode Register (SUPC_WUMR).

The Supply Controller does not provide any status as the information is available in the User
Interface of either the Real Time Timer or the Real Time Clock.

19.4.8.4 Supply Monitor Detection

6430F-ATARM-21-Feb-12

The supply monitor can generate a wakeup of the core power supply. See Section 19.4.5 "Sup-
ply Monitor”.

AImEl@ 293

ATMEL

19.5 Supply Controller (SUPC) User Interface
The User Interface of the Supply Controller is part of the System Controller User Interface.

19.5.1 System Controller (SYSC) User Interface

Table 19-1. System Controller Registers

Offset System Controller Peripheral Name
0x00-0x0c Reset Controller RSTC
0x10-0x2C Supply Controller SUPC
0x30-0x3C Real Time Timer RTT
0x50-0x5C Watchdog Tiler WDT
0x60-0x7C Real Time Clock RTC
0x90-0xDC General Purpose Backup Register GPBR

19.5.2 Supply Controller (SUPC) User Interface

Table 19-2. Register Mapping

Offset Register Name Access Reset
0x00 Supply Controller Control Register SUPC_CR Write-only N/A
0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read-write 0x0000_0000
0x08 Supply Controller Mode Register SUPC_MR Read-write 0x0000_5A00
0x0C Supply Controller Wake Up Mode Register SUPC_WUMR Read-write 0x0000_0000
0x10 Supply Controller Wake Up Inputs Register SUPC_WUIR Read-write 0x0000_0000
0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0800
0x18 Reserved

20 SAM3U Series m—

6430F-ATARM-21-Feb-12

EEEssssssssssssssssssseeeeeeeeeeeeesssssssss SAM3U Series

19.5.3 Supply Controller Control Register
Name: SUPC_CR

Address: 0x400E1210

Access: Write-only
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I I - |
7 6 5 4 3 2 1 0

| - | - | - | - | XTALSEL | VROFF | - | - |

¢ VROFF: Voltage Regulator Off
0 (NO_EFFECT) = no effect.

1 (STOP_VREG) = if KEY is correct, asserts vddcore_nreset and stops the voltage regulator.

e XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT) = no effect.
1 (CRYSTAL_SEL) = if KEY is correct, switches the slow clock on the crystal oscillator output.

¢ KEY: Password
Should be written to value 0xA5. Writing any other value in this field aborts the write operation.

AImEl@ 295

6430F-ATARM-21-Feb-12

ATMEL

19.5.4 Supply Controller Supply Monitor Mode Register
Name: SUPC_SMMR

Address: 0x400E1214

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | SMIEN |SMRSTEN| — | SMSMPL |
7 6 5 4 3 2 1 0

I - I - I - I - I SMTH |

e SMTH: Supply Monitor Threshold

Value Name Description
0x0 1_9V 1.9V
0x1 2_0V 20V
0x2 2_1V 21V
0x3 2.2V 22V
Ox4 2.3V 2.3V
0x5 2_4V 24V
0x6 2_5V 25V
0x7 2_6V 26V
0x8 2.7V 2.7V
0x9 2.8V 2.8V
OxA 2.9V 29V
0xB 3_0V 3.0V
0xC 3_1V 3.1V
0xD 3_2V 32V
OxE 3_3V 3.3V
OxF 3_4V 34V

296 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

e SMSMPL: Supply Monitor Sampling Period

Value Name Description
0x0 SMD Supply Monitor disabled
0x1 CSM Continuous Supply Monitor
0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods
0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods
0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods
0x5-0x7 Reserved Reserved

e SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a supply monitor detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.
e SMIEN: Supply Monitor Interrupt Enable
0 (NOT_ENABLE) = the SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE) = the SUPC interrupt signal is asserted when a supply monitor detection occurs.

AImEl@ 297

6430F-ATARM-21-Feb-12

19.5.5 Supply Controller Mode Register
Name: SUPC_MR

Address: 0x400E1218

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

| - - - | OSCBYPASS - - - - |
15 14 13 12 11 10 9 8

VDDIORDY

- ONREG BODDIS BODRSTEN - - - -
7 6 5 4 3 2 1 0

e BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a brownout detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a brownout detection occurs.

e BODDIS: Brownout Detector Disable

0 (ENABLE) = the core brownout detector is enabled.

1 (DISABLE) = the core brownout detector is disabled.

e VDDIORDY: VDDIO Ready

0 (VDDIO_REMOVED) = VDDIO is removed (used before going to backup mode when backup batteries are used)
1 (VDDIO_PRESENT) = VDDIO is present (used before going to backup mode when backup batteries are used)
If the backup batteries are not used, VDDIORDY must be kept set to 1.

* ONREG: Voltage Regulator enable

0 (ONREG_UNUSED) = Voltage Regulator is not used

1 (ONREG_USED) = Voltage Regulator is used

e OSCBYPASS: Oscillator Bypass

0 (NO_EFFECT) = no effect. Clock selection depends on XTALSEL value.

1 (BYPASS) = the 32-KHz XTAL oscillator is selected and is put in bypass mode.

¢ KEY: Password Key
Should be written to value 0xA5. Writing any other value in this field aborts the write operation.

298 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

19.5.6 Supply Controller Wake Up Mode Register
Name: SUPC_WUMR

Address: 0x400E121C

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | WKUPDBC | - | FWUPDBC |
7 6 5 4 3 2 1 0

| - | - | - - | RTCEN | RTTEN SMEN FWUPEN |

¢ FWUPEN: Force Wake Up Enable
0 (NOT_ENABLE) = the Force Wake Up pin has no wake up effect.

1 (ENABLE) = the Force Wake Up pin low forces the wake up of the core power supply.

e SMEN: Supply Monitor Wake Up Enable

0 (NOT_ENABLE) = the supply monitor detection has no wake up effect.

1 (ENABLE) = the supply monitor detection forces the wake up of the core power supply.

e RTTEN: Real Time Timer Wake Up Enable

0 (NOT_ENABLE) = the RTT alarm signal has no wake up effect.

1 (ENABLE) = the RTT alarm signal forces the wake up of the core power supply.

¢ RTCEN: Real Time Clock Wake Up Enable

0 (NOT_ENABLE) = the RTC alarm signal has no wake up effect.

1 (ENABLE) = the RTC alarm signal forces the wake up of the core power supply.

e FWUPDBC: Force Wake Up Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3_SCLK FWUP shall be low for at least 3 SLCK periods
2 32_SCLK FWUP shall be low for at least 32 SLCK periods
3 512_SCLK FWUP shall be low for at least 512 SLCK periods
4 4096_SCLK FWUP shall be low for at least 4,096 SLCK periods
5 32768_SCLK FWUP shall be low for at least 32,768 SLCK periods
6 Reserved Reserved
7 Reserved Reserved

6430F-ATARM-21-Feb-12

ATMEL

299

ATMEL

e WKUPDBC: Wake Up Inputs Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3_SCLK WKUPXx shall be in its active state for at least 3 SLCK periods
2 32_SCLK WKUPXx shall be in its active state for at least 32 SLCK periods
3 512_SCLK WKUPXx shall be in its active state for at least 512 SLCK periods
4 4096_SCLK WKUPXx shall be in its active state for at least 4,096 SLCK periods
5 32768_SCLK WKUPXx shall be in its active state for at least 32,768 SLCK periods
6 Reserved Reserved
7 Reserved Reserved

300 SAMSIU S eri e S e —

6430F-ATARM-21-Feb-12

EEEssssssssssssssssssseeeeeeeeeeeeesssssssss SAM3U Series

19.5.7 System Controller Wake Up Inputs Register
Name: SUPC_WUIR

Address: 0x400E1220

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPT15 | WKUPT14 | WKUPT13 | WKUPT12 | WKUPT11 | WKUPT10 | WKUPT9 | WKUPTS8 |
23 22 21 20 19 18 17 16

| WKUPT7 | WKUPT6 | WKUPT5 | WKUPT4 | WKUPT3 | WKUPT2 | WKUPTA1 | WKUPTO |
15 14 13 12 11 10 9 8

| WKUPEN15 | WKUPEN14 | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPENS |

7 6 5 4 3 2 1 0
| WKUPEN7 | WKUPENG6 | WKUPENS5 | WKUPEN4 | WKUPEN3 | WKUPEN2 | WKUPEN1 | WKUPENO |

¢ WKUPENO - WKUPEN15: Wake Up Input Enable 0 to 15
0 (NOT_ENABLE) = the corresponding wake-up input has no wake up effect.

1 (ENABLE) = the corresponding wake-up input forces the wake up of the core power supply.

¢ WKUPTO - WKUPT15: Wake Up Input Transition 0 to 15
0 (HIGH_TO_LOW) = a high to low level transition on the corresponding wake-up input forces the wake up of the core
power supply.

1 (LOW_TO_HIGH) = a low to high level transition on the corresponding wake-up input forces the wake up of the core
power supply.

AI“"E',® 301

6430F-ATARM-21-Feb-12

ATMEL

19.5.8 Supply Controller Status Register
Name: SUPC_SR

Address: 0x400E1224

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPIS15 | WKUPIS14 | WKUPIS13 | WKUPIS12 | WKUPIS11 | WKUPIS10 | WKUPIS9 | WKUPIS8 |
23 22 21 20 19 18 17 16

| WKUPIS7 | WKUPIS6 | WKUPIS5 | WKUPIS4 | WKUPIS3 | WKUPIS2 | WKUPIS1 | WKUPISO |
15 14 13 12 11 10 9 8

I - I - I - | FWUPIS | - I - I - I - |
7 6 5 4 3 2 1 0

| OSCSEL | SMOS | SMS | SMRSTS | BODRSTS | SMWS | WKUPS | FWUPS |

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK), the status register flag reset is
taken into account only 2 slow clock cycles after the read of the SUPC_SR.

e FWUPS: FWUP Wake Up Status

0 (NO) = no wake up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.
e WKUPS: WKUP Wake Up Status

0 (NO) = no wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.
e SMWS: Supply Monitor Detection Wake Up Status

0 (NO) = no wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

e BODRSTS: Brownout Detector Reset Status

0 (NO) = no core brownout rising edge event has been detected since the last read of the SUPC_SR.

1 (PRESENT) = at least one brownout output rising edge event has been detected since the last read of the SUPC_SR.
When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detec-
tion cell. The rising edge event occurs only when there is a voltage transition below the threshold.

¢ SMRSTS: Supply Monitor Reset Status

0 (NO) = no supply monitor detection has generated a core reset since the last read of the SUPC_SR.

1 (PRESENT) = at least one supply monitor detection has generated a core reset since the last read of the SUPC_SR.

e SMS: Supply Monitor Status

0 (NO) = no supply monitor detection since the last read of SUPC_SR.

1 (PRESENT) = at least one supply monitor detection since the last read of SUPC_SR.

302 SAM3U Series messssssssssssssss——
6430F—ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

e SMOS: Supply Monitor Output Status
0 (HIGH) = the supply monitor detected VDDUTMI higher than its threshold at its last measurement.

1 (LOW) = the supply monitor detected VDDUTMI lower than its threshold at its last measurement.
e OSCSEL: 32-kHz Oscillator Selection Status

0 (RC) = the slow clock, SLCK is generated by the embedded 32-kHz RC oscillator.

1 (CRYST) = the slow clock, SLCK is generated by the 32-kHz crystal oscillator.

¢ FWUPIS: FWUP Input Status

0 (LOW) = FWUP input is tied low.

1 (HIGH) = FWUP input is tied high.

* WKUPIS0-WKUPIS15: WKUP Input Status 0 to 15

0 (DIS) = the corresponding wake-up input is disabled, or was inactive at the time the debouncer triggered a wake up
event.

1 (EN) = the corresponding wake-up input was active at the time the debouncer triggered a wake up event.

AI“"E',® 303

6430F-ATARM-21-Feb-12

ATMEL

304 SAM3U Series messssssssssssssss——
6430F—ATARM-21-Feb-12

EEEsssssssssssssssssseeeeeeeeeeeesssssssss SAM3U Series

20. General Purpose Backup Registers (GPBR)

20.1 Embedded Characteristics
¢ Four 32-bit General Purpose Backup Registers

20.2 Description
The System Controller embeds Four general-purpose backup registers.

20.2.1 Power Management Controller (PMC) User Interface

Table 20-1. Register Mapping

Offset Register Name Access Reset
0x0 General Purpose Backup Register 0 SYS_GPBRO Read-write -
0xc General Purpose Backup Register 3 SYS_GPBRS3 Read-write -

AI“"E',® 305

6430F-ATARM-21-Feb-12

20.2.1.1 General Purpose Backup Register x
Name: SYS_GPBRXx

Address: 0x400E1290 [0] .. 0x400E129C [3]

Access: Read-write
31 30 29 28 27 26 25 24

| GPBR_VALUEX |
23 22 21 20 19 18 17 16

| GPBR_VALUEx |
15 14 13 12 11 10 9 8

| GPBR_VALUEX |
7 6 5 4 3 2 1 0

| GPBR_VALUEx |

* GPBR_VALUEX: Value of GPBR x

306 SAMSIU S eri e S e —

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

21. Enhanced Embedded Flash Controller (EEFC)

21.1 Description
The Enhanced Embedded Flash Controller (EEFC) ensures the interface of the Flash block with
the 32-bit internal bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the pro-
gramming, erasing, locking and unlocking sequences of the Flash using a full set of commands.
One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

21.2 Embedded Characteristics
¢ Interface of the Flash Block with the 32-bit Internal Bus

¢ Increases Performance in Thumb2 Mode with 128-bit or -64 bit Wide Memory Interface up to
24 MHz

* 32 Lock Bits, Each Protecting a Lock Region

* GPNVMx General-purpose GPNVM Bits

* One-by-one Lock Bit Programming

e Commands Protected by a Keyword

* Erases the Entire Flash

e Erases by Plane

* Possibility of Erasing before Programming

¢ Locking and Unlocking Operations

* Consecutive Programming and Locking Operations

21.3 Product Dependencies

21.3.1 Power Management
The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Man-
agement Controller has no effect on its behavior.

21.3.2 Interrupt Sources
The Enhanced Embedded Flash Controller (EEFC) interrupt line is connected to the Nested
Vectored Interrupt Controller (NVIC). Using the Enhanced Embedded Flash Controller (EEFC)
interrupt requires the NVIC to be programmed first. The EEFC interrupt is generated only on
FRDY bit rising.

21.4 Functional Description

21.41 Embedded Flash Organization

The embedded Flash interfaces directly with the 32-bit internal bus. The embedded Flash is
composed of:

* One memory plane organized in several pages of the same size.
* Two 128-bit or 64-bit read buffers used for code read optimization.
* One 128-bit or 64-bit read buffer used for data read optimization.

AI“"E',® 307

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

* One write buffer that manages page programming. The write buffer size is equal to the page
size. This buffer is write-only and accessible all along the 1 MByte address space, so that
each word can be written to its final address.

 Several lock bits used to protect write/erase operation on several pages (lock region). A lock
bit is associated with a lock region composed of several pages in the memory plane.

» Several bits that may be set and cleared through the Enhanced Embedded Flash Controller
(EEFC) interface, called General Purpose Non Volatile Memory bits (GPNVM bits).

The embedded Flash size, the page size, the lock regions organization and GPNVM bits defini-
tion are described in the product definition section. The Enhanced Embedded Flash Controller
(EEFC) returns a descriptor of the Flash controlled after a get descriptor command issued by the
application (see “Getting Embedded Flash Descriptor” on page 312).

Figure 21-1. Embedded Flash Organization

Start Address

Start Address + Flash size -1

Memory Plane

Page 0

Page (m-1)

Lock Region 0 -

Lock Bit 0

Lock Region 1 «<

Lock Bit 1

Page (n"m-1)

6430F-ATARM-21-Feb-12

ATMEL

Lock Region (n-1) == Lock Bit (n-1)

308

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

21.4.2 Read Operations
An optimized controller manages embedded Flash reads, thus increasing performance when the
processor is running in Thumb2 mode by means of the 128- or 64- bit wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area,
the embedded Flash wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be pro-
grammed in the field FWS (Flash Read Wait State) in the Flash Mode Register (EEFC_FMR).
Defining FWS to be 0 enables the single-cycle access of the embedded Flash. Refer to the Elec-
trical Characteristics for more details.

21.4.2.1 128-bit or 64-bit Access Mode
By default the read accesses of the Flash are performed through a 128-bit wide memory inter-
face. It enables better system performance especially when 2 or 3 wait state needed.

For systems requiring only 1 wait state, or to privilege current consumption rather than perfor-
mance, the user can select a 64-bit wide memory access via the FAM bit in the Flash Mode
Register (EEFC_FMR)

Please refer to the electrical characteristics section of the product datasheet for more details.

21.4.22 Code Read Optimization
A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential Code Fetch.

Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

Figure 21-2. Code Read Optimization for FWS =0

wserces [L[L L L L L L1
S N T M N MU MU M

@Byte 0 @Byte 4 @Byte 8 @Byte 12 @Byte 16 @Byte 20 @Byte 24 @Byte 28 @Byte 32

Flash Access X Bytes 0-15 X Bytes 16-31 X X X Bytes 32-47 X X X

Buffer 0 (128bits) X xxx X Bytes 0-15 X Bytes 32-47

Buffer 1 (128bits) X XXX X Bytes 16-31

Data To ARM XXX X Bytes 0-3 X Bytes 47 X Bytes 8-11 XBytes 12-15 X Bytes 16-19 Bytes 20-23 X Bytes 24-27 X Bytes 28-31

Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.

AI“"E',® 309

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

Figure 21-3. Code Read Optimization for FWS =3

wreses 1 tttttt ittt ot

@Byte 0 @4 @8 @12 @16 @20 @24 @28 @32 @36 @40 @44 @48 @52
Flash Access X Bytes 0-15 X Bytes 16-31 X Bytes 32-47 X Bytes 48-63
Buffer 0 (128bits) XXX X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) XXX X Bytes 16-31

Data To ARM X XXX 4-7 X 8-11 X12-15 X1 6-19X20-23X 24-27X 28-31X32-35X 36-39X 40-43X 44-47X 48-51

Note: When FWS is included between 1 and 3, in case of sequential reads, the first access takes (FWS+1) cycles, the other ones only
1 cycle.

21.4.2.3 Data Read Optimization

The organization of the Flash in 128 bits (or 64 bits) is associated with two 128-bit (or 64-bit)
prefetch buffers and one 128-bit (or 64-bit) data read buffer, thus providing maximum system
performance. This buffer is added in order to store the requested data plus all the data contained
in the 128-bit (64-bit) aligned data. This speeds up sequential data reads if, for example, FWS is
equal to 1 (see Figure 21-4).

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 21-4. Data Read Optimization for FWS = 1

wsercoo | | L] L L L L L L L L L L
(= S S S S SN S S S S

@Byte 0 @4 @es @12 @16 @20 @24 @28 @32 @ 36
Flash Access xxx X Bytes0-15 X X Bytes 16:31 X X Bytes 32-47
Buffer (128bits) X XXX X Bytes 0-15 X Bytes 16-31

Data To ARM X XXX YovesosX 47 X 811 X 12115 X Xi6-19X 2023 X 24-27 X 2831 X X32-35

AI“"E',® 310

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

21.4.3 Flash Commands
The Enhanced Embedded Flash Controller (EEFC) offers a set of commands such as program-
ming the memory Flash, locking and unlocking lock regions, consecutive programming and
locking and full Flash erasing, etc.

Table 21-1. Set of Commands

Command Value Mnemonic
Get Flash Descriptor 0x00 GETD
Write page 0x01 WP
Write page and lock 0x02 WPL
Erase page and write page 0x03 EWP
Erase page and write page then lock 0x04 EWPL
Erase all 0x05 EA
Set Lock Bit 0x08 SLB
Clear Lock Bit 0x09 CLB
Get Lock Bit 0x0A GLB
Set GPNVM Bit 0x0B SGPB
Clear GPNVM Bit 0x0C CGPB
Get GPNVM Bit 0x0D GGPB
Start Read Unique Identifier Ox0E STUI
Stop Read Unique Identifier OxOF SPUI

In order to perform one of these commands, the Flash Command Register (EEFC_FCR) has to
be written with the correct command using the FCMD field. As soon as the EEFC_FCR register
is written, the FRDY flag and the FVALUE field in the EEFC_FRR register are automatically
cleared. Once the current command is achieved, then the FRDY flag is automatically set. If an
interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the corresponding interrupt
line of the NVIC is activated. (Note that this is true for all commands except for the STUI Com-
mand. The FRDY flag is not set when the STUI command is achieved.)

All the commands are protected by the same keyword, which has to be written in the 8 highest
bits of the EEFC_FCR register.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid com-
mand has no effect on the whole memory plane, but the FCMDE flag is set in the EEFC_FSR
register. This flag is automatically cleared by a read access to the EEFC_FSR register.

When the current command writes or erases a page in a locked region, the command has no
effect on the whole memory plane, but the FLOCKE flag is set in the EEFC_FSR register. This
flag is automatically cleared by a read access to the EEFC_FSR register.

AImEl@ 311

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

Figure 21-5. Command State Chart

Read Status: MC_FSR <

No
Check if FRDY flag Set

lYes

Write FCMD and PAGENB in Flash Command Register

A

Read Status: MC_FSR

A

No

Check if FRDY flag Set

Check if FLOCKE flag Set Locking region violation

Check if FCMDE flag Set Bad keyword violation

lNO

Command Successfull

21.4.3.1 Getting Embedded Flash Descriptor

This command allows the system to learn about the Flash organization. The system can take full
advantage of this information. For instance, a device could be replaced by one with more Flash
capacity, and so the software is able to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in the
EEFC_FCR register. The first word of the descriptor can be read by the software application in
the EEFC_FRR register as soon as the FRDY flag in the EEFC_FSR register rises. The next
reads of the EEFC_FRR register provide the following word of the descriptor. If extra read oper-

AImEl@ 312

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

ations to the EEFC_FRR register are done after the last word of the descriptor has been
returned, then the EEFC_FRR register value is 0 until the next valid command.

Table 21-2. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes.

FL_PLANE[O0] 4 Number of bytes in the first plane.

FL_PLANE[FL_NB_PLANE-1] 4 + FL_NB_PLANE - 1 Number of bytes in the last plane.
Number of lock bits. A bit is associated
lock region.

FL_LOCK]O0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region.

21.4.3.2 Write Commands

6430F-ATARM-21-Feb-12

Several commands can be used to program the Flash.

Flash technology requires that an erase be done before programming. The full memory plane
can be erased at the same time, or several pages can be erased at the same time (refer to Fig-
ure 21-6, "Example of Partial Page Programming", and the paragraph below the figure.). Also, a
page erase can be automatically done before a page write using EWP or EWPL commands.

After programming, the page (the whole lock region) can be locked to prevent miscellaneous
write or erase sequences. The lock bit can be automatically set after page programming using
WPL or EWPL commands.

Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds
to the page size. The latch buffer wraps around within the internal memory area address space
and is repeated as many times as the number of pages within this address space.

Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
Write operations are performed in a number of wait states equal to the number of wait states for
read operations.

Data are written to the latch buffer before the programming command is written to the Flash
Command Register EEFC_FCR. The sequence is as follows:
* Write the full page, at any page address, within the internal memory area address space.

¢ Programming starts as soon as the page number and the programming command are written
to the Flash Command Register. The FRDY bit in the Flash Programming Status Register
(EEFC_FSR) is automatically cleared.

* When programming is completed, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR,
the corresponding interrupt line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:

AI“"E',® 313

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

* Command Error: a bad keyword has been written in the EEFC_FCR register.

¢ Lock Error: the page to be programmed belongs to a locked region. A command must be
previously run to unlock the corresponding region.

By using the WP command, a page can be programmed in several steps if it has been erased
before (see Figure 21-6 below).

Figure 21-6. Example of Partial Page Programming

32-bit wide 32-bit wide 32-bit wide
—> > >
FF FF FF FF FF FF FF FF FF FF FF FF
X words FE FF FF FF FE FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF CA FE CA FE CA FE CA FE
X words FF FF FF FF CA FE CA FE CA FE CA FE
FF FF FF FF CA FE CA FE | _CA FE CA FE _ |
FF FF FF FF FF FF FF FF DE CA DE CA
X words FF FF FF FF FFE FF FF FF DE CA DE CA
FF FF FF FF FF FF FF FF | _DE CA_DE CA _ |
FF FF FF FF FF FF FF FF FF FF FF FF
FE FF FF FF FE FF FF FF FE FF FF FF
Xwordsi FF_FF_FF_FF FF_FF_FF_FF FF_FF_FF_FF
Step 1. Step 2. Step 3.
Erase All Flash Programming of the second part of PageY Programming of the third part of Page Y

So Page Y erased

The Partial Programming mode works only with 128-bit (or higher) boundaries. It cannot be used
with boundaries lower than 128 bits (8, 16 or 32-bit for example).

21.4.3.3 Erase Commands
Erase commands are allowed only on unlocked regions. Depending on the Flash memory, sev-
eral commands can be used to erase the Flash:
* Erase all memory (EA): all memory is erased. The processor must not fetch code from the
Flash memory.
The erase sequence is:
* Erase starts as soon as one of the erase commands and the FARG field are written in the
Flash Command Register.

* When the programming completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:

* Command Error: a bad keyword has been written in the EEFC_FCR register.

* Lock Error: at least one page to be erased belongs to a locked region. The erase command
has been refused, no page has been erased. A command must be run previously to unlock
the corresponding region.

AImEl@ 314

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

21.4.3.4 Lock Bit Protection
Lock bits are associated with several pages in the embedded Flash memory plane. This defines
lock regions in the embedded Flash memory plane. They prevent writing/erasing protected
pages.

The lock sequence is:
* The Set Lock command (SLB) and a page number to be protected are written in the Flash
Command Register.

* When the locking completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

* If the lock bit number is greater than the total number of lock bits, then the command has no
effect. The result of the SLB command can be checked running a GLB (Get Lock Bit)
command.

One error can be detected in the EEFC_FSR register after a programming sequence:

* Command Error: a bad keyword has been written in the EEFC_FCR register.
It is possible to clear lock bits previously set. Then the locked region can be erased or pro-
grammed. The unlock sequence is:
* The Clear Lock command (CLB) and a page number to be unprotected are written in the
Flash Command Register.

* When the unlock completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

* If the lock bit number is greater than the total number of lock bits, then the command has no
effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

e Command Error: a bad keyword has been written in the EEFC_FCR register.
The status of lock bits can be returned by the Enhanced Embedded Flash Controller (EEFC).
The Get Lock Bit status sequence is:
¢ The Get Lock Bit command (GLB) is written in the Flash Command Register, FARG field is
meaningless.

* Lock bits can be read by the software application in the EEFC_FRR register. The first word
read corresponds to the 32 first lock bits, next reads providing the next 32 lock bits as long as
it is meaningful. Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third lock
region is locked.

One error can be detected in the EEFC_FSR register after a programming sequence:

e Command Error: a bad keyword has been written in the EEFC_FCR register.

Note: Access to the Flash in read is permitted when a set, clear or get lock bit command is performed.

21.4.3.5 GPNVM Bit
GPNVM bits do not interfere with the embedded Flash memory plane. Refer to the product defi-
nition section for information on the GPNVM Bit Action.

AI“"E',® 315

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

The set GPNVM bit sequence is:
* Start the Set GPNVM Bit command (SGPB) by writing the Flash Command Register with the
SGPB command and the number of the GPNVM bit to be set.

* When the GPVNM bit is set, the bit FRDY in the Flash Programming Status Register

(EEFC_FSR) rises. If an interrupt was enabled by setting the FRDY bit in EEFC_FMR, the
interrupt line of the NVIC is activated.

¢ If the GPNVM bit number is greater than the total number of GPNVM bits, then the command
has no effect. The result of the SGPB command can be checked by running a GGPB (Get
GPNVM Bit) command.

One error can be detected in the EEFC_FSR register after a programming sequence:

e Command Error: a bad keyword has been written in the EEFC_FCR register.
It is possible to clear GPNVM bits previously set. The clear GPNVM bit sequence is:
* Start the Clear GPNVM Bit command (CGPB) by writing the Flash Command Register with
CGPB and the number of the GPNVM bit to be cleared.

* When the clear completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

¢ If the GPNVM bit number is greater than the total number of GPNVM bits, then the command
has no effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

e Command Error: a bad keyword has been written in the EEFC_FCR register.
The status of GPNVM bits can be returned by the Enhanced Embedded Flash Controller
(EEFC). The sequence is:
e Start the Get GPNVM bit command by writing the Flash Command Register with GGPB. The
FARG field is meaningless.

* GPNVM bits can be read by the software application in the EEFC_FRR register. The first
word read corresponds to the 32 first GPNVM bits, following reads provide the next 32
GPNVM bits as long as it is meaningful. Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third GPNVM
bit is active.
One error can be detected in the EEFC_FSR register after a programming sequence:

* Command Error: a bad keyword has been written in the EEFC_FCR register.
Note: Access to the Flash in read is permitted when a set, clear or get GPNVM bit command is
performed.
21.4.3.6 Security Bit Protection

When the security is enabled, access to the Flash, either through the JTAG/SWD interface or
through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of
the code programmed in the Flash.

The security bit is GPNVMO.

Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full
Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are

permitted.
AI“"E',® 316

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

21.4.3.7 Unique Identifier

Each part is programmed with a 128-bit Unique ldentifier. It can be used to generate keys for
example.

To read the Unique Identifier the sequence is:
* Send the Start Read unique Identifier command (STUI) by writing the Flash Command
Register with the STUI command.

* When the Unique Identifier is ready to be read, the FRDY bit in the Flash Programming
Status Register (EEFC_FSR) falls.

¢ The Unique ldentifier is located in the first 128 bits of the Flash memory mapping, thus, at the
address 0x80000-0x8000F.

* To stop the Unique Identifier mode, the user needs to send the Stop Read unique Identifier
command (SPUI) by writing the Flash Command Register with the SPUI command.

* When the Stop read Unique Identifier command (SPUI) has been performed, the FRDY bit in
the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt was enabled by
setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.

Note that during the sequence, the software can not run out of Flash (or the second plane in
case of dual plane).

21.5 Enhanced Embedded Flash Controller (EEFC) User Interface

The User Interface of the Enhanced Embedded Flash Controller (EEFC) is integrated within the System Controller with
base address 0x400E0800.

Table 21-3. Register Mapping

Offset Register Name Access Reset State
0x00 EEFC Flash Mode Register EEFC_FMR Read-write 0x0
0x04 EEFC Flash Command Register EEFC_FCR Write-only -
0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x00000001
0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0
0x10 Reserved - - -

6430F-ATARM-21-Feb-12

ATMEL

317

EEEssssssssssssssssssseeeeeeeeeeeeesssssssss SAM3U Series

21.51 EEFC Flash Mode Register

Name: EEFC_FMR

Address: 0x400E0800 (0), 0x400E0QAQO (1)

Access: Read-write

Offset: 0x00
31 30 29 28 27 26 25 24

N R B R R 1 - A
23 22 21 20 19 18 17 16

I - I - I - I - I - - I - scop |
15 14 13 12 11 10 9 8

| - | - | - | - [FWS |
7 6 5 4 3 2 1 0

I - I I - I - I - - - FROY |

¢ FRDY: Ready Interrupt Enable
0: Flash Ready does not generate an interrupt.

1: Flash Ready (to accept a new command) generates an interrupt.

¢ FWS: Flash Wait State

This field defines the number of wait states for read and write operations:
Number of cycles for Read/Write operations = FWS+1

e SCOD: Sequential Code Optimization Disable

0: The sequential code optimization is enabled.

1: The sequential code optimization is disabled.

No Flash read should be done during change of this register.

* FAM: Flash Access Mode

0: 128-bit access in read Mode only, to enhance access speed.

1: 64-bit access in read Mode only, to enhance power consumption.

No Flash read should be done during change of this register.

ATMEL

6430F-ATARM-21-Feb-12

318

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

21.5.2 EEFC Flash Command Register

Name: EEFC_FCR

Address: 0x400E0804 (0), 0x400E0A04 (1)

Access: Write-only

Offset: 0x04
31 30 29 28 27 26 25 24

| FKEY |
23 22 21 20 19 18 17 16

| FARG |
15 14 13 12 11 10 9 8

| FARG |
7 6 5 4 3 2 1 0

| FCMD |

¢ FCMD: Flash Command

This field defines the Flash commands. Refer to “Flash Commands” on page 311.

¢ FARG: Flash Command Argument

Erase all command

Field is meaningless.

Programming command

FARG defines the page number to be programmed.

Lock command

FARG defines the page number to be locked.

¢ FKEY: Flash Writing Protection Key
This field should be written with the value 0x5A to enable the command defined by the bits of the register. If the field is writ-

ten with a different value, the write is not performed and no action is started.

6430F-ATARM-21-Feb-12

ATMEL

319

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

2153 EEFC Flash Status Register

Name: EEFC_FSR

Address: 0x400E0808 (0), 0x400E0A08 (1)

Access: Read-only

Offset: 0x08
31 30 29 28 27 26 25 24

I - I - I - - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - [- - | - | FLOCKE | FCMDE | FRDY |

FRDY: Flash Ready Status

0: The Enhanced Embedded Flash Controller (EEFC) is busy.

When it is set, this flags triggers an interrupt if the FRDY flag is set in the EEFC_FMR register.

1: The Enhanced Embedded Flash Controller (EEFC) is ready to start a new command.

This flag is automatically cleared when the Enhanced Embedded Flash Controller (EEFC) is busy.

¢ FCMDE: Flash Command Error Status

0: No invalid commands and no bad keywords were written in the Flash Mode Register EEFC_FMR.

1: An invalid command and/or a bad keyword was/were written in the Flash Mode Register EEFC_FMR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

e FLOCKE: Flash Lock Error Status

0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

6430F-ATARM-21-Feb-12

ATMEL

320

EEEssssssssssssssssssseeeeeeeeeeeeesssssssss SAM3U Series

2154 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400E080C (0), 0x400EOQAOQC (1)

Access: Read-only

Offset: 0x0C
31 30 29 28 27 26 25 24

| FVALUE |
23 22 21 20 19 18 17 16

| FVALUE |
15 14 13 12 11 10 9 8

| FVALUE |
7 6 5 4 3 2 1 0

| FVALUE |

e FVALUE: Flash Result Value

The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, then the next
resulting value is accessible at the next register read.

6430F-ATARM-21-Feb-12

ATMEL

321

AImEl@ 322

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

22. Fast Flash Programming Interface (FFPI)

22.1 Overview

The Fast Flash Programming Interface provides solutions for high-volume programming using a
standard gang programmer. The parallel interface is fully handshaked and the device is consid-
ered to be a standard EEPROM. Additionally, the parallel protocol offers an optimized access to
all the embedded Flash functionalities.

Although the Fast Flash Programming Mode is a dedicated mode for high volume programming,
this mode is not designed for in-situ programming.

22.2 Parallel Fast Flash Programming

22.21 Device Configuration
In Fast Flash Programming Mode, the device is in a specific test mode. Only a certain set of pins
is significant. Other pins must be left unconnected.

Figure 22-1. Parallel Programming Interface

l«— VDDBU
VDDBU ——> TST
l«—— VDDIO
VDDBU ——>{ NRSTB
l«—— VDDIN
VDDBU ——> FWUP VDDANA
NCMD ——>{ PGMNCMD l«<—— VDDUTMI
RDY <— PGMRDY l«—— VDDPLL
VDDCORE
NOE —>| PGMNOE T
l«— GND
NVALID <—
PGMNVALID GNDBU
DATA[15:0] <—> PGMD[15:0] l«—— GNDPLL
0 - 50MHz (VDDCORE) —> XIN <«<— GNDUTMI

AI“"E',® 323

6430F-ATARM-21-Feb-12

ATMEL

Table 22-1. Signal Description List
Active
Signal Name Function Type Level Comments
Power
VDDIO I/O Lines Power Supply Power Apply external 3.0V-3.6V
VDDBU Backup 1/O Lines Power Supply Power Apply external 3.0V-3.6V
VDDUTMI UTMI+ Interface Power Supply Power Apply external 3.0V-3.6V
VDDANA ADC Analog Power Supply Power Apply external 3.0V-3.6V
VDDIN Voltage Regulator Input Power Apply external 3.0V-3.6V
VDDCORE Core Power Supply Power Apply external 1.65V-1.95V
VDDPLL PLLs and Oscillator Power Supply Power Apply external 1.65V-1.95V
GND Ground Ground
GNDPLL Ground Ground
GNDBU Ground Ground
GNDANA Ground Ground
GNDUTMI Ground Ground
Clocks
XIN Clock Input Input \(,)v:\)/(f)OMHZ (0-VDDCORE square
Test
TST Test Mode Select Input High Must be connected to VDDIO
NRSTB Asynchronous Microcontroller Reset Input High Must be connected to VDDIO
FWUP Wake-up pin Input High Must be connected to VDDIO
PIO
PGMNCMD Valid command available Input Low Pulled-up input at reset
PGMRDY ? Bz:ﬁ :: 'ro::é'y o & now command Output High | Pulled-up input at reset
PGMNOE Output Enable (active high) Input Low Pulled-up input at reset
PGMNVALID ? BQIQE Zg} :z :: :SELT:E; Output Low | Pulled-up input at reset
PGMM[3:0] Specifies DATA type (See Table 22-2) Input Pulled-up input at reset
PGMD[15:0] Bi-directional data bus Input/Output Pulled-up input at reset

324

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

22.2.2 Signal Names
Depending on the MODE settings, DATA is latched in different internal registers.

Table 22-2. Mode Coding

MODE[3:0] Symbol Data

0000 CMDE Command Register
0001 ADDRO Address Register LSBs
0010 ADDR1 Address Register MSBs
0101 DATA Data Register

Default IDLE No register

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored
in the command register.

Table 22-3. Command Bit Coding

DATA[15:0] Symbol Command Executed

0x0011 READ Read Flash

0x0012 WP Write Page Flash

0x0022 WPL Write Page and Lock Flash
0x0032 EWP Erase Page and Write Page
0x0042 EWPL Erase Page and Write Page then Lock
0x0013 EA Erase All

0x0014 SLB Set Lock Bit

0x0024 CLB Clear Lock Bit

0x0015 GLB Get Lock Bit

0x0034 SGPB Set General Purpose NVM bit
0x0044 CGPB Clear General Purpose NVM bit
0x0025 GGPB Get General Purpose NVM bit
0x0054 SSE Set Security Bit

0x0035 GSE Get Security Bit

0x001F WRAM Write Memory

0x0016 SEFC Select EEFC Controller!"
0x001E GVE Get Version

Note: 1. Applies to 256 kbytes Flash version (dual EEFC)

22.2.3 Entering Programming Mode
The following algorithm puts the device in Parallel Programming Mode:

¢ Apply GND, TST, NRTSB, FWUP and the supplies as described in Table 22-1, “Signal
Description List,” on page 324.

AI“"E',® 325

6430F-ATARM-21-Feb-12

22.2.4

22.2.4.1

¢ Apply XIN clock
* Wait for 20 ms
* Start a read or write handshaking.

Programmer Handshaking

A handshake is defined for read and write operations. When the device is ready to start a new
operation (RDY signal set), the programmer starts the handshake by clearing the NCMD signal.
The handshaking is achieved once NCMD signal is high and RDY is high.

Write Handshaking
For details on the write handshaking sequence, refer to Figure 22-2 and Table 22-4.

Figure 22-2. Parallel Programming Timing, Write Sequence

NCMD @ @
RDY ® ®

NOE

NVALID

®

Table 22-4. Write Handshake

Step Programmer Action Device Action Data I/0
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latches MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Releases MODE and DATA signals Executes command and polls NCMD high Input
5 Sets NCMD signal Executes command and polls NCMD high Input
6 Waits for RDY high Sets RDY Input
22242 Read Handshaking
For details on the read handshaking sequence, refer to Figure 22-3 and Table 22-5.
326 SAM3U Series |

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Figure 22-3. Parallel Programming Timing, Read Sequence

NCMD @
RDY @

NOE @ @

NVALID

para(ts:0] X AdressiN__ Xz

MODEJ3:0] >< ADDR

.00 8.8 .00

Table 22-5. Read Handshake
Step Programmer Action Device Action DATA I/O
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latch MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Sets DATA signal in tristate Waits for NOE Low Input
5 Clears NOE signal Tristate
6 Waits for NVALID low ;tzilatﬁrﬁo%tj:ni?s?mpm mode and outputs Output
7 Clears NVALID signal Output
8 Reads value on DATA Bus Waits for NOE high Output
9 Sets NOE signal Output
10 Waits for NVALID high Sets DATA bus in input mode X
11 Sets DATA in output mode Sets NVALID signal Input
12 Sets NCMD signal Waits for NCMD high Input
13 Waits for RDY high Sets RDY signal Input
2225 Device Operations

Several commands on the Flash memory are available. These commands are summarized in
Table 22-3 on page 325. Each command is driven by the programmer through the parallel inter-

face running several read/write handshaking sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining

a read command after a write automatically flushes the load buffer in the Flash.

6430F-ATARM-21-Feb-12

ATMEL

22.2.5.1

22252

ATMEL

Flash Read Command

This command is used to read the contents of the Flash memory. The read command can start
at any valid address in the memory plane and is optimized for consecutive reads. Read hand-
shaking can be chained; an internal address buffer is automatically increased.

Table 22-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++
5 Read handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++
n+3 Read handshaking DATA *Memory Address++

Flash Write Command

This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load
buffer that corresponds to a Flash memory page. The load buffer is automatically flushed to the

Flash:

* before access to any page other than the current one
* when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be
chained; an internal address buffer is automatically increased.

Table 22-7. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL
2 Write handshaking ADDRO Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

n Write handshaking ADDRO Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

222.5.3

22254

6430F-ATARM-21-Feb-12

Table 22-7. Write Command (Continued)

Step Handshake Sequence MODE[3:0] DATA[15:0]
n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command.
However, the lock bit is automatically set at the end of the Flash write operation. As a lock region
is composed of several pages, the programmer writes to the first pages of the lock region using
Flash write commands and writes to the last page of the lock region using a Flash write and lock
command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command.
However, before programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL
commands.

Flash Full Erase Command

This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command.
Otherwise, the erase command is aborted and no page is erased.

Table 22-8. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE EA
2 Write handshaking DATA 0

Flash Lock Commands

Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set
Lock command (SLB). With this command, several lock bits can be activated. A Bit Mask is pro-
vided as argument to the command. When bit 0 of the bit mask is set, then the first lock bit is
activated.

Likewise, the Clear Lock command (CLB) is used to clear lock bits.

Table 22-9. Set and Clear Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SLB or CLB
2 Write handshaking DATA Bit Mask

AI“"E',® 329

ATMEL

Lock bits can be read using Get Lock Bit command (GLB). The n'" lock bit is active when the bit
n of the bit mask is set..

Table 22-10. Get Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GLB
Lock Bit Mask Status
2 Read handshaking DATA 0 = Lock bit is cleared
1 = Lock bit is set

22255 Flash General-purpose NVM Commands
General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB).
This command also activates GP NVM bits. A bit mask is provided as argument to the com-
mand. When bit 0 of the bit mask is set, then the first GP NVM bit is activated.

Likewise, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM bits. All
the general-purpose NVM bits are also cleared by the EA command. The general-purpose NVM
bit is deactivated when the corresponding bit in the pattern value is set to 1.

Table 22-11. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SGPB or CGPB
2 Write handshaking DATA GP NVM bit pattern value

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The n™"
GP NVM bit is active when bit n of the bit mask is set..

Table 22-12. Get GP NVM Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GGPB
GP NVM Bit Mask Status
2 Read handshaking DATA 0 = GP NVM bit is cleared
1 =GP NVM bit is set

22256 Flash Security Bit Command
A security bit can be set using the Set Security Bit command (SSE). Once the security bit is
active, the Fast Flash programming is disabled. No other command can be run. An event on the
Erase pin can erase the security bit once the contents of the Flash have been erased.

The AT9SAM3U256 security bit is controlled by the EEFCO. To use the Set Security Bit com-
mand, the EEFCO must be selected using the Select EFC command.

330 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

Table 22-13. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SSE
2 Write handshaking DATA 0

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security
bit is to erase the Flash.

In order to erase the Flash, the user must perform the following:
* Power-off the chip
¢ Power-on the chip with TST =0
* Assert Erase during a period of more than 220 ms
* Power-off the chip
Then it is possible to return to FFPI mode and check that Flash is erased.

22257 SAMB3U 256 Kbytes Flash Select EEFC Command
The commands WPx, EA, xLB, xFB are executed using the current EFC controller. The default
EEFC controller is EEFCO. The Select EEFC command (SEFC) allows selection of the current
EEFC controller.
Table 22-14. Select EFC Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SEFC

0 = Select EEFCO
1 = Select EEFCA1

2 Write handshaking DATA

22258 Memory Write Command
This command is used to perform a write access to any memory location.

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking
can be chained; an internal address buffer is automatically increased.

Table 22-15. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address

AI“"E',® 331

6430F-ATARM-21-Feb-12

ATMEL

Table 22-15. Write Command (Continued)

Step Handshake Sequence MODE[3:0] DATA[15:0]
n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

22.2.5.9 Get Version Command
The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 22-16. Get Version Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GVE
2 Write handshaking DATA Version

332 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

23. SAM3U4/2/1 Boot Program

23.1 Description

The SAM-BA® Boot Program integrates an array of programs permitting download and/or upload
into the different memories of the product.

23.2 Flow Diagram
The Boot Program implements the algorithm in Figure 23-1.

Figure 23-1. Boot Program Algorithm Flow Diagram

No

Device
Setup

Character # received
from UART?

USB Enumeration
Successful ?

Yes

[Run SAM-BA Monitor| [Run SAM-BA Monitor|

The SAM-BA Boot program seeks to detect a source clock either from the embedded main oscil-
lator with external crystal (main osccillator enabled) or from a 12 MHz signal applied to the XIN
pin (Main oscillator in bypass mode).

If a clock is found from the two possible sources above, the boot program checks to verify that
the frequency is 12 MHz (taking into account the frequency range of the 32 kHz RC oscillator). If
the frequency is 12 MHz, USB activation is allowed, else (no clock or frequency other than
12MHz), the internal 12 MHz RC oscilator is used as main clock and USB clock is not allowed
due to frequency drift of the 12 MHz RC oscillator.

23.3 Device Initialization
Initialization follows the steps described below:

Stack setup

Setup the Embedded Flash Controller

External Clock detection (Quartz or external clock on XIN)

If Quartz or external clock is 12.000 MHz, allow USB activation
Else, does not allow USB activation and use internal RC 12 MHz
Main oscillator frequency detection if no external clock detected
Switch Master Clock on Main Oscillator

C variable initialization

9. PLLA setup: PLLA is initialized to generate a 48 MHz clock

10. UPLL setup in case of USB activation allowed

11. Disable of the Watchdog

12. Initialization of the UART (115200 bauds, 8, N, 1)

13. Initialization of the USB Device Port (in case of USB activation allowed)
14. Wait for one of the following events

AI“"E',® 333

© N Ok~ N

6430F-ATARM-21-Feb-12

ATMEL

a. check if USB device enumeration has occured

b. check if characters have been received in the UART

15. Jump to SAM-BA Monitor (see Section 23.4 "SAM-BA Monitor”)

23.4 SAM-BA Monitor

The SAM-BA boot principle:

Once the communication interface is identified, to run in an infinite loop waiting for different com-

mands as shown in Table 23-1.

Table 23-1. Commands Available through the SAM-BA Boot
Command Action Argument(s) Example
(o] write a byte Address, Value# 0200001,CA#
o read a byte Address, # 0200001, #
H write a half word Address, Value# H200002,CAFE#
h read a half word Address, # h200002,#
w write a word Address, Value# W200000,CAFEDECA#
w read a word Address, # w200000,#
S send a file Address, # S200000,#
R receive a file Address, NbOfBytes# R200000,1234#
G go Address# G200200#
\' display version No argument V#

* Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.
— Address: Address in hexadecimal.

— Value: Byte, halfword or word to write in hexadecimal.

— Output: *>'.
¢ Read commands: Read a byte (0), a halfword (h) or a word (w) from the target.

— Address: Address in hexadecimal
— Output. The byte, halfword or word read in hexadecimal following by ‘>’

¢ Send a file (S): Send a file to a specified address

— Address: Address in hexadecimal

— Output: *>'.

Note: There is a time-out on this command which is reached when the prompt ‘>’ appears before the
end of the command execution.

¢ Receive a file (R): Receive data into a file from a specified address

— Address: Address in hexadecimal

— NbOfBytes: Number of bytes in hexadecimal to receive

— Output. >’

¢ Go (G): Jump to a specified address and execute the code

— Address: Address to jump in hexadecimal

— Output. *>’
¢ Get Version (V): Return the SAM-BA boot version
— Output. >’

33 SAM3U Series m——

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

2341 UART Serial Port
Communication is performed through the UART initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal
performing this protocol can be used to send the application file to the target. The size of the
binary file to send depends on the SRAM size embedded in the product. In all cases, the size of
the binary file must be lower than the SRAM size because the Xmodem protocol requires some
SRAM memory to work. See, Section 23.5 "Hardware and Software Constraints”

23.4.2 Xmodem Protocol

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-charac-
ter CRC-16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

— <SOH> = 01 hex

— <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to 00H (not
to 01)

— <255-blk #> = 1's complement of the blk#.
— <checksum> = 2 bytes CRC16
Figure 23-2 shows a transmission using this protocol.

Figure 23-2. Xmodem Transfer Example

Host Device

C

<
<

SOH 01 FE Data[128] CRC CRC

ACK

<
<

SOH 02 FD Data[128] CRC CRC

ACK

<
<

SOH 03 FC Data[100] CRC CRC

ACK

<
<

EOT

ACK

AImEl@ 335

6430F-ATARM-21-Feb-12

23.4.3

23.4.3.1

336

ATMEL

USB Device Port

A 12.000 MHz Crystal (or 12.000 MHz external clock on XIN) is necessary to use the USB
Device port.

The device uses the USB communication device class (CDC) drivers to take advantage of the
installed PC RS-232 software to talk over the USB. The CDC class is implemented in all
releases of Windows®, from Windows 98SE® to Windows XP®. The CDC document, available at
www.usb.org, describes a way to implement devices such as ISDN modems and virtual COM
ports.

The Vendor ID (VID) is Atmel’s vendor ID 0xO03EB. The product ID (PID) is 0x6124. These refer-
ences are used by the host operating system to mount the correct driver. On Windows systems,
the INF files contain the correspondence between vendor ID and product ID.

For More details about VID/PID for End Product/Systems, please refer to the Vendor ID form
available from the USB Implementers Forum:
http://www.usb.org/developers/vendor/VID_Only_Form_withCCAuth_102407b.pdf

"Unauthorized use of assigned or unassigned USB Vendor ID Numbers and associated Product
ID Numbers is strictly prohibited."

Atmel provides an INF example to see the device as a new serial port and also provides another
custom driver used by the SAM-BA application: atm6124.sys. Refer to the document “USB Basic
Application”, literature number 6123, for more details.

Enumeration Process

The USB protocol is a master/slave protocol. This is the host that starts the enumeration send-
ing requests to the device through the control endpoint. The device handles standard requests
as defined in the USB Specification.

Table 23-2. Handled Standard Requests

Request Definition

GET_DESCRIPTOR Returns the current device configuration value.
SET_ADDRESS Sets the device address for all future device access.
SET_CONFIGURATION Sets the device configuration.
GET_CONFIGURATION Returns the current device configuration value.
GET_STATUS Returns status for the specified recipient.
SET_FEATURE Set or Enable a specific feature.

CLEAR_FEATURE Clear or Disable a specific feature.

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssss—eeeeeeeeeeeseesssssss SAM3U Series

23.4.3.2

23.4.4

6430F-ATARM-21-Feb-12

The device also handles some class requests defined in the CDC class.

Table 23-3. Handled Class Requests

Request Definition

Configures DTE rate, stop bits, parity and number of

SET_LINE_CODING character bits.

Requests current DTE rate, stop bits, parity and number of

GET_LINE_CODING character bits.

RS-232 signal used to tell the DCE device the DTE device

SET_CONTROL_LINE_STATE .
is now present.

Unhandled requests are STALLed.

Communication Endpoints

There are two communication endpoints and endpoint 0 is used for the enumeration process.
Endpoint 1 is a 64-byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-
BA Boot commands are sent by the host through endpoint 1. If required, the message is split by
the host into several data payloads by the host driver.

If the command requires a response, the host can send IN transactions to pick up the response.

In Application Programming (IAP) Feature

The IAP feature is a function located in ROM that can be called by any software application.

When called, this function sends the desired FLASH command to the EEFC and waits for the
Flash to be ready (looping while the FRDY bit is not set in the MC_FSR register).

Since this function is executed from ROM, this allows Flash programming (such as sector write)
to be done by code running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in ROM (0x00180008).
This function takes one argument in parameter: the command to be sent to the EEFC.
This function returns the value of the MC_FSR register.

IAP software code example:

(unsigned int) (*IAP_Function) (unsigned long) ;

void main (void) {
unsigned long FlashSectorNum = 200; //
unsigned long flash_cmd = 0;
unsigned long flash_status = 0;

unsigned long EFCIndex = 0; // 0:EEFCO, 1: EEFC1

/* Initialize the function pointer (retrieve function address from NMI
vector) */

IAP_Function = ((unsigned long) (*) (unsigned long)) 0x00180008;

/* Send your data to the sector here */

AI“"E',® 337

ATMEL

/* build the command to send to EEFC */
flash_cmd = (0x5A << 24) | (FlashSectorNum << 8) | AT91C_MC_FCMD_EWP;
/* Call the IAP function with appropriate command */

flash_status = IAP_Function (EFCIndex, flash_cmd);

23.5 Hardware and Software Constraints

* SAM-BA Boot uses the first 2048 bytes of the SRAM for variables and stacks. The remaining
available size can be used for user's code.

¢ USB requirements:

— 12.000 MHz Quartz or 12.000 MHz external clock on XIN. 12 MHz must be
+500 ppm and 1.8V Square Wave Signal.

Table 23-4. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line
UART URXD PA11
UART UTXD PA12

338 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

24. Bus Matrix (MATRIX)

24.1

Description

Bus Matrix implements a multi-layer AHB, based on AHB-Lite protocol, that enables parallel
access paths between multiple AHB masters and slaves in a system, which increases the over-
all bandwidth. Bus Matrix interconnects 5 AHB Masters to 10 AHB Slaves. The normal latency to
connect a master to a slave is one cycle except for the default master of the accessed slave
which is connected directly (zero cycle latency).

The Bus Matrix user interface is compliant with ARM® Advance Peripheral Bus and provides a
Chip Configuration User Interface with Registers that allow the Bus Matrix to support application
specific features.

24.2 Memory Mapping

Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB
Master several memory mappings. In fact, depending on the product, each memory area may be
assigned to several slaves. Booting at the same address while using different AHB slaves (i.e.
internal ROM or internal Flash) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MATRIX_MRCR) that
allows to perform remap action for every master independently.

24.3 Special Bus Granting Techniques

24.3.1

24.3.2

24.3.3

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism allows to reduce latency at first accesses of a
burst or single transfer. The bus granting mechanism allows to set a default master for every
slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low power mode.

Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

Fixed Default Master

6430F-ATARM-21-Feb-12

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master doesn’t change unless the user mod-
ifies it by a software action (field FIXED_DEFMSTR of the related MATRIX_SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that allow to set a default master for each
slave. The Slave Configuration Register contains two fields:

DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose
the default master type (no default, last access master, fixed default master) whereas the 4-bit

AI“"E',® 339

24.4 Arbitration

ATMEL

FIXED_DEFMSTR field allows to choose a fixed default master provided that DEFMSTR_TYPE
is set to fixed default master. Please refer to the Bus Matrix user interface description.

The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict
cases occur, basically when two or more masters try to access the same slave at the same time.
One arbiter per AHB slave is provided, allowing to arbitrate each slave differently.

The Bus Matrix provides to the user the possibility to choose between 2 arbitration types, and
this for each slave:

1. Round-Robin Arbitration (the default)
2. Fixed Priority Arbitration

This choice is given through the field ARBT of the Slave Configuration Registers
(MATRIX_SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration has to be done, it is realized only under some specific conditions detailed
in the following paragraph.

24.41 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master’s requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: when a slave is not connected to any master or is connected to a master which is
not currently accessing it.

2. Single Cycles: when a slave is currently doing a single access.

3. End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For defined
length burst, predicted end of burst matches the size of the transfer but is managed differently
for undefined length burst (See Section 24.4.1.1 “Undefined Length Burst Arbitration” on page
340).

4. Slot Cycle Limit: when the slot cycle counter has reached the limit value indicating that the
current master access is too long and must be broken (See Section 24.4.1.2 “Slot Cycle Limit
Arbitration” on page 341).

24.4.1.1 Undefined Length Burst Arbitration

In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix
provides specific logic in order to re-arbitrate before the end of the INCR transfer.

A predicted end of burst is used as for defined length burst transfer, which is selected between
the following:

1. Infinite: no predicted end of burst is generated and therefore INCR burst transfer will never be
broken.

2. Four beat bursts: predicted end of burst is generated at the end of each four beat boundary
inside INCR transfer.

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

3. Eight beat bursts: predicted end of burst is generated at the end of each eight beat boundary
inside INCR transfer.

4. Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.

This selection can be done through the field ULBT of the Master Configuration Registers
(MATRIX_MCFG).

24.4.1.2 Slot Cycle Limit Arbitration
The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a
very slow slave (e.g. an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (MATRIX_SCFG) and decreased at each clock cycle. When the counter
reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or
word transfer.

24.4.2 Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master’s requests arise at the same
time, the master with the lowest number is first serviced then the others are serviced in a round-
robin manner.

There are three round-robin algorithm implemented:

* Round-Robin arbitration without default master
¢ Round-Robin arbitration with last access master
¢ Round-Robin arbitration with fixed default master

24.4.2.1 Round-Robin arbitration without default master
This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

24.4.2.2 Round-Robin arbitration with last access master
This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performs the access. Other non privileged masters will still get one latency cycle
if they want to access the same slave. This technique can be used for masters that mainly per-
form single accesses.

24.4.2.3 Round-Robin arbitration with fixed default master
This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

AImEl@ 341

6430F-ATARM-21-Feb-12

2443

ATMEL

Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master’s requests
are active at the same time, the master with the highest priority number is serviced first. If two or
more master’s requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (MATRIX_PRAS and MATRIX_PRBS).

24.5 Write Protect Registers

342

To prevent any single software error that may corrupt MATRIX behavior, the entire MATRIX
address space from address offset 0x000 to Ox1FC can be write-protected by setting the WPEN
bit in the MATRIX Write Protect Mode Register (MATRIX_WPMR).

If a write access to anywhere in the MATRIX address space from address offset 0x000 to Ox1FC
is detected, then the WPVS flag in the MATRIX Write Protect Status Register (MATRIX_WPSR)
is set and the field WPVSRC indicates in which register the write access has been attempted.

The WPVS flag is reset by writing the MATRIX Write Protect Mode Register (MATRIX_WPMR)
with the appropriate access key WPKEY.

The protected registers are:

“Bus Matrix Master Configuration Registers”
“Bus Matrix Slave Configuration Registers”
“Bus Matrix Priority Registers For Slaves”
“Bus Matrix Master Remap Control Register”

“Bus Matrix Master Remap Control Register”

SAMSIU S el O S e —

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

24.6 Bus Matrix (MATRIX) User Interface

Table 24-1. Register Mapping

Offset Register Name Access Reset
0x0000 Master Configuration Register 0 MATRIX_MCFGO Read-write 0x00000000
0x0004 Master Configuration Register 1 MATRIX_MCFGH1 Read-write 0x00000000
0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read-write 0x00000000
0x000C Master Configuration Register 3 MATRIX_MCFG3 Read-write 0x00000000
0x0010 Master Configuration Register 4 MATRIX_MCFG4 Read-write 0x00000000

0x0014 - 0x003C | Reserved - - -
0x0040 Slave Configuration Register 0 MATRIX_SCFGO Read-write 0x00010010
0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read-write 0x00050010
0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read-write 0x00000010
0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read-write 0x00000010
0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read-write 0x00000010
0x0054 Slave Configuration Register 5 MATRIX_SCFG5 Read-write 0x00000010
0x0058 Slave Configuration Register 6 MATRIX_SCFG6 Read-write 0x00000010
0x005C Slave Configuration Register 7 MATRIX_SCFG7 Read-write 0x00000010
0x0060 Slave Configuration Register 8 MATRIX_SCFG8 Read-write 0x00000010
0x0064 Slave Configuration Register 9 MATRIX_SCFG9 Read-write 0x00000010

0x0068 - 0x007C | Reserved - - -
0x0080 Priority Register A for Slave 0 MATRIX_PRASO Read-write 0x00000000
0x0084 Reserved - - -
0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read-write 0x00000000
0x008C Reserved - - -
0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read-write 0x00000000
0x0094 Reserved - - -
0x0098 Priority Register A for Slave 3 MATRIX_PRASS3 Read-write 0x00000000
0x009C Reserved - - -
0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read-write 0x00000000
0x00A4 Reserved - - -
0x00A8 Priority Register A for Slave 5 MATRIX_PRAS5 Read-write 0x00000000
0x00AC Reserved - - -
0x00B0O Priority Register A for Slave 6 MATRIX_PRAS6 Read-write 0x00000000
0x00B4 Reserved - - -
0x00B8 Priority Register A for Slave 7 MATRIX_PRAS7 Read-write 0x00000000
0x00BC Reserved - - -
0x00CO0 Priority Register A for Slave 8 MATRIX_PRASS8 Read-write 0x00000000

6430F-ATARM-21-Feb-12

ATMEL

343

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

Table 24-1. Register Mapping (Continued)

Offset Register Name Access Reset
0x00C4 Reserved - - -
0x00C8 Priority Register A for Slave 9 MATRIX_PRAS9 Read-write 0x00000000
0x00CC- 0xO0OFC | Reserved - - -
0x0100 Master Remap Control Register MATRIX_MRCR Read-write 0x00000000
0x0104 - 0x010C | Reserved - - -
Ox1E4 Write Protect Mode Register MATRIX_WPMR Read-write 0x0
Ox1E8 Write Protect Status Register MATRIX_WPSR Read-only 0x0
0x0110 - Ox01FC | Reserved - - -

6430F-ATARM-21-Feb-12

ATMEL

344

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

24.6.1 Bus Matrix Master Configuration Registers
Name: MATRIX_MCFGO..MATRIX_MCFG4

Address: 0x400E0200

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | ULBT |

This register can only be written if the WPEN bit is cleared in the “Write Protect Mode Register”.

¢ ULBT: Undefined Length Burst Type

0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single access allowing rearbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into 4 beats burst allowing rearbitration at each 4 beats burst end.
3: Eight Beat Burst

The undefined length burst is split into 8 beats burst allowing rearbitration at each 8 beats burst end.
4: Sixteen Beat Burst

The undefined length burst is split into 16 beats burst allowing rearbitration at each 16 beats burst end.

AImEl@ 345

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

24.6.2 Bus Matrix Slave Configuration Registers
Name: MATRIX_SCFGO0..MATRIX_SCFG9

Address: 0x400E0240

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - - - I ARBT |
23 22 21 20 19 18 17 16

| — | — | — | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

I - I - I - I - - I - I - I - |
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

This register can only be written if the WPEN bit is cleared in the “Write Protect Mode Register”.

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst

When the SLOT_CYCLE limit is reach for a burst it may be broken by another master trying to access this slave.
This limit has been placed to avoid locking very slow slave by when very long burst are used.

This limit should not be very small though. Unreasonable small value will break every burst and Bus Matrix will spend its
time to arbitrate without performing any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

e DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in having a one cycle latency for the first acccess of a burst transfer or for a single access.

1: Last Default Master

At the end of current slave access, if no other master request is pending, the slave stay connected with the last master hav-
ing accessed it.

This results in not having the one cycle latency when the last master re-tries access on the slave again.

2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master which
number has been written in the FIXED_DEFMSTR field.

This results in not having the one cycle latency when the fixed master re-tries access on the slave again.

* FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

AI“"E',® 346

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

¢ ARBT: Arbitration Type
0: Round-Robin Arbitration

1: Fixed Priority Arbitration
2: Reserved

3: Reserved

AIMEL 347

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

24.6.3 Bus Matrix Priority Registers For Slaves
Name: MATRIX_PRASO..MATRIX_PRAS9

Addresses: 0x400E0280 [0], 0x400E0288 [1], Ox400E0290 [2], 0x400E0298 [3], 0x400E02A0 [4], 0x400E02A8 [5],
0x400E02B0 [6], 0x400E02B8 [7], 0x400E02CO0 [8], 0x400E02C8 [9]

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I M4PR |
15 14 13 12 11 10 9 8

| — | — | M3PR | — | - | M2PR |
7 6 5 4 3 2 1 0

| — | — | M1PR | — | - | MOPR |

This register can only be written if the WPEN bit is cleared in the “Write Protect Mode Register”.

¢ MxPR: Master x Priority
Fixed prority of Master x for accessing to the selected slave.The higher the number, the higher the priority.

AI“"E',® 348

6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

24.6.4 Bus Matrix Master Remap Control Register

Name: MATRIX_MRCR

Address: 0x400E0300

Access: Read-write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | — | RCB4 | RCB3 | RCB2 | RCB1 | RCBO |

This register can only be written if the WPEN bit is cleared in the “Write Protect Mode Register”.

¢ RCBx: Remap Command Bit for AHB Master x
0: Disable remaped address decoding for the selected Master

1: Enable remaped address decoding for the selected Master

6430F-ATARM-21-Feb-12

ATMEL

349

24.6.5 Write Protect Mode Register
Name: MATRIX_WPMR

Address: Ox400E03E4

Access: Read-write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

| - | - | - | - | - | . | - WPEN |

For more details on MATRIX_WPMR, refer to Section 24.5 “Write Protect Registers” on page 342.

¢ WPEN: Write Protect ENable
0 = Disables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).
Protects the entire MATRIX address space from address offset 0x000 to Ox1FC.
e WPKEY: Write Protect KEY (Write-only)

Should be written at value 0x4D4154 (“MAT”in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

350 SAM3U Series messsssssssssssss—
6430F-ATARM-21-Feb-12

EEEsssssssssssssssssssseeeeeeeeeeeseesssssss SAM3U Series

24.6.6 Write Protect Status Register
Name: MATRIX_WPSR

Address: 0x400EO3ES8

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

| - | - | - | - | - | . | - WevS |

For more details on MATRIX_WPSR, refer to Section 24.5 “Write Protect Registers” on page 342.

e WPVS: Write Protect Violation Status
0: No Write Protect Violation has occurred since the last write of MATRIX_WPMR.

1: At least one Write Protect Violation has occurred since the last write of MATRIX_WPMR.

e WPVSRC: Write Protect Violation Source

Should be written at value 0x4D4154 (“MAT”in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

The protected registers are:

* “Bus Matrix Master Configuration Registers”
* “Bus Matrix Slave Configuration Registers”

* “Bus Matrix Priority Registers For Slaves”

* “Bus Matrix Master Remap Control Register”
* “Bus Matrix Master Remap Control Register’

AImEl@ 351

6430F-ATARM-21-Feb-12

ATMEL

352 SAM3U Series messsssssssssssss—
6430F-ATARM—-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

25. Static Memory Controller (SMC)

25.1 Description

The External Bus Interface is designed to ensure the successful data transfer between several
external devices and the Cortex-M3 based device. The External Bus Interface of the SAM3U
consists of a Static Memory Controller (SMC).

This SMC is capable of handling several types of external memory and peripheral devices, such
as SRAM, PSRAM, PROM, EPROM, EEPROM, LCD Module, NOR Flash and NAND Flash.

The SMC generates the signals that control the access to external memory devices or peripheral
devices. It has 4 Chip Selects and a 24-bit address bus. The 16-bit data bus can be configured
to interface with 8- or 16-bit external devices. Separate read and write control signals allow for
direct memory and peripheral interfacing. Read and write signal waveforms are fully
parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals.

The SMC embeds a NAND Flash Controller (NFC). The NFC can handle automatic transfers,
sending the commands and address cycles to the NAND Flash and transferring the contents of
the page (for read and write) to the NFC SRAM. It minimizes the CPU overhead.

The SMC includes programmable hardware error correcting code with one bit error correction
capability and supports two bits error detection. In order to improve overall system performance
the DATA phase of the transfer can be DMA assisted.

The External Data Bus can be scrambled/unscrambled by means of user keys.

25.2 Embedded Characteristics

6430F-ATARM-21-Feb-12

¢ 16-Mbyte Address Space per Chip Select

* 8- or 16-bit Data Bus

¢ Word, Halfword, Byte Transfers

* Byte Write or Byte Select Lines

¢ Programmable Setup, Pulse and Hold Time for Read Signals per Chip Select
* Programmable Setup, Pulse and Hold Time for Write Signals per Chip Select
¢ Programmable Data Float Time per Chip Select

* External Data Bus Scrambling/Unscrambling Function

e External Wait Request

* Automatic Switch to Slow Clock Mode

* NAND Flash Controller Supporting NAND Flash with Multiplexed Data/Address Buses
e Supports SLC NAND Flash Technology

¢ Hardware Configurable Number of Chip Selects from 1 to 4

* Programmable Timing on a per Chip Select Basis

* AHB Slave Interface

* Atmel APB Configuration Interface

* Programmable Flash Data Width 8 Bits or 16 Bits

AI“"E',® 353

ATMEL

* Supports Hardware Error Correcting Code (ECC), 1-bit Error Correction, 2-bit Error Detection
¢ Detection and Correction by Software
* Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path

¢ Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes,
Specified by Software

* Supports 1-bit Correction for a Page of 512, 1024, 2048 and 4096 Bytes with 8- or 16-bit
Data Path

» Supports 1-bit Correction per 512 Bytes of Data for a Page Size of 512, 2048 and 4096 Bytes
with 8-bit Data Path

e Supports 1-bit Correction per 256 Bytes of Data for a Page Size of 512, 2048 and 4096 Bytes
with 8-bit Data Path

25.3 Block Diagram

Figure 25-1. Block Diagram

<«——> D[15:0]
> A[0J/NBSO
> A[20:1]
A21/NANDALE
A22/NANDCLE
A23

L > NCS[3:0]

ECC| ——— NRD

> NWRO/NWE
User Interface ———> NWR1/NBSH1

SRAM
> NANDOE
AHB » |\FC (4 Kbytes) Control & Status NANDWE

Interface Internal SRAM Registers

SMC AHB
AHB > NAND Flash ‘ > | arbiter [
Interface Controller (NFC)

\/

SMC
Interface

4_1
|

l<—— NANDRDY
<—— NWAIT

354 SAM3U Series messssssssssssssss——
6430F—ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

25.4 1/0 Lines Description

Table 25-1. 1/O Line Description
Name Description Type Active Level
NCS[3:0] Static Memory Controller Chip Select Lines Output Low
NRD Read Signal Output Low
NWRO/NWE Write 0/Write Enable Signal Output Low
AO/NBSO Address Bit 0/Byte 0 Select Signal Output Low
NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low
A1 Address Bit 1 Output Low
A[23:2] Address Bus Output
D[15:0] Data Bus I/0
NWAIT External Wait Signal Input Low
NANDRDY NAND Flash Ready/Busy Input
NANDWE NAND Flash Write Enable Output Low
NANDOE NAND Flash Output Enable Output Low
NANDALE NAND Flash Address Latch Enable Output
NANDCLE NAND Flash Command Latch Enable Output

25.5 Multiplexed Signals

Table 25-2. Static Memory Controller (SMC) Multiplexed Signals
Multiplexed Signals Related Function

NWRO NWE Byte-write or byte-select access, see Figure 25-4 "Me.mory Connection for an 8-bit Data
Bus" and Figure 25-5 "Memory Connection for a 16-bit Data Bus"

A0 NBSO 8-bit or 16-bit data bus, see Section 25.9.1 "Data Bus Width”

A22 NANDCLE NAND Flash Command Latch Enable

A21 NANDALE NAND Flash Address Latch Enable

NWR1 NBS1 Byte-write or byte-select access, see Figure 25-4 and Figure 25-5

A1 _ 8-/1 6-bi? data bus, see Section 25.9.1 ”pata Bus Width”.
Byte-write or byte-select access, see Figure 25-4 and Figure 25-5

AImEl@ 355

6430F-ATARM-21-Feb-12

ATMEL

25.6 Application Example

25.6.1 Implementation Examples
For Hardware implementation examples, refer to ATSAM3U-EK schematics which show exam-
ples of connection to an LCD module, PSRAM and NAND Flash.

25.6.2 Hardware Interface

Figure 25-2. SMC Connections to Static Memory Devices

DO-D15)
ch\gg;‘r\?v%% ———\ 128K x 8 128K x 8
NWR1/NBS1 \ SRAM SRAM
N\ DO - D7 D8-D15
A D0 -D7 D0-D7
N\ cs cs
A0-Ale |A2-A18 A0 - Ale |—A2-A18
_|_NRD OF NRD |
NCSO0 N | NWRONWE NwE1/NBST
NCS1 WE WE
NCS2 ®
NCS3
A2 - A23 i d
Static Memory
Controller

25.7 Product Dependencies

25.71 I/O Lines
The pins used for interfacing the Static Memory Controller are multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the Static Memory Controller
pins to their peripheral function. If I/O Lines of the SMC are not used by the application, they can
be used for other purposes by the PIO Controller.

25.7.2 Power Management
The SMC is clocked through the Power Management Controller (PMC), thus the programmer
must first configure the PMC to enable the SMC clock.

356 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

25.7.3 Interrupt
The SMC has an interrupt line connected to the Nested Vector Interrupt Controller (NVIC). Han-
dling the SMC interrupt requires programming the NVIC before configuring the SMC.

Table 25-3. Peripheral IDs

Instance ID

SMC 9

25.8 External Memory Mapping

Table 25-4. External Memory Mapping

Address Use Access
0x60000000-0x60FFFFFF Chip Select 0 (16 MB) Read-write
0x61000000-0x61FFFFFF Chip Select 1 Read-write
0x62000000-0x62FFFFFF Chip Select 2 Read-write
0x63000000-0x63FFFFFF Chip Select 3 Read-write
0x04000000-0x07FFFFFF Undefined Area

0x68000000-0x6FFFFFFF NFC Command Registers(") Read-write

Note: 1. See Section 25.16.2 "NFC Control Registers”, i.e., CMD_ADDR description.

The SMC provides up to 24 address lines, A[23:0]. This allows each chip select line to address
up to 16 Mbytes of memory.

If the physical memory device connected on one chip select is smaller than 16 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure).

A[23:0] is only significant for 8-bit memory, A[23:1] is used for 16-bit memory.

Figure 25-3. Memory Connections for External Devices

NCSJ[0] - NCS[3]
NRD
SMC NWE NCS3
I Memory Enable
A[23:0] NCS2
D[15:0] | Memory Enable
- NCS1 I Memory Enable
NCSO0
Memory Enable
Output Enable
Write Enable _—
A[25:0] -
8or16 D[15:0] or D[7:0] |—

AIMEL 357

6430F-ATARM-21-Feb-12

ATMEL

25.9 Connection to External Devices

25.9.1

25.9.2

Figure 25-4.

Figure 25-5.

25.9.2.1

Data Bus Width

A data bus width of 8 or 16 bits can be selected for each chip select. This option is controlled by
the field DBW in SMC_MODE (Mode Register) for the corresponding chip select.

Figure 25-4 shows how to connect a 512K x 8-bit memory on NCS2. Figure 25-5 shows how to
connect a 512K x 16-bit memory on NCS2.

Byte Write or Byte Select Access

Each chip select with a 16-bit data bus can operate with one of two different types of write
access: byte write or byte select access. This is controlled by the BAT field of the SMC_MODE
register for the corresponding chip select.

Memory Connection for an 8-bit Data Bus
D[7:0] D[7:0]
A[18:2] A[18:2]
A0 A0
SMC A1 Al
NWE Write Enable
NRD Output Enable
NCS[2] Memory Enable

Memory Connection for a 16-bit Data Bus
D[15:0] D[15:0]
A[19:2] A[18:1]
Al A[0]
SMC NBSO Low Byte Enable

NBS1 High Byte Enable
NWE Write Enable
NRD Output Enable

NCSI[2] Memory Enable

Byte Write Access
Byte write access supports one byte write signal per byte of the data bus and a single read
signal.

Note that the SMC does not allow boot in Byte Write Access mode.

* For 16-bit devices: the SMC provides NWRO and NWR1 write signals for respectively, byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.

Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory.

358 SAMSIU S eri e S e —

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

25.9.22 Byte Select Access
In this mode, read/write operations can be enabled/disabled at byte level. One byte-select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.
* For 16-bit devices: the SMC provides NBSO and NBS1 selection signals for respectively
byte0 (lower byte) and byte1 (upper byte) of a 16-bit bus.
Byte Select Access is used to connect one 16-bit device.

Figure 25-6. Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option

D[7:0] D[7:0]
D[15:8] |—
A[24:2] A[23:1]
SMC A1 A[0]
NWRO Write Enable
NWR1
NRD Read Enable
NCS[3] Memory Enable
D[15:8]
A[23:1]
A[0]
Write Enable
Read Enable
L_| Memory Enable

25.9.23 Signal Multiplexing

Depending on the byte access type (BAT), only the write signals or the byte select signals are
used. To save |Os at the external bus interface, control signals at the SMC interface are multi-

plexed. Table 25-5 shows signal multiplexing depending on the data bus width and the byte
access type.

For 16-bit devices, bit AO of address is unused. When Byte Select Option is selected, NWR1 is
unused. When Byte Write option is selected, NBSO is unused.

Table 25-5. SMC Multiplexed Signal Translation

Signal Name 16-bit Bus 8-bit Bus
Device Type 1x16-bit 2 x 8-bit 1 x 8-bit
Byte Access Type (BAT) Byte Select Byte Write

NBSO0_AO NBSO A0
NWE_NWRO0 NWE NWRO NWE
NBS1_NWR1 NBS1 NWR1

A1l A1l A1l A1

AI“"E',® 359

6430F-ATARM-21-Feb-12

ATMEL

25.10 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBSO to
NBS1) always have the same timing as the A address bus. NWE represents either the NWE sig-
nal in byte select access type or one of the byte write lines (NWRO to NWR1) in byte write
access type. NWRO to NWR3 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS[0..3] chip select lines.

25.10.1 Read Waveforms
The read cycle is shown on Figure 25-7.
The read cycle starts with the address setting on the memory address bus, i.e.:
{A[23:2], A1, A0} for 8-bit devices
{A[23:2], A1} for 16-bit devices

Figure 25-7. Standard Read Cycle

MCK

|
|
I
A[23:2] '
|

|
NBSO,NBS1, j <
A0, A1

N\

| |
| |
I I
| |
! !
NCS | 1\ ! !
	t 4		
		1	
	/—	—\	
D[15:0] ! . , ! !			
I) Y 4 I		
NRD_SETUP NRD_PULSE	NRD HOLD		
I N . 1 I			
]		
I I			
NCS! RD_SETUP NCS_RD_PULSE	NCS_RD_HOLD		
, .			
”			
NRD_CYCLE .			
I

25.10.1.1 NRD Waveform
The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD

falling edge.

2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD
rising edge.

3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD
rising edge.

360 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

25.10.1.2 NCS Waveform
Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:

1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge.

3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

25.10.1.3 Read Cycle
The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD
=NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
Master Clock cycles. To ensure that the NRD and NCS timings are coherent, the user must
define the total read cycle instead of the hold timing. NRD_CYCLE implicitly defines the NRD
hold time and NCS hold time as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE
NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

25.10.2 Read Mode
As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The READ_MODE parameter in the SMC_MODE register
of the corresponding chip select indicates which signal of NRD and NCS controls the read
operation.

25.10.2.1 Read is Controlled by NRD (READ_MODE = 1):
Figure 25-8 shows the waveforms of a read operation of a typical asynchronous RAM. The read
data is available tppcc after the falling edge of NRD, and turns to ‘Z’ after the rising edge of NRD.
In this case, the READ_MODE must be set to 1 (read is controlled by NRD), to indicate that data
is available with the rising edge of NRD. The SMC samples the read data internally on the rising
edge of Master Clock that generates the rising edge of NRD, whatever the programmed wave-
form of NCS may be.

AI“"E',® 361

6430F-ATARM-21-Feb-12

ATMEL

Figure 25-8. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD

oo 1
I
|
A[23:2] '
I

NBSO,NBS1, |
A0, A1 X

O
o
L
o
>
Q
o
|\/|A—-/

Data Sampling

25.10.2.2 Read is Controlled by NCS (READ_MODE = 0)
Figure 25-9 shows the typical read cycle. The read data is valid tp5c after the falling edge of the
NCS signal and remains valid until the rising edge of NCS. Data must be sampled when NCS is
raised. In that case, the READ_MODE must be set to 0 (read is controlled by NCS): the SMC
internally samples the data on the rising edge of Master Clock that generates the rising edge of
NCS, whatever the programmed waveform of NRD may be.

Figure 25-9. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS

i T
|
|
|

NBSO,NBS1, }<
A0, A1

|

:

|

A[23:2] >{I |
|

: !
|

|

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

! I

| T

| | |

| | |

t T |
B) =N A

| | |
| | | teacc \) 4 |
D[15:0] ; : .) :

|

| |
|

NCS |
|
|
|
1

| | \— |
I I I
1 ' 1 !

Data Sampling

32 SAM3U Series

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

25.10.3 Write Waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 25-10. The write cycle
starts with the address setting on the memory address bus.

25.10.3.1 NWE Waveforms
The NWE signal is characterized by a setup timing, a pulse width and a hold timing.
1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge.
2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE
rising edge.
3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after
the NWE rising edge.
The NWE waveforms apply to all byte-write lines in Byte Write access mode: NWRO to NWRS3.

25.10.3.2 NCS Waveforms
The NCS signal waveforms in write operation are not the same as those applied in read opera-
tions, but are separately defined:

1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge.

3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

Figure 25-10. Write Cycle

wok | L
| : | | | |
| | | | | |
! | | | | |
Al23:2] ' ! | | | | X
! I T T T t
| | 1 1 1 |
| | | | | |
NBSO0, NBS1, | T T T :
P : : : . X
| | | | | |
| | | | | |
| |
NWE : ! AN . .
| 1
| : |
| I |
|
|

NCS TN\
|

|

|

|

| |

| NWE_SETUP

I |

| 1
NCS_WR_SETUP

,4—»!4

L NWE_CYCLE

> -

|
|
|
|
NWE_PULSE | NWE_HOLD
< > >
|
|
|
T
|

NCS_WR_PULSE NCS_WR_HOLD

|
|
> «——>

AI“"E',® 363

6430F-ATARM-21-Feb-12

25.10.3.3

ATMEL

Write Cycle

25.10.4 Write Mode

25.10.4.1

The write cycle time is defined as the total duration of the write cycle, that is, from the time where
address is set on the address bus to the point where address may change. The total write cycle
time is equal to:

NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD
= NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of Master Clock cycles. To ensure that the NWE and NCS timings are coherent, the user
must define the total write cycle instead of the hold timing. This implicitly defines the NWE hold
time and NCS (write) hold times as:

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE
NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

The WRITE_MODE parameter in the SMC_MODE register of the corresponding chip select indi-
cates which signal controls the write operation.

Write is Controlled by NWE (WRITE_MODE = 1)

Figure 25-11 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is
put on the bus during the pulse and hold steps of the NWE signal. The internal data buffers are
turned out after the NWE_SETUP time, and until the end of the write cycle, regardless of the
programmed waveform on NCS.

Figure 25-11. WRITE_MODE = 1. The write operation is controlled by NWE

25.10.4.2

364

A[23:2] >(I
|
NBSO, NBST,
X

MCK ! |
I
|

N\

A0, A1
|
|
NWE, ' ; ;
NWR0, NWRH1 | | |
| |
: | |
, .
| 1\ | |
NCS | | ; ; :
I | I ! !
D[15:0] ! ' — ' ')

Write is Controlled by NCS (WRITE_MODE = 0)

Figure 25-12 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is
put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are
turned out after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of
the programmed waveform on NWE.

SAMSIU S eri e S e —

6430F-ATARM-21-Feb-12

SAM3U Series

Figure 25-12. WRITE_MODE = 0. The write operation is controlled by NCS

MCK | |

Al23:2] D(

I

|

|

I

I
: . .
| | | |
NBSO, NBST, ! : : :

A0, A1 X | | 1 X
| o
NWE, ! | | .
NWRO, NWRH1 | N | [!
| L |
| : | | : :
! f ! | ! !
| |
NCS ! | ! / | |
| | | | : :
| | | | | |
D[15:0]

>_

AN

25.10.5 Coding Timing Parameters
All timing parameters are defined for one chip select and are grouped together in one
SMC_REGISTER according to their type.

* The SMC_SETUP register groups the definition of all setup parameters: NRD_SETUP,
NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP

¢ The SMC_PULSE register groups the definition of all pulse parameters: NRD_PULSE,
NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE

* The SMC_CYCLE register groups the definition of all cycle parameters: NRD_CYCLE,
NWE_CYCLE

Table 25-6 shows how the timing parameters are coded and their permitted range.

Table 25-6. Coding and Range of Timing Parameters
Permitted Range
Coded Value Number of Bits Effective Value Coded Value Effective Value
setup [5:0] 6 128 x setup[5] + setup[4:0] 0 <setup <31 128..(128+31)
pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0 <pulse 63 256..(256+63)
256.. (256+127)
cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0 <cycle <127 512.. (512+127)
768..(768+127)

6430F-ATARM-21-Feb-12

ATMEL

365

ATMEL

25.10.6 Reset Values of Timing Parameters
Table 25-7 gives the default value of timing parameters at reset.

Table 25-7. Reset Values of Timing Parameters

Register Reset Value Description
SMC_SETUP 0x01010101 All setup timings are set to 1
SMC_PULSE 0x01010101 All pulse timings are set to 1

The read and write operation last 3 Master Clock cycles

SMC_CYCLE 0x00030003 .

and provide one hold cycle
WRITE_MODE 1 Write is controlled with NWE
READ_MODE 1 Read is controlled with NRD

25.10.7 Usage Restriction
The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpre-
dictable behavior of the SMC.

25.10.7.1 For Read Operations
Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

25.10.7.2 For Write Operations
If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true for WRITE_MODE =
1 only. See “Early Read Wait State” on page 368.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

25.11 Scrambling/Unscrambling Function

The external data bus D[15:0] can be scrambled in order to prevent intellectual property data
located in off-chip memories from being easily recovered by analyzing data at the package pin
level of either microcontroller or memory device.

The scrambling and unscrambling are performed on-the-fly without additional wait states.

The scrambling method depends on two user-configurable key registers, SMC_KEY1 and
SMC_KEY2. These key registers are only accessible in write mode.

The key must be securely stored in a reliable non-volatile memory in order to recover data from
the off-chip memory. Any data scrambled with a given key cannot be recovered if the key is lost.

The scrambling/unscrambling function can be enabled or disabled by programming the
SMC_OCMS register.

366 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

One bit is dedicated to enable/disable NAND Flash scrambling and one bit is dedicated
enable/disable scrambling the off chip SRAM. When at least one external SRAM is scrambled,
the SMSC field must be set in the SMC_OCMS register.

When multiple chip selects (external SRAM) are handled, it is possible to configure the scram-
bling function per chip select using the OCMS field in the SMC_TIMINGS registers.

To scramble the NAND Flash contents, the SRSE field must be set in the SMC_OCMS register.

When NAND Flash memory content is scrambled, the on-chip SRAM page buffer associated for
the transfer is also scrambled.

25.12 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

25.12.1 Chip Select Wait States

The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the de-activation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBSO to NBS1, NWRO to
NWR1, NCSJ[0..3], and NRD lines. They are all set to 1.

Figure 25-13 illustrates a chip select wait state between access on Chip Select 0 and Chip
Select 2.

Figure 25-13. Chip Select Wait State between a Read Access on NCS0 and a Write Access on NCS2

NBSO,

6430F-ATARM-21-Feb-12

NBS1,
AO,A1

NRD

NWE

NCSO0

NCS2

D[15:0]

XX X
G G—

AN
NWE_CYCLE

|
|
| < >
|
|
T
|

C_r—

L

Read to Writé Chip Select
Wait State | Wait State

AI“"E',® 367

ATMEL

25.12.2 Early Read Wait State
In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

¢ if the write controlling signal has no hold time and the read controlling signal has no setup
time (Figure 25-14).

¢ in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS
signal and the NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure
25-15). The write operation must end with a NCS rising edge. Without an Early Read Wait
State, the write operation could not complete properly.

* in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD =
0), the feedback of the write control signal is used to control address, data, chip select and
byte select lines. If the external write control signal is not inactivated as expected due to load
capacitances, an Early Read Wait State is inserted and address, data and control signals are
maintained one more cycle. See Figure 25-16.

Figure 25-14. Early Read Wait State: Write with No Hold Followed by Read with No Setup

MCK

\

NBSO, NBS1, L
AO, A1 D,<

N
|

NRD

SRR (S R NS EEEEEE

|
|
:
A[23:2] |
|
|
|
|
|
|
|
|
I
|
|

- ____-___X____X____._

/

)

no setup

%

D[15:0]

write cycle :Early Read! read cycle
! wait state

368 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

SAM3U Series

Figure 25-15. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup

MCK

= i
1 : 1 1 I 1
1 | 1 1 I 1
1 | 1 : | 1
I 1 1
A[23:2] ! | | N
X : XX | D
1 | 1 1 | 1
1 | 1 : | 1
NBSO, NBS1, T T T T
AO,A1 th | '>< }([D
1 | 1 ! I 1
| 1 ! I 1
T ! t i
NCS 1 I : :
1
1 : 1 I 1
1 . 1 |
NRD ! ro ! '/ !
1 | 1 | ! 1
! no hold 1 i no setup '
. 1 (| > ! (1
D[15:0] : | >—:
1 1 1 1
1 1 1 1
1 1 L 1
" 0 T read cycle =:
1 write cycle 1 Early Read Y 1
- (WR'TE_MODE — 0) 1 wait state' (READ_MODE =0or READ_ QDE = 1)

Figure 25-16. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle

1
vek | L] | I L[] L
1 : 1 ! : I 1
1 | 1 ! | I 1
1 | 1 ! | I 1
A[23:2]3{ l : :>(| :
1 : T . : T J\?
1 | 1 (- | I 1
NBSO, NBS1 | ! ' g | ' .
))] I T T T
Ky CE) GRS S
1 : | ot : I 1
. . N 1 |] bt | I 1
internal write controlling signal T 1 —L : ; |
| P I I 1
(- I 1
external write controlling signal ' [! l)
(NWE)] I (N | [1
1 | [| | 1
1 I 1 (. | I 1
! no hold | | I read setup!=1 | !
NRD ! ! [— ! !
T T L |
1 /
| l Lo : |
1 ! 1
1 ! 1
1 1 ! 1
1 1 ! 1
1 1 ! 1
1 1 ! |
i< ol L])
1

" ! d cycle
write cycle ! Early Reag rea
(WR'TE_MODE — 1) I wait state * (READ_MODE =0or READ_MqDE = 1)

AI“"E',® 369

6430F-ATARM-21-Feb-12

ATMEL

25.12.3 Reload User Configuration Wait State

25.12.3.1

25.12.3.2

The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “Reload User Configuration
Wait State” is used by the SMC to load the new set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If
accesses before and after re-programming the user interface are made to different devices
(Chip Selects), then one single Chip Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a Reload Configuration Wait State is inserted, even if the change does not concern the
current Chip Select.

User Procedure

To insert a Reload Configuration Wait State, the SMC detects a write access to any
SMC_MODE register of the user interface. If only the timing registers are modified
(SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in the user interface, the user must vali-
date the modification by writing the SMC_MODE register, even if no change was made on the
mode parameters.

Slow Clock Mode Transition

A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or
exited, after the end of the current transfer (see “Slow Clock Mode” on page 381).

25.12.4 Read to Write Wait State

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 25-13 on page 367.

25.13 Data Float Wait States

370

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

* before starting a read access to a different external memory,

* before starting a write access to the same device or to a different external one.
The Data Float Output Time (tpg) for each external memory device is programmed in the
TDF_CYCLES field of the SMC_MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tpe will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the SMC_MODE register for the corresponding chip select.

SAMSIU S eri e S e —

6430F-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

25.13.1 READ_MODE
Setting READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turning off
the tri-state buffers of the external memory device. The Data Float Period then begins after the
rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 25-17 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1),
assuming a data float period of 2 cycles (TDF_CYCLES = 2). Figure 25-18 shows the read oper-
ation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3.

Figure 25-17. TDF Period in NRD Controlled Read Access (TDF = 2)

I
X
X

MCK ! |
l
|

NBSO0, NBS1, }<
A0, A1

|

:

|

A[23:2] >{I :
]

l l
|

|

|

|

|

§

i TDF=2 {:Iock cycles
™~ [

Y-__¥

AIMEL a7t

6430F-ATARM-21-Feb-12

ATMEL

Figure 25-18. TDF Period in NCS Controlled Read Operation (TDF = 3)

S

NBSO, NBST,
A0,A1 }<

—_—— — —_- - L A _d_ _ 1

§

| |
: TDF =3 q'lock cycles
¢ T

NCS controlled read operation

Yy __

i N i

25.13.2 TDF Optimization Enabled (TDF_MODE = 1)
When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the
SMC takes advantage of the setup period of the next access to optimize the number of wait
states cycle to insert.

Figure 25-19 shows a read access controlled by NRD, followed by a write access controlled by
NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)
NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)
TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).

372 SAM3U Series messssssssssssssss——
6430F—ATARM-21-Feb-12

SAM3U Series

Figure 25-19. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

e S I A A A A O A O e

1
1
1
1
1
;!
1
1
1
1
1
1
1

NRD_riioTD\A}
NWE | ! I I
I I] 1
| | 1 | 1
| | 1 | 1
| | R L — 1
1 | 1
! | ' ! NWE_SETPP=3 | |
I I 1] I I 1
| 1
NCSO0 /: : : . N\ | 1
1
L
1

)
1
| 1
|TDF_CYCLES 6 |

< : : : . _ ¢
Di15:0] K| YINDID DIV NIV < —
1 ' ' ! . ! | 1 1 |
; » '« :
read access on NCSO (NRD controlled) Read to Write write access on NCSO (NWE controlled)
Wait State

25.13.3 TDF Optimization Disabled (TDF_MODE = 0)
When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that
the data float period ends when the second access begins. If the hold period of the read1 con-
trolling signal overlaps the data float period, no additional tdf wait states will be inserted.

Figure 25-20, Figure 25-21 and Figure 25-22 illustrate the cases:
¢ read access followed by a read access on another chip select,
* read access followed by a write access on another chip select,

¢ read access followed by a write access on the same chip select,
with no TDF optimization.

AI“"E',® 373

6430F-ATARM-21-Feb-12

ATMEL

Figure 25-20. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip
selects

MCK

A[23:2]

1
|
|
|
I
|
|
NBSO, NBS1, |
A0, A1 X
I
I [}
read1 controlling signal ' . .
(NRD) Wm hold = 1 :
1
1
+ 1

read2 controlling signal
(NRD)

D[15:0] ﬂ—<'

1
|
|
|
T
|
t
|
|
I
|
I
|
|

|

|

|

|

I
TOF_CYCLES =6

>>>>):>>>>>>>>>>>>>>>>>>>>(

5 TDF WAIT STATES

'

22))

t

A

read 2 cycle
TDF_MODE =0
(optimization disabled)

- -

read1 cycle
TDF_CYCLES =6

|

Chip Select Wait State

Figure 25-21. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects

ek || | | [O D
: | I 1 | 1 | 1 I I 1
1 | I 1 : 1 | 1 I I 1
1 | l 1 | | 1 | | 1
A232] | | X X : I | X
l } 1 | | ! i | | } |
1 | | 1 I | 1 | | 1
NBSO, NBS1, 1 1 ‘ t L + : L ‘ ‘ .
|
oAl X | | X X : | | X
|
T b
read1 controlling signal [' : 1 I 1 | ! 1
| [} | I | | I
(NRD) : AN Aead1 hold = 1 ! I i write2 setup = 1 ! [
[} | I | | I
: : l‘—ﬁl' : 1 | [——» I 1
write2 controlling signal : : l : f : : : : : :
(NWE) I I TDR_CYCLES =:4 ! _ I N\ I 1/
: L : ! i . : : I 1
1 I 1 | 1 1 I I 1
1] " | 1 1 I ! 1
D[15:0 1 \ 1 W/ \ 1
R e G)33 3330)309)); . \ |)—
: : | | ! !
| ' T : :
| |
- r ! 1< > >
readi cycle ! | | 2 TDF WAIT STATES write2 cycle
TDF_CYCLES =4 -~ TDF_MODE =0
Read to Write Chip Select (optimization disabled)

Wait State ~ Wait State

374 SAM3U Series messssssssssssssss——
6430F—ATARM-21-Feb-12

SAM3U Series

Figure 25-22. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select

MCK l

L | L] | L | |

- = =

L L]

X

X
X

1

1

read1 controlling signal 1
(NRD) m :

read1 hold = 1 .

d 1

1

1
|
|
|
1
|
f
|
|
!
|
|
|
|
|
|
+

rite2 setup
S —

|

1
1

1

1

write2 controlling signal :
(NWE) |

1
1
1
1

25.14 External Wait

25.14.1 Restriction

25.14.2 Frozen Mode

6430F-ATARM-21-Feb-12

L G))N MNIININ) S S e

|
!
L
!
1 I
!
|
!
\
!

TDF_CYCLES =5

oy 4

Wi
1 |
1
1
I
1
1
1
1

4 TDF WAIT STATES
read1 cycle | :‘ ':~
TDF_CYCLES =5 :me - write2 cycle
Wait State TDF_MODE =0

(optimization disabled)

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The EXNW_MODE field of the SMC_MODE register on the corresponding chip select must be
set to either to “10” (frozen mode) or “11” (ready mode). When the EXNW_MODE is set to “00”
(disabled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT
signal delays the read or write operation in regards to the read or write controlling signal,
depending on the read and write modes of the corresponding chip select.

When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold cycle
for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in Slow
Clock Mode (“Slow Clock Mode” on page 381).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC
completes the access, resuming the access from the point where it was stopped. See Figure 25-
23. This mode must be selected when the external device uses the NWAIT signal to delay the
access and to freeze the SMC.

AImEl@ 375

ATMEL

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure

25-24.

Figure 25-23. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

-1 1-"-"1"'1-——"""1"""71-"~"~"~- el e e A

o
o —
- —— =
_ N Il/
w /
[N DR NN AN A = R PN N AU
<
T
»
z | - o
N
o Q0
-——q-A----&|----q---1--- F-t--—-F--—-----"- 3}
w >
5
— [aV] (0]
=
=

BN Y

R ™
34 I O .
45 I O R
.................... AT
I VA VA DD IR RN SN v

~ - w ! 5) E K]
Q 8 s = ©0 g k=3
S 5 = o
@< <
0o =
zZ< Z

internally synchronized

6430F-ATARM-21-Feb-12

)

NWE_controlled
7

5

=10 (Frozen)
NCS_WR_PULSE

=1

WRITE_MODE
NWE_PULSE

EXNW_MODE

SAMSIU S eri e S e —

376

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

Figure 25-24. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

377

N\ A\
-1---f3--F-1---r--—-——14----""1--"-"-""-""------- A
.|. o o
— [V N B
— o 2]

bbb N -
o
— - ~ o
=5
mc
°8
L=
o
o
w
o nDV%
Q o
>
) M,M
S| 2o
T | Z<
Q| Xuw
| W
—) <)
— ~ —
L N~ _________d______L_____ y
¥ ~ - %) a = T
o - o< 8] T = 2
= Nl m o =z b W 2
< - z =
S =
1) <
0 =
z z

internally synchronized

Assertion is ignored

3

)

6

NCS_RD_HOLD

NRD_HOLD
5,

0 (
2,

NCS_RD_PULSE

NRD_PULSE

I)

AIMEL

6430F-ATARM-21-Feb-12

ATMEL

25.14.3 Ready Mode
In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins
the access by down counting the setup and pulse counters of the read/write controlling signal. In
the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 25-25 and Figure 25-26. After
deassertion, the access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 25-26.

Figure 25-25. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

w0 L L L

|

| | | | | |

| | | | | |

| | | | | |
A23:2] l l | | | | >

‘ ,

| : : | | | ‘ |

I I I I I I 1 I

NBSO, NBS1, ! ' ' ‘ ‘ f ‘
hon < | | | | | | |)

|
|

| | Wait STATE
|

| |
| |
| |
\ \ | ! |
2 I 1 I 0/ 0 : 0/
| | | |
|
| -/ x /

"

internally synchronized
NWAIT signal , \

Write cycle

i
| SN |

EXNW_MODE = 11 (Ready mode)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE =5
NCS_WR_PULSE =7

378 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

= 11)

EXNW_MODE

Figure 25-26. NWAIT Assertion in Read Access: Ready Mode (

AN b _____
B 1 A
_J_w
—”
<
T
)
..om —_
_|.3 3
33
O +«=
E5
> O
o |
%S
-kt €S
— o
oy
o| Ww
Q o
b o)
& M,M,
Bl 2o
o| €5
o i
[Te} ©
[(e]
NV ____b_____Y
- %) a =
< [$] o <
g = =z =
=z

NBSO, NBS1,
NWAIT signal

internally synchronized

Assertion is ignored

Assertion is ignored

=7

7

NCS_RD_PULSE

NRD_PULSE

379

AIMEL

I)

6430F-ATARM-21-Feb-12

ATMEL

25.14.4 NWAIT Latency and Read/Write Timings
There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1
cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT
signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on Fig-
ure 25-27.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the
read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 25-27. NWAIT Latency

oI S T N B A S
S e e O S S A
Al23:2] E(i : l : : ! : : >
| I I i | i | : |
| I I I | | | | |
NBSO, NBS1, | ' ' ’ ' T ; T
° AO,A11 (: : : : I : : :>
! | | | WAIT STATE | |
| | | | 4>
4 3 | 2 1 1 0 o 1 o /JI—E—
NRD — o
| | minimal pdise length | |
| | | | |
+ 1 | L
NWAIT | | ! v/
|

intenally synchronized
NWAIT signal

NW'AIT latency : 2 cycle res{/nchronizatibn
T T T

/

I:Read cycle

A

y

i
I
I
I
I
Il
I
T
I
I
I
I
[I I I
I
I
I
I
| I
| T
| I
| I
| I
[i i
: EXNW_MODE él 10or 11 :
| READ_MODE =1 (NRD_controlled)
| I I I
I
I

|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NRD_PULSE =5 : .

B 2 I

380 SAM3U Series messssssssssssssss——
6430F—-ATARM-21-Feb-12

EEEssssssssssssssssseeeeeeeeseesssssss SAM3U Series

25.15 Slow Clock Mode

The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the Power Management Controller is asserted because MCK has
been turned to a very slow clock rate (typically 32 kHz clock rate). In this mode, the user-pro-
grammed waveforms are ignored and the slow clock mode waveforms are applied. This mode is
provided so as to avoid reprogramming the User Interface with appropriate waveforms at very
slow clock rate. When activated, the slow mode is active on all chip selects.

25.15.1 Slow Clock Mode Waveforms
Figure 25-28 illustrates the read and write operations in slow clock mode. They are valid on all

chip selects. Table 25-8 indicates the value of read and write parameters in slow clock mode.

Figure 25-28. Read/Write Cycles in Slow Clock Mode

vk | L] | I

NBSO, NBS1,
A0,A1

MCK ! |
|
|

NBSO, NBST,
AO,A1 ><,

|
|
A[23:2] |
|
|
]
|
|
|
|

|
| |
NWE_CYCLE =3 | NRD_CYCLE =2

SLOW CLOCK MODE WRITE ' SLOW CLOCK MODE READ

6430F-ATARM-21-Feb-12

Table 25-8. Read and Write Timing Parameters in Slow Clock Mode
Read Parameters Duration (cycles) Write Parameters Duration (cycles)
NRD_SETUP 1 NWE_SETUP 1
NRD_PULSE 1 NWE_PULSE 1

NCS_RD_SETUP

NCS_WR_SETUP

NCS_RD_PULSE

NCS_WR_PULSE

NRD_CYCLE

0
2
2

NWE_CYCLE

w | w|o

ATMEL

381

ATMEL

25.15.2 Switching from (to) Slow Clock Mode to (from) Normal Mode
When switching from slow clock mode to normal mode, the current slow clock mode transfer is
completed at high clock rate, with the set of slow clock mode parameters. See Figure 25-29. The
external device may not be fast enough to support such timings.

Figure 25-30 illustrates the recommended procedure to properly switch from one mode to the
other.

Figure 25-29. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode |
internal signal from PMC

MCK

| |
Al23:2] :?(i : ' T ﬂ A X:I:
X i

| [T N
| [
NBSO, NBS1, t T T T T T T
A0, A1 ! ! DC{X U N S B
’ T T 1 1 T T T T T
! : [T B o |
N i [| N T T A T B
'—',-/ ! M 1 : | | I 1 |
| : | : | [T B o [T B
SR R R PR NI SRS BN DL R P E- R P -
- I. < > ™ OGO
X : T
NCS 1 . : ! :
1\ ! y |\ y
| | . '
NWE_CYCLE = 3 i Do NWE_CYCLE =7
< »>le > 1< >
1
SLOW CLOCK MODE WRITE SLOW CLOCK MODE V\IRIT$ NORMAL MODE WRITE
1
Lo
! 1
B
This write cycIe finishes with the slow clock mode set Slow clock mode transition is detected:
of parameters after the clock rate transition Reload Configuration Wait State

382 SAM3U Series messssssssssssssss——
6430F—ATARM-21-Feb-12

SAM3U Series

Figure 25-30. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

Slow Clock Mode |

internal signal from P