ELECTRONIC ASSEMBLY new display design

DOGXL240-7 GRAFIK

240x128 INKL. KONTROLLER UC1611s

EA DOGXL240W-7 + EA LED94X67-W

EA DOGXL240W-7 + EA LED94X67-A

TECHNISCHE DATEN

- * MIT KONTROLLER UC1611s UND INTEGRIERTEM GRAFIK RAM
- * KONTRASTREICHE LCD-SUPERTWIST ANZEIGE (STN UND FSTN) MIT 15µm DOTGAP
- * OPTIONALE LED-BELEUCHTUNG IN VERSCHIEDENEN FARBEN
- * 240x128 PUNKTE (ENTSPRICHT 16 Zeilen à 40 ZEICHEN ODER 8x20 ZEICHEN GROSS)
- * SPANNUNGSVERSORGUNG SINGLE SUPPLY 2,7..3,3V (typ. 900 μA)
- * KEINE ZUS. SPANNUNGEN ERFORDERLICH
- * DREI SERIELLE INTERFACES EINSTELLBAR: 3-WIRE SPI, 4-WIRE SPI UND I2C
- * BETRIEBSTEMPERATURBEREICH -20..+70°C (LAGER -30..+80°C)
- * LED-HINTERGRUNDBELEUCHTUNG 10..150mA
- * KEINE MONTAGE ERFORDERLICH: EINFACH DIREKT IN PCB EINLÖTEN
- * VERSCHIEDENSTE DESIGNVARIANTEN AB 1 STÜCK LIEFERBAR

BESTELLBEZEICHNUNG

GRAFIK 240x128, 94x67mm

EA DOGXL240*-7

*: W = weisser Hintergrund (FSTN pos. transflective)

B = blauer Hintergrund (STN neg. transmissive)

S = schwarzer Hintergrund (FSTN neg. transmissive)

 $N = weisser\ Hintergrund\ (FSTN\ pos.\ reflective,\ nicht\ beleuchtbar)$

LED-BELEUCHTUNG WEISS

LED-BELEUCHTUNG AMBER

LED-BELEUCHTUNG 2-FARBIG GRÜN/ROT

EA LED94X67-A

EA LED94X67-GR

ZUBEHÖR

USB TESTBOARD FÜR PC (WINDOWS)

TOUCH PANEL, 4-DRAHT ANALOG ZUM AUFKLEBEN

NULLKRAFTSTECKER FÜR TOUCH, BOTTOM CONTACT

ZEICHENSÄTZE z.B. 6x8,8x8,8x16,KYRILLISCH MIT FONTEDITOR (WIN) EA USBSTICK-FONT
BUCHSENLEISTE 4,8mm hoch (2 Stück erforderlich)

EA 9780-3USB

EA TOUCH240-3

EA WF100-04S

ZEICHENSÄTZE z.B. 6x8,8x8,8x16,KYRILLISCH MIT FONTEDITOR (WIN) EA USBSTICK-FONT

BUCHSENLEISTE 4,8mm hoch (2 Stück erforderlich)

EA FL-20P

PINBELEGUNG

EΑ DOGXL240-7 Mit dem erweitert ELECTRONIC ASSEMBLY die EA DOG Serie um ein weiteres Grafikdisplay mit 240x128 Punkten. Dieses mit Pins ausgestattete Display bietet eine schnelle und einfache Montage.

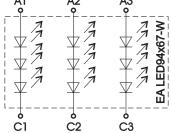
KONTRASTEINSTELLUNG

Für alle Displays der EA DOGXL- Serie ist der Kontrast per Befehl einstellbar. In der Regel wird der Kontrast einmalig eingestellt und dann - dank integrierter Temperaturkompensation - über den gesamten Betriebstemperaturbereich (-20..+70°C) konstant gehalten. Dieser einmalige Abgleich ist jedoch in jedem Fall erforderlich.

Pin	Symbol	Level Function	Pin	Symbol	Level	Function
1	NC	(A1+: LED backlight)	21	VB0+	-	Voltage Converter
2	NC	(A2+: LED backlight)	22	VB1+	-	Voltage Converter
3	NC	(A3+: LED backlight)	23	VB1-	-	Voltage Converter
4			24	VB0-	-	Voltage Converter
5			25	VA0+	-	Voltage Converter
6			26	VA1+	-	Voltage Converter
7			27	VA1-	-	Voltage Converter
8			28	VA0-	-	Voltage Converter
9			29	VLCD	-	Pow er LC Drive
10			30	VDD	Н	Pow er Supply +2,73,3V
11			31	VSS	L	Pow er Supply 0V (GND)
12			32	VSS	_	Tower Supply ov (GIND)
13			33	BM0	H/L	Config Serial Interface
14			34	CD	H/L	L= Command, H= Data
15			35	CS1 (A3)	Н	Chip Select (high low)
16			36	CS0 (A2)	L	Chip Select (active low)
17			37	RST	L	Reset (active low)
18	NC	(C1-: LED backlight)	38	SCK (D0)	H/L	Serial Clock
19	NC	(C2-: LED backlight)	39	SDA (D3)	H/L	Serial Data
20	NC	(C3-: LED backlight)	40	D13	H/L	Config Serial Interface

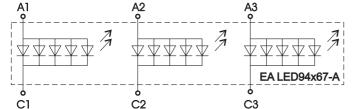
LED-BELEUCHTUNGEN

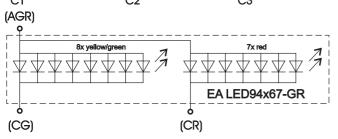
Zur individuellen Hintergrundbeleuchtung sind 3 verschiedene Varianten erhältlich: weiss (-W), amber (-A) und eine 2-farbige Version in grün und rot (-GR).


Bei der amberfarbigen Beleuchtung stehen jeweils 3 separate LED-Pfade mit je 5 parallel geschalteten LEDs zur Verfügung, welche zur optimalen Anpassung an die Systemspannung extern wiederum parallel oder in Serie geschaltet werden können.

Bei der weissen Hintergrundbeleuchtung sind je 3 separate LED-Pfade mit je 3 in Serie geschalteten LEDs herausgeführt. Für eine optimale Lebensdauer empfehlen wir den Einsatz einer Stromquelle (z.B. CAT4238TD).

Die 2-farbige Beleuchtung bietet eine gemeinsame Anode, sowie zwei Anschlüsse für die Ansteuerung der roten und grünen Beleuchtung sowie Mischfarben.


Die Lebensdauer der grünen, roten und amber-farbigen Beleuchtung beträgt 100.000 Stunden. Die weiße Beleuchtung wird mit hochwertigen NICHIA LED's geliefert. Um auch hier 100.000 Stunden Lebensdauer zu erzielen, empfehlen wir diese immer wieder einmal zu dimmen oder abzuschalten.


Achtung: Betreiben Sie die Beleuchtung nie direkt an 5V; das kann zur sofortigen Zerstörung der LED's führen! Beachten Sie ein Derating bei Temperaturen >25°C.

LED backlight	Forward voltage	Current
(each path)	typ	max.
white EA LED94x67-W	9.6 V	15 mA

LED backlight	Forward voltage	Current	Limiting (oh	
(each path)	typ	max	@3,3 V	@5 V
amber EA LED94x67-A	2.1 V	100 mA	12	29

LED backlight (each color)	Forward voltage	Current	Limiting resistor (ohm)
,	typ	max	@5 V
full color EA LED94x67-GR	2.1 V	120 mA	25

4 VERSCHIEDENE TECHNOLOGIEN

Als Standard sind 4 verschiedene Technologien in STN und FSTN lieferbar:

Displaytyp	Technologie	optionale Beleuchtung	Lesbarkeit	Displayfarbe unbeleuchtet	Displayfarbe mit Beleuchtung	empfohlene Beleuchtung
ELECTRONIC ASSEMBLY PERSONS ER DOGXL240W-7	FSTN pos. transflektiv	mit und ohne Beleuchtungskörper zu verwenden	auch bei abgeschalteter Bel. lesbar	schwarz auf weiß	schwarz auf Beleuchtungsfarbe	alle
ELECTRONIC ASSEMBLY PERSON ER DOGXL2408-7	STN neg. blau transmissiv	nur beleuchtet zu verwenden			Beleuchtungsfarbe auf blauem Hintergrund	weiß, amber
ELECTRONIC ASSEMBLY FREEIN FREEIN EN DOGXL2405-7	FSTN neg. transmissiv	nur beleuchtet zu verwenden			Beleuchtungsfarbe auf schwarzem Hintergrund	alle
ELECTRONIC ASSEMBLY Presents ER DOGXL240N-7	FSTN pos. reflektiv	keine Beleuchtung möglich	ohne Beleuchtung bestens lesbar	schwarz auf weiß		

3 VERSCHIEDENE BELEUCHTUNGEN

Zur Anpassung an unterschiedlichste Designs stehen 3 verschiedene Beleuchtungsfarben (inkl. der 2-farbigen grün/roten Version) zur Auswahl. Die effektivste und gleichzeitig hellste Beleuchtung ist die weiße EA LED94X67-W.

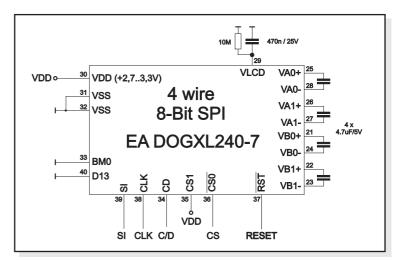
Wenn Sie auf dieser Seite nur schwarz/weiß Darstellungen sehen: das farbige Datenblatt finden Sie im Internet unter http://www.lcd-module.de/deu/pdf/grafik/dogxl240-7.pdf

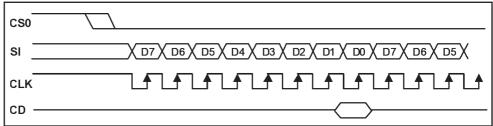
ZEICHENSÄTZE UND FONTEDITOR (ZUBEHÖR)

Unter der Bestellbezeichnung EA USBSTICK-FONT sind diverse passende Zeichensätze lieferbar. Weitere können aus den Windows Systemfonts erstellt und editiert werden. Mit dem sehr einfach zu bedienende Tool können auch z.B. kyrillische, griechische oder arabische Zeichensätze erstellt werden. Die Preview Funktion arbeitet direkt mit dem Testboard EA 9780-3USB am USB-Port zusammen.

DATENÜBERTRAGUNG

Bei dem EA DOGXL240-7 kann eines von 3 seriellen Interfaces eingestellt werden. Bei den beiden SPI-Modi ist die Datenübertragung unidirektional ausgelegt. Das bedeutet, dass Daten nur geschrieben, nicht aber wieder gelesen werden können. Eine bei anderen Displays notwendige Busy-Abfrage ist bei diesem Display nicht notwendig. Die Taktrate der CLK Leitung kann

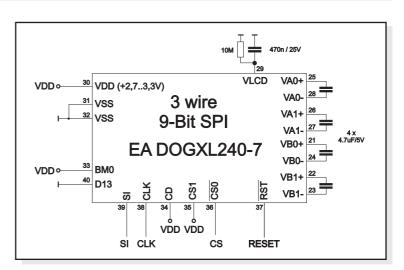

	Serial Modes				
ВМО	D13	Description			
0	0	4-wire, 8-Bit SPI			
1	0	3-wire, 9-Bit SPI			
1	1	2-wire, I2C			

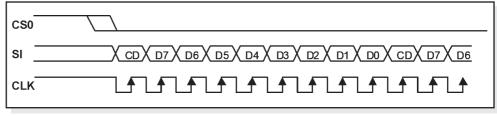

je nach Versorgungsspannung und seriellen Modus bis zu 8 MHz betragen. Nähere Hinweise zum Timing finden Sie auf den Seiten 64 bis 66 im Datenblatt des Kontrollers UC1611s, auf unserer Homepage unter http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s-v1-0.pdf

4 WIRE, 8-BIT SPI-MODE

Durch die fallende Flanke am Pin CS0 (bzw. steigende Flanke an CS1) wird das Display selektiert und der interne Bit-Zähler zurückgesetzt. Danach werden die 8-Bit in das Display getaktet (MSB zuerst). Der Pegel am Pin CD entscheidet (Gültigkeit bei Bit D0) ob Daten (H) oder Befehle (L) übertragen werden.

Die Taktrate der CLK Leitung kann je nach Versorgungsspannung und Leitungseigenschaften bis zu 8 MHz betragen.





3 WIRE, 9-BIT SPI-MODE

Durch die fallende Flanke am Pin CS0 (bzw. steigende Flanke an CS1) wird das Display selektiert und der interne Bit-Zähler zurückgesetzt. Als erstes wird das CD-Bit gesendet, es entscheidet ob Daten (H) oder Befehle (L) übertragen werden. Danach werden 8 Bits in das Display getaktet (MSB zuerst).

Die Taktrate der CLK Leitung kann je nach Versorgungsspannung und Leitungseigenschaften bis zu 8 MHz betragen.

2 WIRE, I²C-MODE

Über die Pins A2 und A3 können vier verschiedene Basisadressen eingestellt werden. Somit ist es möglich, bis zu 4 Displays an einem I²C-Bus zu betreiben.

Die Datenübertragung im I²C Modus ist Bidirektional d.h. die Daten können auch wieder gelesen werden.

Die Taktrate der SCK Leitung kann je nach Versorgungsspannung und Leitungseigenschaften bis zu 1,7 MHz betragen. Beachten Sie bei der Auswahl der Pull-up Widerstände, dass die Anschlusspins SDA+SCK einen Innenwiderstand von ca. 600..1000 Ohm, evtl. auch mehr haben (betrifft LO-Pegel beim Lesen von Daten bzw. dem ACK-Bit).

Achtung: Nach den Befehlen zum Setzen der Page- bzw. Column-Adresse muss immer zuerst ein Dummy-Byte gelesen werden.

VDD 0 30 VDD (+2,73,3V) VLCD	VA0+ 25 25 28 28 28 28 28 28 28 28 28 28 28 28 28
VSS I ² C EA DOGXL240-7	VA1+ VA1- VB0+ VB0- 21 21 4.7uF/5V
VDD 0-13	VB1-
SDA SCK RESE	Т

A2=VSS / A3=VSS (like application example)			
Function			
Write Command			
Read Status			
Write Data			
Read Data			

A2=\	A2=VDD / A3=VDD		
Adr	Adr Function		
\$7C	Write Command		
\$7D	Read Status		
\$7E	Write Data		
\$7F	Read Data		

MPU	MPU ft U	MPU U ft U	MPU U ft	MP n
S 0 1 1 1	A A C 0 A D 7	D A D	_ D A	A
Read Mode MPU	MPU	MPU	MPU	MPU

A2=\	VDD / A3=VSS
Adr Function	
\$74	Write Command
\$75	Read Status
\$76	Write Data
\$77	Read Data

A2=\	A2=VSS / A3=VDD		
Adr	Function		
\$78	Write Command		
\$79	Read Status		
\$7A	Write Data		
\$7B	Read Data		

USB-TESTBOARD EA 9780-3USB

Zum einfachen Start ist ein USB-Testboard für den Anschluss an einen PC erhältlich. Im Lieferumfang ist ein USB-Kabel, sowie eine Windows-Software enthalten. Hierüber können Texte und Bilder (BMP) direkt am angeschlossenen Display dargestellt werden. Weitere Informationen zum Testboard finden Sie im Datenblatt zu EA 9780-3USB.

SIMULATION UNTER WINDOWS

Ein Simulatorfenster zeigt zusätzlich den Displayinhalt. Das bedeutet, dass mit dieser Software bereits alle Displays und Farben ohne Hard-

ware simuliert werden können. Die Software steht auf unserer Website kostenfrei zum Download bereit. Der Simulator arbeitet auch ohne USB-Testboard:

http://www.lcd-module.de/deu/download.html

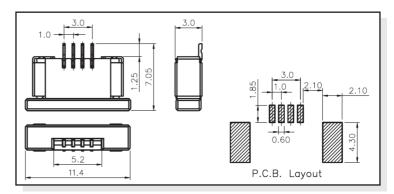
TOUCH PANEL EA TOUCH240-3

Als Zubehör ist ein analoges Touch Panel lieferbar. Es verfügt über eine selbstklebende Rückseite und wird auf das Display aufgeklebt. Der Anschluss erfolgt über ein 4-poliges Flexkabel für einen ZIF-Stecker im Raster 1,0mm (Zubehör: ZIF-Stecker EA WF100-04S).

Bottor Left Top Right Top 46,7 44,0 Exposed V.A. 63, Active Area: 85,0 x 44 mm Left Right ۸ (27 **Bottom** A.A. 85,0 Thickness max. 1,6 mm Exposed V.A. 90,0 (non-covered) 93,9

1 OLCONGI EA VVI 100 040).
Der Biegeradius soll mind.
5mm betragen. Für beste
Lesbarkeit empfehlen wir
das Display mit einer Be-
leuchtung auszustatten.

Zur Anbindung an ein Prozessorsystem empfehlen wir ent-


Specification									
Specification	min	max	Unit						
Top-Bottom	150	400	Ω						
Left-Right	300	750	Ω						
Voltage	3	12	V						
Current	5	25	mA						
Linearity		1,5	%						
Force	45	65	g						
Contact Bounce	5	10	ms						
Op. Temperatur	-20	+60	°C						
Stor. Temperatur	-20	+70	°C						
Transmission	75	85	%						
Life Time	100000		Cycles						

weder die Verwendung eines ext. Touchpanel-Kontrollers oder einen Kontroller mit Analogeingängen.

Das Touchpanel ist mit einem Potentiometer vergleichbar: Legt man an die Pins *Top-Bottom* eine Spannung von z.B. 3,3V, kann am Pin *Left* oder *Right* eine Spannung welche linear zur Y-Richtung der Berührung gemessen werden. Den Berührpunkt in X-Richtung erhält man über das Anlegen der Spannung an *Left-Right* und Messen an *Top* oder *Bottom*. Pinbelegung siehe Masszeichnung.

NULLKRAFTSTECKER EA WF100-04S

Als Zubehör ist für das Touchpanel ein Nullkraftstecker (4-polig) im Raster 1,0mm lieferbar. Die Kontaktierung erfolgt an der Unterseite des Kabels.

12:00 BLICKWINKEL, TOP VIEW EINBAULAGE

Wird das Display überwiegend von oben abgelesen (z.B. in der Front eines Labornetzteils), kann der Vorzugsblickwinkel auf 12:00 Uhr eingestellt werden. Dazu wird das Display um 180° gedreht eingebaut und geringfügig anders initialisiert.

Einbaulage 6:00 (Bottom View)

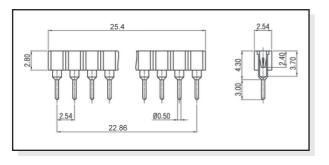
Einbaulage 12:00 (Top View)

	Initialisation example (changes for top view)											
Com	mand	CD	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Remark
[04]	Cat I CD Manning Cantral		1	1	0	0	0	0	0	0	\$C0	Set top view
[21] Set LCD Mapping Control	0	0	0	0	0	0	1	0	0	\$04	Set top view	

BEFEHLSTABELLE (AUSZUG)

			Command Code								Function	Default
	Command	CD	D7	D6	D5	D4	D3	D2	D1	D0		Delault
(1)	Write Data Byte	1			da	ata bi	t D[7	D[70]			Write one byte to memory	N/A
(4)	Set Column Address LSB	0	0	0	0	0		CA[30]			Set the SRAM column address CA=0239	0x00
,	Set Column Address MSB		0	0	0	1		CA[74]				
(10)	Set Page Address LSB	0	0	1	1	0		PA[30]			Set the SRAM page address PA=015 in black and white mode	0x00
	Set Page Address MSB	0	0	1	1	1	0	0 PA[64]		4]		
(15)	Set RAM Address Control	0	1	0	0	0	1	1 AC[20]		0]	AC0: 0=stop increment at end ,1=warp around AC1: 0=column, 1=page increment AC2: Set page increment: 0= +1, 1= -1	0x01
(31)	Set Window Start Column	0	1	1	1	1	0			0	Set Start Column of Window Function	0x00
				_		WPC	0[70]		_			
(32)	Set Window Start Page	0	1	1	1	1	0 WPP	1 0[50]	0]	1	Set Start Page of Window Function	0x00
(33)	Set Window End Column	0	1	1	1	1	0			0	Set End Column of Window Function	0xFF
			_	_		WPC		[70]				+
(34)	Set Window End Page	0	0	0				0 1 1 1 1 VPP1[50]		1	Set End Page of Window Function	0x4F
(35)	Set Window program mode	0	1	1	1	1	1	0 0 C4		C4	C4: 0=inside 1=outside	0x00

Weiterführende Informationen zum Befehlssatz und zum Timing finden Sie unter http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s-v1-0.pdf


INITIALISIERUNGSBEISPIEL (6:00 BLICKWINKEL)

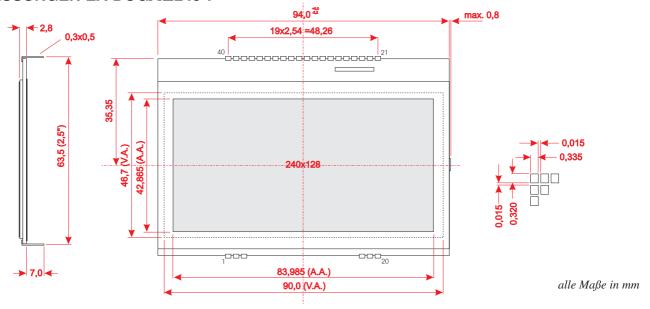
Initialisation example (bottom view)												
Command	CD	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Remark	
[00] Cat COM Fad	0	1	1	1	1	0	0	0	1	\$F1	Set last COM electrode to 127	
[28] Set COM End	U	0	1	1	1	1	1	1	1	\$7F	(number of COM electrodes - 1)	
		1	1	1	1	0	0	1	0	\$F2	Oat Disaless start lines to 0	
[29] Set partitial display start	0	0	0	0	0	0	0	0	0	\$00	Set Display start line to 0	
[30] Set partitial display end		1	1	1	1	0	0	1	1	\$F3	Set Display end line to 127	
	0	0	1	1	1	1	1	1	1	\$7F		
		1	0	0	0	0	0	0	1	\$81	Set Contrast	
[11] Set Potentiometer	0	1	0	0	0	1	1	1	1	\$8F		
[01] Cat I CD manning control		1	1	0	0	0	0	0	0	\$C0	set bottom view	
[21] Set LCD mapping control	0	0	0	0	0	0	0	1	0	\$02		
[17] Set line rate	0	1	0	1	0	0	0	1	1	\$A3	9.4 kilo-lines per second	
[5] Temp. Compensation	0	0	0	1	0	0	1	0	1	\$25	Set temp. compensation to -0.10%/°C	
[20] Set display enable	0	1	0	1	0	1	0	0	1	\$A9	Enable display in block and white made	
[23] Set display pattern	0	1	1	0	1	0	0	0	1	\$D1	Enable display in black and white mode	

GRAFIK RAM

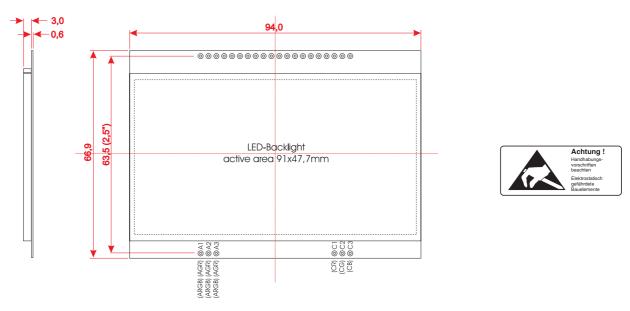
Das EA DOGXL240-7 hat ein integriertes RAM für 4 komplette Bildschirmseiten. Ein Byte enthält dabei immer 8 Pixel. Das komplette Datenblatt zum Kontroller UC1611s finden Sie auf unserer Homepage unter

http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/uc1611s v1 0.pdf

ZUBEHÖR: BUCHSENLEISTE EA FL-20P


Mithilfe von einreihigen Präzisionsbuchsenleisten kann dieses Display steckbar gestaltet werden. Auch die Bauhöhe lässt sich hiermit anpassen.

Pro Display werden 2 Stück benötigt.


0	Column address
D0 ≥ D7	Page 0
D0 2 D7	Page 1
D0 2 D7	Page 2

D0 2 D7	Page 13	
D0 2 D7	Page 14	
D0 ≀ D7	Page 15	

ABMESSUNGEN EA DOGXL240-7

ABMESSUNGEN EA LED94X67

MONTAGE / VERARBEITUNGSHINWEISE

Zuerst werden das Display und der jeweilige Beleuchtungskörper aufeinandergesteckt. Dann wird die gesamte Einheit einfach in eine Platine gesteckt und dort verlötet. Bitte beachten Sie, dass die 6 Pins für die Beleuchtung auch von oben verlötet werden müssen.

Achtung:

- Die Oberflächen der Displays und Beleuchtungen sind durch selbstklebende Schutzfolien vor dem Verkratzen geschützt. Auf dem Display befinden sich 2 Schutzfolien (oben und unten) und auf der Beleuchtung jeweils eine Schutzfolie. Diese 3 Schutzfolien müssen entfernt werden.
- LC-Displays sind generell nicht geeignet für Wellen- oder Reflowlötung. Temperaturen über 80°C können bleibende Schäden hinterlassen.
- Weder das Display noch die Beleuchtung dürfen mit Flüssigkeiten aller Art in Berührung kommen (kein Fluxer, Reiniger, Wasser).

+49 (0)8105-778090

+49 (0)8105-778099

e-Mail: info@lcd-module.de Web: www.lcd-module.de

Fon:

Fax:

