
EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

FEATURES

· 2.0" 320x240 / 2.8" 320x240 / 3.5" 480x320 / 4.3" 480x272

· AACS-Display (all angle color stability, optimized backlight and TFT-Panel over widest viewing angle)

· Superbright LED backlight over 800 cd/m²

· Object-oriented screen layout

· Change object during run-time: size, shape, color, content

· Animate and move objects, alpha-blending

· Fonts: ASCII and Unicode

· Single supply 3.3 V or directly through USB

· Serial Interfaces: USB, RS232, SPI, I²C

· 8 digital, freely definable I/Os built in, expandable up to 136, 4 analog inputs

· Time (RTC), battery-buffered

· Flash-memory as storage for pictures, fonts, menus and log-files

· Internal functions for calculation as well as programmability

· Tone feedback build-in

ORDERING CODES
2.0" TFT 320x240 dots, PCAP, white LED backlight (external dimensions: 65 x 43 mm) EA uniTFTs020-ATC

2.8" TFT 320x240 dots, PCAP, white LED backlight (external dimensions: 84 x 58 mm) EA uniTFTs028-ATC

3.5" TFT 480x320 dots, PCAP, white LED backlight (external dimensions: 100 x 65 mm) EA uniTFTs035-ATC

4.3" TFT 480x272 dots, PCAP, white LED backlight (external dimensions: 114 x 84 mm) EA uniTFTs043-ATC

ACCESSORIES
Set incl. 2.8" IPS Display, PCAP and test board with RGB LED and analogue input EA DEMOPACK-RGBANA

ZIF-connector 40 positions 0.5 mm pitch connector for FPC-cable EA WF050-40S

FPC-cable 40 postitions, 0.5 mm pitch, 102 mm long EA KF050-40

USB-Kabel Type A -> Mini USB around 1 m EA KUSB-MINI

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

2 / 251

Content

General .. 4
Software ... 5

Objects ... 6
Styles / StyleSheets ... 8
Coordinate system and angle .. 9
Multi language - String files .. 10
Boot-menu ... 11
Firmware-update ... 12

Protocol / Data transfer .. 13
Short protocol ... 15
Small protocol .. 19

Commands ... 23
Command syntax ... 25
Terminal window ... 27
Text output / strings .. 33
Pictures ... 47
Touch functions .. 49
Draw / graphic primitives .. 57
Bargraph / instruments .. 63
Keyboard .. 69
Input elements .. 72
Action / Animation .. 82
Object management .. 94
Styles .. 100
Macros .. 108
Variables/ Registers .. 124
I/O Port .. 138
Analogue Input .. 142
PWM output ... 143
Serial master interfaces ... 145
Sound .. 155
Time .. 156
Files / Memory ... 160
System commands ... 170
Answer / Feedback ... 179

Functions and Calculations ... 188
Hardware ... 198

Pin assignment ... 200
Power supply .. 203
Serial interfaces .. 204

RS232 .. 204
SPI ... 205
I²C .. 207
USB ... 207

Touch-panel.. 209
I/O ... 210
Analogue input .. 211
PWM output ... 212
Time .. 213
Memory ... 214
Electrical characteristics ... 215
Dimension EA uniTFTs020-ATC .. 217
Dimension EA uniTFTs028-ATC .. 221
Dimension EA uniTFTs035-ATC .. 225
Dimension EA uniTFTs043-ATC .. 229

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

3 / 251

uniTFTDesigner .. 233
Short cuts .. 235
Language Editor .. 237
Register Editor .. 238
Macro Editor ... 239

Tools ... 240
Revision .. 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

4 / 251

GENERAL
EA uniTFTs are a high-quality all-in-one implementation of the display, microcontroller unit, and touch screen. It is all
users need to directly control their application and expedite development, prototyping, and deployment of their
HMI/GUI. Design the HMI/GUI using the easy-to-use drag-and-drop uniTFTdesigner graphics development software

The EA uniTFTs series provides sophisticated graphical functions and intuitive menu control with its built-in instruction
set. Thanks to the integrated instruction set and the Windows design software uniTFTDesigner, not only electronics
specialists, but also experts in the field of design and user guidance are able to create the entire HMI.

The display modules are immediately ready for operation with 3.3 V, controlled via the built-in serial interfaces RS232,
SPI, I²C or USB. The modules can be operated directly through the USB, too.
Object-oriented "programming", the wide set of commands, and the integrated but extensible Unicode fonts make
"time-to-market" a breeze.

The EA uniTFT series, which forms the high-end market with larger modules, comes up with a very similar command
set:
Currently are 3 different sizes available: 5" with 800x480 dots, 7" with 1024x600 dots and 10.1" with 1280x800 dots.

Advantage Standard TFT EA uniTFT(s)

Quality Consumer Non-consumer

Brightness 250cd 1000cd (typ.)

Viewing angle Limited +/-50° (typ.) Up to 340°

Color TN with Gray inversion effect IPS: no color shift

Touch resistive PCAP incl. controller

Interface 8-/16 Bit data bus I²C or SPI or USB

Availability Minimum order quantity Ex stock

Longevity 1 year or more Minimum of 8 years

Support None unless high quantity Bundled with product purchase

ce / EMC None Tested and certified

Software Place dot by dot to create character or touch
buttons

- High level commands included
- Graphics development software f.o.c.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

5 / 251

SOFTWARE - OPERATION OF EA UNITFTS-SERIES

The presentation on the display is based on the given commands. The commands can either be transmitted at runtime
via one of the serial interfaces or combined on the internal memory in so-called macros and stored permanently. With
the help of the commands, graphic objects are created. These objects have different properties, like color, position and
built-in actions. These properties can be changed at any time, for example a string or the position of a touch-sensitive
button can be changed.
All conceivable objects can be arbitrarily placed, moved and deleted. Windows font sets are stored directly in the
display's memory. Thanks to automatic ASCII and Unicode switching, a wide variety of systems are supported flexibly,
Chinese characters included. Elegant effects like fading in or out are already integrated. Style sheets can be used to
create consistent designs. Images JPEG, PNG and many more (also transparent) can be integrated. Together with the
integrated (EA uniTFTs035-ATC and EA uniTFTs043-ATC), battery-buffered time base, events can be documented
together with a time stamp or processes can be controlled completely autonomously without an external computer.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

6 / 251

Objects

Every picture, text element and button is a so-called object. Each object got its own, individual object ID, which makes
it uniquely identifiable. The object ID can be used to change the properties of an object at any time (size, position...).
You can use 0 as ID for creating simple graphical objects. These objects are rendered directly to the background and
aren't editable and manipulable any more. If you assign an already existing object ID to a new object, the previous
object will be overwritten.
Commands for object management can be found here.

Object position / Anchor

General anchors
The position of an object is based on the coordinates (origin: bottom left edge) related to the object anchor. Each
object has 9 fixed anchors. Transformation on the object (e.g. rotation or shear) will be applied to the active anchor.

Strings and anchors
Strings have additional 9 anchors used to align objects (e.g. an underscore line) to the text base line.

Special case: Anchor 0
Each object has additionally a freely definable anchor. For circles, ellipses, and stars, the object anchor 0 is the

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

7 / 251

construction point.

Example: The pointer should rotate around the centre of
the circle. The pointers 9 standard anchors (shown in
dark grey) are not useful in this case because none of the
defaults are located in the right position. The anchor 0
can be placed pixel-precise (#OAS) as shown, and this
custom location marks the correct rotation point for the
pointer object.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

8 / 251

Styles / StyleSheets

Styles can be used to create consistent design. There are
- DrawStyles
- TextStyles
- ButtonStyles
Before placing any graphic object or text object, a DrawStyle or a TextStyle need to be defined. A DrawStyle defines
the pen type and a fill color and the TextStyle the font and it's size.

DrawStyle:
Color, gradients, pattern and pen for (out)lines are defined in a DrawStyle.
TextStyle:
The appearance of a string is defined in a TextStyle. A TextStyle is based on a DrawStyle for color and some font
specification for size, alignment and spacing.
ButtonStyle:
Touch buttons and switches are defined by a ButtonStyle, which consists of a TextStyle for labeling and DrawStyles
for background painting.

ColorRamp:
Filling an object can be done with solid color or with some gradient. Those gradient and its colors are defined in
ColorRamps and can be used linear or radial.

The Windows tools uniTFTDesigner supports StyleSheets that contain a collection of several Draw, Text, and
ButtonStyles ans also ColorRamps.

The commands related to styles and colorramps can be found here.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

9 / 251

Coordinate system and angle

The coordinate system refers directly to the display resolution of the module with the origin 0|0 placed in the lower left
corner of the display. For example the EA uniTFTs028-A has a drawing field of 320 x 240 dots. Valid coordinates for
this display are 0..319 and 0..239 hence.

Angles are given in the mathematical sense of rotation (counter-clockwise). 0° is horizontally right. Besides
instruments rotation is available in 90° steps:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

10 / 251

Multi language - String files

In an increasingly interdependent world of international assignments, supporting multiple languages is a must. The EA
uniTFTs-Series with its unicode support is part of the solution. Without unicode it's basically impossible to work with
Chinese characters e.g..
The second part of supporting internationalization are string files: these text files provide a database of strings to be
displayed. In macro files, strings are referenced by an index, then at runtime this index is replaced with the
corresponding text taken from the string file.
Further details can be found by looking at the command description under #VFL or the examples.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

11 / 251

Boot menu

Multiple projects can be stored on the integrated memory. The project which is started automatically is defined using
the "start.emc" file. To load a different project, the start file need to be updated, or on touch enabled panels, a project
can be selected via the boot menu:
When switching on the device (or after hardware reset), wipe over the touch panel several times in short interval.

To avoid mis-use by the operator, the boot menu can be deactivated. For this purpose, an empty file named
"bootmenu.off" must be placed in the root directory of the memory. This can be done using mass storage mode and
Windows Explorer to transfer the file, or directly via uniTFTs commands:
 #FWO</bootmenu.off>
 #FWC

In addition to project selection, the boot menu offers the option to start test mode, or to display information about the
module. It provides the version, protocol status, baudrate, SPI mode, I²C bus address etc

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

12 / 251

Firmware-update

To use the latest features of the EA uniTFTs-Series, it might be necessary to update the internal firmware of the
module.

Firmware-update via serial interface and Windows PC:

· Save the firmware file (e.g. EA_uniTFTs_V1_1.fw) to your local drive

· Connect the EA uniTFT with your PC

· Start uniTRANSFER.exe (found in the Simulator_and_Tools folder of the uniTFTDesigner installation) and select
the correct serial interface to the EA uniTFTs.

· Drag'n'Drop the firmware file to the EA uniTRANSFER window.

· After transferring the data, a manually reset needs to be performed, then the firmware will be loaded automatically
after restart. Attention: Please do not switch of the module while updating.

Firmware update via serial interface
The firmware file also can be transferred to EA uniTFT with any system. To do this, transfer the contents of the * .fw file
1:1 (with protocol in packets) to the EA uniTFT. The transfer progress will become visible on the display module. After
successful transfer, a data check will be done automatically. If the data is correct, the update starts automatically.
Attention: Please do not switch of the module while updating.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

13 / 251

PROTOCOL / DATA TRANSFER
The transmission protocol is identical regardless of which of the 4 serial interfaces is used to transfer data from the
higher-level controller. The hardware circuit for each interface varies, which is described under the chapter "serial
interfaces".
The data transfer is embedded in a fixed frame with checksum. The EA uniTFTs-Series acknowledges this packet with
the character <ACK> (= 0x06) on successful reception or <NAK> (= 0x15) when it detects a faulty checksum or
encounters a buffer overflow. In case of a <NAK>, the complete packet is discarded and has to be sent again. An
<ACK> only confirms the correct transmission. A syntax check does not take place.
Two different protocols are implemented, the "Short Protocol" and the "Small Protocol". The short protocol works with
a CRC16 checksum and allows the transfer of larger data packets. The Small protocol was implemented mainly for
compatibility with the EA eDIPxxx series.
The maximum amount of user data per packet is 2042 bytes or 255 bytes, respectively. Commands that are larger (for
example, image or file transfers, #FWD ...) must be split into several packets. The data in the individual packets is
reassembled by the display module after receiving them successfully.

Remark:
The <ACK> has to be read (SPI and I²C). If the master doesn't receive the acknowledgement, at least one byte is lost.
In this case the time-out time needs to be observed before the packet is resent.
The protocol can be disabled on the serial port for testing purposes. To turn off the protocol, pin 14 has to be set low
(see pin assignment).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

14 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

15 / 251

Short Protocol commands

1. Commands / sending data to module
This protocol command transfers data to the display. Several graphics commands can be packaged into a single
protocol package. If the amount of data is larger than the maximum packet size, the data can be split into several
packets. The module reassembles the individual data packets.
The 16 Bit data are defined as little-endian (Intel format), means that the lower byte need to be sent first.

Module receives DC3
0x13

length (16 Bit)
0xXX 0xXX

Data.......
0x....

crc (16 Bit)
0xXX 0xXX

Module sends ACK
0x06

Example: #XCB20 changes the brightness to 20%. The command need to be terminated with [LF] which is 0x0A.
So the Short Protocol packet starts with DC3 followed by the length (count of data). At the end there's a CRC16
(CCITT) necessary, calculated with all bytes. Here's a link to an Online-CRC-Calculator.
Hex: 13 07 00 23 58 43 42 32 30 0A 3D CD (here you get it as a file; this may be put to terminal.exe via drag-n-
drop)

Example: #XCB80 changes the brightness to 80%.
Hex: 13 07 00 23 58 43 42 38 30 0A FC 0A (here you get it as a file)

2. Request data of send buffer
If data is generated in the module, it is stored in the module's send buffer. The data can be requested via the serial
interfaces. Whether data is available can be monitored via the pin 20 SBUF, or the higher-level controller can cyclically
poll the data.

Module receives DC4
0x14

length (16 Bit)
0x01 0x00

'S'
0x53

crc (16 Bit)
0x30 0x08

Module sends ACK
0x06

Module sends DC3
0x13

length (16 Bit)
0xXX 0xXX

Data.......
0x....

crc (16 Bit)
0xXX 0xXX

3. Repeat last data packet
If a packet received from the module is faulty (wrong length or checksum) it can be requested again:

Module receives DC4
0x14

length (16 Bit)
0x01 0x00

'R'
0x52

crc (16 Bit)
0x11 0x18

Module sends ACK
0x06

Module sends DC3
0x13

length (16 Bit)
0xXX 0xXX

Data.......
0x....

crc (16 Bit)
0xXX 0xXX

4. Request buffer information
This command queries whether user data is ready (= Pin13 SBUF) and also indicates how much free space is left in
the device's receive buffer.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

16 / 251

Module receives DC4
0x14

length (16 Bit)
0x01 0x00

'I'
0x49

crc (16 Bit)
0x4B 0xBB

Module sends ACK
0x06

Module sends DC4
0x14

length (16 Bit)
0x04 0x00

send buffer bytes ready (16 Bit)
0xXX 0xXX

receive buffer bytes free (16 Bit)
0xXX 0xXX

crc (16 Bit)
0xXX 0xXX

5. Protocol settings
This can be used to limit the maximum packet size that the display may send. The default maximum packet size is
2042 bytes. Furthermore, the time-out can be set in 1 / 1000s. The time-out is activated when individual bytes have
been lost. After the timeout, the entire packet must be retransmitted.

Module receives
Default values

DC4
0x14

length (16 Bit)
0x05 0x00

'D'
0x44

packet size send buffer (16 Bit)
0xFA 0x07 (=2042 Byte)

Time-out (16 Bit) in ms
0xD0 0x07 (=2 seconds)

crc (16 Bit)
0x98 0xF5

Module sends ACK
0x06

6. Protocol information
Request protocol settings (see 5.).

Module receives DC4
0x14

length (16 Bit)
0x01 0x00

'P'
0x50

Module sends ACK
0x06

Module sends DC4
0x14

length (16 Bit)
0x06 0x00

maximum packet size send buffer (16 Bit)
0xFA 0x07 (=2042 Byte)

packet size Send buffer (16 Bit)
0xXX 0xXX

Time-out (16 Bit) in ms
0xXX 0xXX

7. RS485 address select / deselect
With this command, a module can be selected or deselected on the RS485 bus. By default, the module with address
7 is always active.

Module receives

Default values

DC4

0x14

length (16 Bit)

0x03 0x00

'A'

0x41

'S' (=select)
'D' (=deselect)
0x53 or 0x44

RS485-address

0xXX

crc (16 Bit)

0xXX 0xXX

Module sends ACK
0x06

® select

® deselect

8. RS485 enable signal - delay
Some RS485 masters take some time to change the enable signal, e.g. to switch from write to read mode. In order to
enable successful communication with these devices, this command can be used to delay switching to write mode.

Module receives
Default values

DC4
0x14

length (16 Bit)
0x03 0x00

'T'
0x54

Delay in 10 us
0x00 0x00

crc (16 Bit)
0xE9 0x7E

Module sends ACK

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

17 / 251

0x06

9. Request interface exclusively
All 4 serial ports are handled in parallel and equivalently after reset. To ensure that a sequence of protocol packets is
executed without interruption, the other serial interfaces can be disabled so the active interface can communicate with
the module exclusively. This is useful, for example, for a project update via USB.

Module receives DC4
0x14

length (16 Bit)
0x02 0x00

'G'
0x47

0x00 = Release
0x01 = Request

crc (16 Bit)
0xXX 0xXX

Module sends ACK
0x06

Module sends DC4
0x14

length (16 Bit)
0x01 0x00

active (16 Bit)
0x00 = all
0x01 = RS232
0x02 = SPI
0x03 = IIC
0x04 = USB

crc (16 Bit)
0xXX 0xXX

10. Break-Command, Break / Stop execution
If a continuous loop has been programmed in a macro or if a normal process flow is blocked, this command can be
used to interrupt and quit. This command is also suitable for update processes.

Module receives
Default values

DC4
0x14

length (16 Bit)
0x02 0x00

'C'
0x43

break
0x01 = Wait command
0x02 = actual macro file
0x04 = Clear send buffer
0x08 = Clear receive buffer
0x10 = Delete macro definitions (e.g. port macros)
0xFF = Stop everything

crc (16 Bit)
0xXX 0xXX

Module sends ACK
0x06

11. Hardware Reset
The module is restarted with this protocol command. Depending on the parameter, various start options can be
selected to automatically run after the reset.

Module receives
Default values

DC4
0x14

Länge (16 Bit)
0x02 0x00

'B'
0x42

Option
0x00 = normal restart
0x01 = Restart with test mode
0x02 = Restart without running 'start.emc'
0x03 = Restart without loading default styles
0x04 = Show boot-menu (project selection)
0x05 = Reserved
0x06 = Mass Storage Mode (from V1.2)

crc (16 Bit)
0xXX 0xXX

Module sends ACK
0x06

CRC-Calculation

A cyclic redundancy check (CRC) is used to calculate the checksum. A common and well known CRC exam is the

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

18 / 251

CRC-CCITT. The starting value is 0xFFFF. The following is a typical C implementation. The functions must be called
externally. The checksum must be preallocated with the starting value.

//--
//function: buffer2crc16()
//input: ptr data, ptr CRC, block length
//output: ---
//descr: CRC-CCITT of a buffer
//--
void buffer2crc16(UBYTE *dat, UINT16 *pCRC, UINT32 len)
{
 while(len--)
 crc16(*dat++, pCRC);
}

//--
//function: sp_crc16()
//input: data, ptr CRC
//output: ---
//descr: CRC_CCITT (x^16+x^12+x^5+1 = 1 0001 0000 0010 0001 = 0x1021
//--
void crc16 (UBYTE dat, volatile UINT16 * crc)
{
 register UINT16 lcrc = *crc;
 lcrc = (lcrc >> 8) | (lcrc << 8);
 lcrc ^= dat;
 lcrc ^= (lcrc & 0xFF) >> 4;
 lcrc ^= lcrc << 12;
 lcrc ^= (lcrc & 0xFF) << 5;
 *crc = lcrc;
}

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

19 / 251

Small Protocol commands

1. Commands / data send to module
This protocol command transfers data to the display. Several graphics commands can be packaged in a protocol
package. If the data is larger than the maximum packet size, the data can be split into several packets. The module
reassembles the individual data packets.

Module receives DC1
0x11

length (8 Bit)
0xXX

Data.......
0x....

bcc (8 Bit)
0xXX

Module sends ACK
0x06

Example: #XCB25 changes the brightness into 25%. The command need to be terminated with [LF] which is
0x0A.
So the Small Protocol packet starts with DC1 followed by the length (count of data). At the end there's a bcc (8 bit
summary, modulo 256) necessary, calculated with all bytes. Here's a link to an Online-CRC-Calculator.
Hex: 11 07 23 58 43 42 32 35 0A 89 (here you get it as a file; this may be put to terminal.exe via drag-n-drop)

Example: #XCB75 changes the brightness into 75%.
Hex: 11 07 23 58 43 42 37 35 0A 8E (here you get it as a file)

2. Request data of send buffer
If data is generated in the module, it is stored in the module's send buffer. The data can be requested via the serial
interfaces. Whether data is available can be monitored via the pin 20 SBUF, or the higher-level controller can cyclically
poll the data.

Module receives DC2
0x12

length (8 Bit)
0x01

'S'
0x53

bcc (8 Bit)
0x66

Module sends ACK
0x06

Module sends DC1
0x11

length (8 Bit)
0xXX

Data.......
0x....

bcc (8 Bit)
0xXX

3. Repeat last data packet
If a received packet of the module is faulty (wrong length or checksum) it can be requested again:

Module receives DC2
0x12

length (8 Bit)
0x01

'R'
0x52

bcc (8 Bit)
0x65

Module sends ACK
0x06

Module sends DC1
0x11

length (8 Bit)
0xXX

Data.......
0x....

bcc (8 Bit)
0xXX

4. Request buffer information
This command queries whether user data is ready (= Pin13 SBUF) and also indicates how much free space is left in
the device's receive buffer.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

20 / 251

Module receives DC2
0x12

length (8 Bit)
0x01

'I'
0x49

bcc (8 Bit)
0x5C

Module sends ACK
0x06

Module sends DC2
0x12

length (8 Bit)
0x02

send buffer bytes ready (8 Bit)
0xXX

receive buffer bytes free (8 Bit)
0xXX

bcc (8 Bit)
0xXX

5. Protocol settings
This can be used to limit the maximum packet size that the display may send. As default a packet size with up to
2042 bytes of user data is set. Furthermore, the time-out can be set in 1 / 1000s. The time-out is activated when
individual bytes have been lost. After the timeout, the entire packet must be retransmitted.

Module receives
Default values

DC2
0x12

length (8 Bit)
0x03

'D'
0x44

packet size send buffer (8 Bit)
0xFF

Time-out (8 Bit) in 1/100s
0xC8 (=2 seconds)

bcc (8 Bit)
0x20

Module sends ACK
0x06

6. Protocol information
Request protocol settings (see 5.).

Module receives DC2
0x12

length (8 Bit)
0x01

'P'
0x50

Module sends ACK
0x06

Module sends DC2
0x12

length (8 Bit)
0x03

maximum packet size send buffer (8 Bit)
0xFF

packet size send buffer (8 Bit)
0xXX

Time-out (8 Bit) in ms
0xXX

7. RS485 address select / deselect
With this command, a module can be selected or deselected on the RS485 bus. By default, the module with address
7 is always active.

Module receives

Default values

DC2

0x12

length (8 Bit)

0x03

'A'

0x41

'S' (=select)
'D' (=deselect)
0x53 or 0x44

RS485-address

0xXX

bcc (8 Bit)

0xXX

Module sends ACK
0x06

® select

® deselect

8. RS485 enable signal - delay
Some RS485 masters take some time to change the enable signal, e.g. to switch from write to read mode. In order to
enable successful communication with these devices, this command can be used to delay switching to write mode.

Module receives
Default values

DC2
0x12

length (8 Bit)
0x03

'T'
0x54

Delay in 10 us
0x00 0x00

bcc (8 Bit)
0x69

Module sends ACK
0x06

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

21 / 251

9. Request interface exclusively
All 4 serial ports are handled in parallel and equivalently after reset. To ensure that a sequence of protocol packets is
executed without interruption, the other serial interfaces can be disabled so the active interface can communicate with
the module exclusively. This is useful, for example, for a project update via USB.

Module receives DC2
0x12

length (8 Bit)
0x02

'G'
0x47

0x00 = Release
0x01 = Request

bcc (8 Bit)
0xXX

Module sends ACK
0x06

Module sends DC2
0x12

length (8 Bit)
0x01

active (8 Bit)
0x00 = all
0x01 = RS232
0x02 = SPI
0x03 = IIC
0x04 = USB

bcc (8 Bit)
0xXX

10. Break-Command, Break / Stop execution
If a continuous loop has been programmed in a macro or if a normal process flow is blocked, this command can be
used to interrupt and quit. This command is also suitable for update processes.

Module receives
Default values

DC2
0x12

length (8 Bit)
0x02

'C'
0x43

break
0x01 = Wait command
0x02 = actual macro file
0x04 = Clear send buffer
0x08 = Clear receive buffer
0x10 = Delete macro definitions (e.g. port macros)
0xFF = Stop everything

bcc (8 Bit)
0xXX

Module sends ACK
0x06

11. Hardware Reset
The module is restarted with this protocol command. Depending on the parameter, various start options can be
selected to automatically run after the reset.

Module receives
Default values

DC2
0x12

length (8 Bit)
0x02

'B'
0x42

Option
0x00 = normal restart
0x01 = Restart with test mode
0x02 = Restart without running 'start.emc'
0x03 = Restart without loading default styles
0x04 = Show boot-menu (project selection)
0x05 = Reserved
0x06 = Mass Storage Mode (from V1.2)

bcc (8 Bit)
0xXX

Module sends ACK
0x06

BCC-Calculation

The calculation of the checksum requires a simple 8-bit sum test (modulo 256). The following is a typical C
implementation.

//--

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

22 / 251

//function: buffer2bcc()
//input: ptr data, block length
//output: Byte bcc
//descr: calculate bcc for a buffer
//--
UBYTE buffer2bcc(UBYTE *dat, UBYTE len)
{
 UBYTE bcc = 0;
 while(len--)
 bcc += *dat++;
 return bcc;
}

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

23 / 251

COMMAND SUMMARY
The EA uniTFTs-Series has an integrated command set, including graphical commands, calculations, hardware
commands and many more.
The commands can be transmitted at runtime via the serial interfaces or stored in so-called macro files on the
module's FLASH memory.
The following tables describe all commands. The default values are given in brackets after the respective parameters.
BLACK writen parameters must be set, GRAY ones are optional.

All command groups at a glance

Terminal window #Y

In the terminal window, all received data is displayed
directly. This window is useful for quickly creating
simple outputs or receiving error messages during
development time.

Text output / strings #S

The group includes commands to display simple,
formatted and self-changing strings. In addition, there is
the possibility to place texts using edit boxes (one line
inputs) and string boxes (multiple lines output).

Picture #P

Command group to display pictures. The design
software uniTFT Designer automatically converts the
data into the correct internal format. The design
software uniTFT Designer allows to use following
filetypes/graphic formats: png, bmp, jpg, jpeg, tga, gif,
g16, svg, svgz.
If uniTFT Designer is not used, those files can be
converted by EAconvert.exe (directory
\Simulator_and_Tools) (-> evg, epg, epa)

Touch functions #T

Command group to enable touch functions. Simple
buttons and switches can be used, as well as radio
buttons, sliders, bar-graphs and rotary or meter
instruments.

Draw / graphic primitives #G Command group to show graphical simple objects:

Bargraph / Instruments #I
Command group to show bar graphs, sliders and
rotary / pointer instruments

Input elements per Touch #E
Commands to create touch input elements like menus,
SpinBoxes or ComboBoxes.

Keyboard #K
Command group to represent a keyboard for value
inputs. Normally, the keyboard is connected to an
EditBox.

Action / Animation #A
Command group to animate objects, e.g. Show, fly
away, rotate or fade out.

Object management #O Command group to manage, modify and group objects.

Styles #C

Command group to create styles. The look of each
object is based on a style appropriate to the object
type. The maximum number of styles available for each
style is 100.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

24 / 251

Macros #M

Single or multiple command sequences can be
collected as so-called macros and which reside in
individual files stored in internal FLASH. The following
commands describe how to work with macros.

Variables / Registers #V

Command group to execute calculations and logical
operations. With the help of the string files,
internationalization (multiple languages) can be realized.
There are registers for numbers and strings (can record
characters up to 200), integer registers use signed 32-
bit, floating-point registers use 23-bit mantissa, 8-bit
exponent, 1-bit signed.

I/O Port #H
 I/O port lines, which can be expanded to up to 136. If
the port input pins are changed, macros can be started,
see #MHP, and #MHB.

Analog Input #H

Command group to parameterize and read out the
analog input of the module. The module has four 12-bit
analog inputs. If the analog input changes, a macro can
be started, see #MHA.

PWM output #H Command group for the PWM output

Serielle Master-Interface #H
Command group to use the 3 serial interfaces of the
module as master interface. For example to connect
additional peripherals like temperature sensor

Sound #H Command group to play tones

Time #W Command group to work with the built-in RTC.

Files / access to FLASH #F Commands to handle file access on the built-in FLASH

System commands #X Settings of the EA uniTFTs-Series.

Answer / Feedback
The module stores information in its send buffer after
requests or touch events. Description of the module's
answers.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

25 / 251

Command syntax

All commands have same structure:

Start Command code Parameter Ending

XXX 123, $52, %01101010, "Hello"; R0 [CR]LF

ASCII : 35 (0x23)
UniCode: 23 (0x23 0x00)

3-letter command Parameters ASCII : [13] 10 ([0x0D] 0x0A)
UniCode: [13] 19 ([0x0D 0x00] 0x0A 0x00)
CR is optional

All parameters are transferred as 16-bit values (unless otherwise stated).

Parameter

Numbers

123 decimal passed as ASCII characters

$5A hexadecimal passed as ASCII character

%
1010001

binary passed as ASCII character

5-8 Passing of a range. Commands influencing multiple objects can be passed using an object range.
The given example relates to object-IDs 5,6,7,8

?x Code of a single character (Unicode/ASCII)

R0 ...
R499

Passing a register value

Q0 ...
Q499

Indexed passing of a register value (pointer) ® R (R0 ... R499)

(....) Calculation-string used for return value

G len32
data....

Passing binary data: len32 defines the data length (already passed as binary 32-bit value)

!index! Use values of a string file's index

Strings

"string"
or 'string'

standard string passing

"str" 32
"str"

simple string with any code in between, which is incorporated into the final string

"str1";
"str2"

Semicolon represents the string ending. Important if passing two strings or following parameters
after a string.

S0 ...
S499

Passing string registers

T0 ...
T499

Passing string registers using a register as index S(R0 ... R499).

U"Hello" Interpret characters after U as 16 bit uni code (until next # or V, also CR + LF)

V"Hello" Interpret characters after U as 8 bit ASCII (until next # or U, also CR + LF)

!index! Use string of a string file's index

Each parameter is separated by blank (' '), comma (','), semicolon (';') or point ('.'). For separating Strings you have
to use a semicolon.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

26 / 251

Ending
The ending always is a LF (0x0A). A leading CR (0x0D) is optional and skipped over.

Comments
Comments can be included into macro files. A comments starts with #- and is active till line end (LF).

Calculation
Every numerical parameter can be replaced by a calculation string. The calculation needs to be inside parentheses ()
to be passed as one parameter. The documentation on calculation commands lists all operations and functions,
including mathematical, logical as well as module-specific operations, e.g. time or object properties.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

27 / 251

Terminal window #Y

The terminal window is useful for quick test of serial interface connection; for that put the pin 14 (DPROT) to GND
(switch off the protocol) and then power-up the display. All data received from serial interface are displayed directly
(ASCII codes and CR/LF). FF clears the terminal window and set the cursor position to home position.

The terminal windows provides also an easy way for simple outputs and error messages during development.

Terminal window settings

Size and position settings
(Terminal Define Window) #YDW

x(0), y(0), Anchor(7), Columns(x-DisplayResolution/8), Rows(y-
DisplayResolution/16)

Color settings
(Terminal Define Color) #YDC

Text-Color, Text-Opacity(100), Background-Color($000000),
Background-Opacity(0)

Drawing order (Layer)
 (Terminal Define Layer)

#YDL Layer

Terminal window on/off
 (Terminal Define Output)

#YDO Output, Visibility(=Output)

Cursor on/off
(Terminal Cursor Blink)

#YCB Cursor

Set cursor position
(Terminal Cursor Position)

#YCP Column, Row(no change)

Save cursor position
(Terminal Cursor Save)

#YCS

Restore cursor position
 (Terminal Cursor Restore)

#YCR

Terminal window output

Print string
(Terminal Print Ascii)

#YPA String

Print formatted string
(Terminal Print Formated)

#YPF "Formatted string"; Value1, Value2, ..., ValueN

Print date/time
(Terminal Print Date)

#YPD "Dateformat"; date (act. time)

Print module information
(Terminal Print Info)

#YPI

Print firmware version string
(Terminal Print Version)

#YPV

Terminal window settings
All important setings of the terminal window are summarized in this command group.

Size and position settings

#YDW x(0), y(0), Anchor(7), Columns(x-DisplayResolution/8), Rows(y-DisplayResolution/16)

The command defines the dimensions of the terminal window. The width results from the specification of the columns
and rows and the font size (8x16): Width in pixels = 8 ∗ columns; Height in pixels = 16 ∗ lines

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

28 / 251

...
#YDW 50,50,7,40,10
...

Color settings

#YDC Text-Color, Text-Opacity(100), Background-Color($000000), Background-Opacity(0)

The command sets the color and opacity of the font and the background. The color is transferred as a 24-bit RGB
value (e.g. $c80000, %110010000000000000000000, (RGB(200,0,0))).

...
#YDC $ffffff,100,$c80000
...

Drawing order (Layer)

#YDL Layer

The command sets the drawing order (Layer) of the terminal window:

Layer

0
Terminal is shown behind
all objects

1 Terminal is shown on top

By default, the terminal is always on top.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

29 / 251

...
#YDL 0
...

Terminal window on/off

#YDO Output, Visibility(=Output)

With this command the terminal output can be activated or deactivated and the visibility can be set. If only one
parameter is passed, it applies to both values.

Definition of the Output:

Output

0
Terminal output is
deactivated

1
Terminal output is
activated

Definition of the Visibility:

Visibility

0 Terminal is invisible

1 Terminal is visible

#YDO 0 Outputs are disabled and the terminal is invisible

#YDO 1 Outputs are activated and the terminal is visible

#YDO
0,1

Outputs are deactivated and the terminal is visible

#YDO
1,0

Outputs are activated and the terminal is invisible.

Cursor on/off

#YCB Cursor

The command sets the visibility of the Cursor:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

30 / 251

Cursor

0 Cursor is invisible

1 Cursor is visible

Set cursor position

#YCP Column, Row(no change)

The command sets the cursor position within the terminal window. If no line is specified, it is not changed. The position
starts at (1,1).

...
#YCP 10,2
...

Save cursor position

#YCS

The current position of the cursor is saved.

Restore cursor position

#YCR

The cursor is placed on the last saved position.

Terminal window output
This group includes commands to display strings and predefined outputs on the terminal.

Print string

#YPA String

The characters (strings) are displayed in the terminal window. Entire character strings (e.g. "Test", 'Test') or
individual ASCI characters ($21, 33, ?!) can be transferred. The semicolon forms the end of the string.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

31 / 251

...
#YPA "Hello World"$21;
...

Print formatted string

#YPF "Formatted string"; Value1, Value2, ..., ValueN

The formatted string is displayed on the terminal. If the variable set repeats, the format string is used again. The
structure is explained in more detail in the section Formatted string.

...
#YPF "Formatstring %d"; 42
...

Print date/time

#YPD "Dateformat"; date (act. time)

The date and time are displayed on the terminal. The way of presentation is based on the date format. The structure is
explained in more detail in the section Date formats.

...
#YPD "%D.%M.%Y";
...

Print module information

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

32 / 251

#YPI

Module parameters (e.g. firmware version, resolution, or interface parameters) are displayed in the terminal

Print firmware version string

#YPV

The firmware version of the module is displayed in the terminal.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

33 / 251

Text output / string #S

The group includes commands to display simple, formatted and self-changing strings. In addition, there is the
possibility to place texts using edit boxes (one line inputs) and string boxes (multiple lines output).

Simple strings

Place string
(String Static Place)

#SSP Obj-ID, TextStyle-No., x, y, Anchor, "Text"

Change string
(String Static Change)

#SSC Obj-ID, "Text"

Formatted strings

Place formatted string
(String Formated Place) #SFP

Obj-ID, TextStyle-No., x, y, Anchor, "Formatted string"; Value1,
Value2,, ValueN, Value1,...,ValueN,...

Change parameter of formatted
string
(String Formated Change)

#SFC Obj-ID, Value1, Value2,, ValueN

Convert string to formatted string
(String Formated Format)

#SFF Obj-ID, "Formatted string"; Value1, Value2,, ValueN

Auto update formatted strings

Place formatted string with Auto
Update
(String Automatic Place)

#SAP
Obj-ID, TextStyle-No., x, y, Anchor, "Formatted string";
 (Calculation), Value1...., ValueN

Change calculation from formatted
string with Auto Update
(String Automatic Change)

#SAC Obj-ID, (Calculation)

Convert string to formatted string
with Auto Update
(String Automatic Format)

#SAF Obj-ID, "Formatted string"; (Calculation), Value1,...., ValueN

Date / time strings

Place the string with the date / time
(String Date Place) #SDP

Obj-ID, TextStyle-No., x, y, Anchor, "Dateformat"; date (act.
time)

Change date / time in string
(String Date Change)

#SDC Obj-ID, date (act. time)

Convert string to string with date /
time
(String Date Format)

#SDF Obj-ID, "Dateformat"; date (act. time)

EditBox

Place EditBox
(String Edit Place) #SEP

Obj-ID, DrawStyle-No., x, y, Anchor, Width, Height, Radius,
TextStyle-No., BorderX(0), BorderY(0)

Define default string for EditBox
(String Edit Default) #SED

Obj-ID, "Default text"; "Default text (Obj-ID+1)"; "Default text
(Obj-ID+2)";....

Send strings / codes to EditBox
(String Edit Codes)

#SEC Obj-ID, "String"; "String (Obj-ID+1)"; "String (Obj-ID+2)";....

Connect EditBox with keyboard
(String Edit Keyboard)

#SEK Keyboard-ID, Obj-ID, Obj-ID+1, ...

Activate/deactivate EditBox
(String Edit Activate)

#SEA Obj-ID(0), Keyboard-ID(0)

Define valid character codes #SER Obj-ID, Codes

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

34 / 251

(String Edit Range)

Define input mask
(String Edit Mask)

#SEM Obj-ID, "Input mask"; Placeholder

Define password mode
(String Edit Wildcard)

#SEW Obj-ID, Wildcardcode

StringBox

Place StringBox
(String Box Place) #SBP

Obj-ID, x, y, Anchor, Width, Height, Radius, ScrollbarWidth(text
height)

Define styles for StringBox
(String Box Styles) #SBS

Obj-ID, DrawStyle-No. Background, DrawStyle-No. Scrollbar,
TextStyle-No., BorderX(0), BorderY(0), AutoWrap(1)

Add paragraph
(String Box Add)

#SBA Obj-ID, Paragraph, "Text"; "Text (Line+1)"; "Text (Line+2)";....

Remove paragraph
(String Box Delete)

#SBD Obj-ID, Paragraph, Line1. ...

Add text file
(String Box File)

#SBF Obj-ID, Paragraph, <Textfile>

Jump to line
(String Box Offset)

#SBO Obj-ID, Line, Time (0), ActionCurve-No (0)

Simple strings
This group includes commands for placing and changing simple strings.

Place string

#SSP Obj-ID, TextStyle-No., x, y, Anchor, "Text"

The command places a string with the given Anchor at the position x, y. The appearance of the character string is
determined with the TextStyle (TextStyle-No.). This is explained in more detail in the section TextStyle.

...
#SSP 1,1,20,20,7,"Hello World";
...

Change string

#SSC Obj-ID, "Text"

The command changes an existing string. Other object properties (position, style, etc.) remain unchanged.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

35 / 251

...
#SSC 1,"New String";
...

Formatted string
This group contains commands for placing and changing formatted strings.

Place formatted string

#SFP Obj-ID, TextStyle-No., x, y, Anchor, "Formatted string"; Value1, Value2,, ValueN, Value1,...,ValueN,...

The command places a formatted string with the given Anchor at the position x, y. The appearance of the character
string is determined with the TextStyle (TextStyle-No.). This is explained in more detail in the subsection TextStyle. If
the variable set repeats, the format string is used again. The structure is described in more detail in the subsection
Formatted string.

...
#SFP 1,1,20,20,7,"Formatstring %d"; 42
...

Change parameter of formatted string

#SFC Obj-ID, Value1, Value2,, ValueN

This command changes the parameters of a formatted string. The object properties (position, style, etc.) remain
unchanged.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

36 / 251

...
#SFC 1,25
...

Convert string to formatted string

#SFF Obj-ID, "Formatted string"; (Calculation), Value1,...., ValueN

An existing string is changed to a formatted string. Other object properties (position, style, etc.) remain unchanged.
The structure is explained in more detail in the section Formatted string.

...
#SFF 1,"Hello World %d"; 25
...

Auto update formatted strings

Place formatted string with Auto Update

#SAP Obj-ID, TextStyle-No., x, y, Anchor, "Formatted string"; (Calculation), Value1...., ValueN

The command places a formatted string with the given Anchor at the position x, y. The appearance of the character
string is determined with the TextStyle (TextStyle-No.). The text-structure is described in more detail in the section
Formatted string. The output is renewed as soon as the Calculation changes. If the other parameters (value1, ...
valueN) are also calculations, their value is recalculated, too (only if the value of the first calculation changes).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

37 / 251

...
#SAP 1,1,20,20,7,"Analog %d";(analog(0))
...

Change calculation from formatted string with Auto Update

#SAC Obj-ID, (Calculation)

The command changes the calculation of a formatted string with Auto Update. The new calculation only determines the
time when the string is output again, without influencing the displayed values / calculation.

...
#SAP 1,1,20,20,7,"Zufallswert %d";
(rand()) /**Ausgabe eines Zufallswertes
#SAC 1,
(time()) /**Änderu
ng des Zufallswertes nur alle Sekunde
...

Convert string to formatted string with Auto Update

#SAF Obj-ID, "Formatted string"; (Calculation), Value1,...., ValueN

An existing character string is changed to a formatted character string with Auto Update function. Other object
properties (position, style, etc.) remain unchanged. The structure is explained in more detail in the subsection
Formatted string. The string renews the output as soon as the Calculation changes. If the other parameters
(value1, ... valueN) are also calculations, their value is recalculatedtoo (only if the value of the first calculation
changes).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

38 / 251

...
#SAF 1,"Analog %d";(analog(0))
...

Date / time strings

Place string with date / time

#SDP Obj-ID, TextStyle-No., x, y, Anchor, "Dateformat"; date (act. time)

The command places a character string with date / time and the given Anchor at the position x, y. The way of
presentation is based on the date format. The structure is described in more detail in the sub-chapterDate formats. If
the current time is displayed, the output of the current time adapts automatically. The appearance of the character
string is determined with the TextStyle (TextStyle-No.). This is explained in more detail in the subsection TextStyle.

...
#SDP 1,1,20,20,7,"%D.%M.%Y|%h:%m:%s";
...

Change date / time in string

#SDC Obj-ID, date (act. time)

The displayed time of the date format is changed. Other object properties (position, style, etc.) remain unchanged. The
structure is described in more detail in the sub-chapter Date formats.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

39 / 251

...
#SDC 1,(datetime(14,36,20,24,09,2031))
...

Convert string to string with date / time

#SDF Obj-ID, "Dateformat"; date (act. time)

An existing string is changed to a string with date / time. Other object properties (position, style, etc.) remain
unchanged. The structure is described in more detail in the sub-chapter Date formats.

...
#SDF 1,"%h:%m:%s";
...

EditBox
EditBoxes are used for entering characters. The input is usually made using a keyboard. The definition of a keyboard
is explained in more detail in the Keyboard sub-chapter. Entries can also be made by command (see #SEC). The box
must be connected to a keyboard, that entries via keyboard end up in the EditBox (see #SEK). To receive values the
EditBox must be active. This can be done either by command (#SEA) or by touch (#TID). In the following example an
EditBox is placed, connected to a keyboard and activated by touch. The definition of the keyboard is not included.

...
#SEP 1,1,20,20,7,250,70,10,1,2,2
#SEK 2,1
#TID 1,1
...

Place EditBox

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

40 / 251

#SEP Obj-ID, DrawStyle-No., x, y, Anchor, Width, Height, Radius, TextStyle-No., BorderX(0), BorderY(0)

The command places an EditBox with the given Anchor at position x, y with a defined Width and Height. The
DrawStyle defines the appearance of the background of the EditBox (DrawStyle No.). The structure is described in
more detail in the DrawStyle subsection. The parameter Radius specifies the corner rounding. The appearance of the
character string is determined with the TextStyle (TextStyle-No.). This is explained in more detail in the TextStyle
subsection. With the two optional parameters (BorderX and BorderY) the distance of the text to the edge of the box
can be specified.

...
#SEP 1,1,20,20,7,250,70,10,1,2,2
...

Define default string for EditBox

#SED Obj-ID, "Default text"; "Default text (Obj-ID+1)"; "Default text (Obj-ID+2)";....

A standard text is defined. Further strings indicate the default string for further EditBoxes with the object IDs Obj-
ID+1, ..., Obj-ID+n.

...
#SED 1,"Default";
...

Send strings / codes to EditBox

#SEC Obj-ID, "String"; "String (Obj-ID+1)"; "String (Obj-ID+2)";....

The command can be used to send strings and codes to the EditBox. Additional strings are sent to the edit boxes
with the object IDs Obj-ID + 1, ..., Obj-ID + n.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

41 / 251

...
#SEC 1,"Hello"$21;
...

Connect EditBox with keyboard

#SEK Keyboard-ID, Obj-ID, Obj-ID+1, ...

This command connects a keyboard (Keyboard-ID) with one or more EditBoxes (Obj-ID)

Activate/deactivate EditBox

#SEA Obj-ID(0), Keyboard-ID(0)

The command activates or deactivates EditBoxes.

Activate:

Obj-ID
Object ID of the
edit box

Keybo
ard-ID

Not necessary

Deactivate:

Obj-ID 0

Keyboa
rd-ID

0
all edit boxes are
deactivated

Keyboard-ID
all edit boxes assigned to
the keyboard are deactivated

Define valid character codes (from V1.2)

#SER Obj-ID, Codes

The command specifies valid entries that are displayed in the EditBox. Valid characters (codes) are separated by
commas or specified as a range string (e.g. "0-9A-Za-z", which allows all digits and the Latin alphabet).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

42 / 251

...
#SER 1,"A-Za-z,4"
#SEC 1,"Value 42";
...

Define input mask (from V1.2)

#SEM Obj-ID, "Input mask"; Placeholder

An input mask is defined for the EditBox. The Placeholder parameter defines the visible character code (e.g. '_').
Following masks are possible:

Type Mask Example

Integer
%Maximum valueI or %
from;toI

"%42I"; or "%10;25I";

Float
%Maximum valueF or
%from;toF

"%23.4I"; or "%0.5;7.9I";

ASCII %character countA "%4A" (max. 4 characters from
the ASCII character set)

Unicode %character countU "%4U" (max. 4 characters from
the Unicode area)

Range %character countR "%4R" (max. 4 characters from
the range #SER)

...
#SEM 1,"%42I";?_
...

Define password mode (from V1.2)

#SEW Obj-ID, Wildcardcode

The replacement character (Wildcardcode) is displayed instead of the characters entered.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

43 / 251

...
#SEW 1,$25cf
...

StringBox
StringBoxes can display large amounts of text. Additional text can be added or deleted at any time. Every newly
added text (#SBA, #SBF) is inserted as a new paragraph. If the AutoWrap (see #SBS) function is deactivated, the
paragraph number is the same as the line number. Otherwise, the two can differ. However, there are calculations to
convert them into each other. In the following example, a StringBox is created and one paragraph is added.

...
#SBP 1,20,20,7,250,200,10
#SBS 1,1,2,4,5,5
#SBA 1,1,"Lorem ipsum dolor ...";
...

Place StringBox (from V1.3)

#SBP Obj-ID, x, y, Anchor, Width, Height, Radius, ScrollbarWidth(text height)

The command places a StringBox with the given Anchor at the position x, y with a defined Width and Height.
Optionally, the width of the scrollbar can be specified (ScrollbarWidth). If no value is specified, the text height is used
as the width. It's mandatory to assign a style to the StringBox, otherwise it's invisble (see #SBS).

Define styles for StringBox (from V1.3)

#SBS
Obj-ID, DrawStyle-No. Background, DrawStyle-No. Scrollbar, TextStyle-No., BorderX(0), BorderY(0),
AutoWrap(1)

The command defines the appearance of the StringBox. Two DrawStyles are required. On the one hand the
background of the EditBox and on the other hand the bar of the slider (scrollbar) is defined. The structure is described
in more detail in the subsection DrawStyle. The appearance of the character string is determined with the TextStyle
(TextStyle-No.). This is explained in more detail in the TextStyle subsection. With the two optional parameters
(BorderX and BorderY) the distance of the text to the edge of the box can be specified. AutoWrap determines the
line break:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

44 / 251

AutoWrap

0 Text is cut off at the end of line

1 Automatic line break active

Add paragraph (ab V1.3)

#SBA Obj-ID, Paragraph, "Text"; "Text (Line+1)"; "Text (Line+2)";....

With the command additional lines can be added to the StringBox. The parameter Paragraph specifies the position in
the box. The first line has the number 1. If 0 is selected as the paragraph, the text is added at the end.

...
#SBA 1,1,"Hello World";
...

Remove paragraph (from V1.3)

#SBD Obj-ID, Paragraph, Line1. ...

One or more paragraphs are removed from the StringBox. If 0 is passed as a paragraph, all strings are removed from
the StringBox and the box is empty. Areas can also be specified, e.g. 1-5.

Add text file (from V1.3)

#SBF Obj-ID, Paragraph, <Textfile>

A StringBox can also display complete text files. The parameter <Textfile> specifies the path to the file. The
parameter Paragraph specifies the position in the box. The first line has the number 1. If 0 is selected as the
paragraph, the text is added at the end.

...
#SBF 1,1,<P:Testfile.txt>
...

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

45 / 251

Jump to line (from V1.3)

#SBO Obj-ID, Line, Time (0), ActionCurve-No (0)

The content of the StringBox jumps to the specified line. The jump can be animated with optional parameters. The
Time parameter is specified in 1/100s. If the value is positive, the duration is used for the entire scroll area. The speed
is therefore constant. A negative value determines the time until the new line is reached. So the speed depends on the
number of lines to be scrolled. The ActionCurve-No. determines the chronological sequence. This is explained in
more detail in the sub-chapter Action Curves and Action Paths.

Formatted string

Formatted strings are used in string outputs. The format is based on the C-function "printf". The function has a format
specifier and the concrete arguments to be issued. The following specifiers are used in the format string for the various
data types:

Type Placehold
er

Example

Fixed-point value decimal %d 42

Octal value %o 645

Hex value %x, %X 7a, 7A

Float %f, 299.57

Scientific notation %e, %E 2.9957e+2, 2.9957E+2

Shortest Notation: Float or
scientific

%g, %G 299.57

Character %c a

Each specifier can be additionally formatted with flags, field width and accuracy, in this order:

Flag Description

- Align the value left justified, Right justified is default.

+ Show '+' and '-' depending on the value

(space) Show ' ' (space) if value is positive, '-' if value is negative.

Showing hex and octal values, the 0x, 0X or 0 is shown if the value is ¹ 0.
Float and scientific notation will always have a '.' output - even if only 0 follows. Default
the point is only output if values follow

0 Within the field width, left-unnecessary space is filled up with 0.

Field width Description

(number) Minimum field width for outputting the value

* The field width is given by the arguments. The width is directly defined in front of the
value in the arguments.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

46 / 251

Precision Description

.number Integer: Minimum count of digits (default =1)
Float: Minimum count of digits after the point (default =6)

.* Number of digits is taken from the argument list. The number of digits is directly before
the actual argument in the list.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

47 / 251

Pictures #P

Command group to display pictures. The design software uniTFTDesigner automatically converts the data into the
correct internal format. The design software uniTFTDesigner allows to use following filetypes/graphic formats: png,
bmp, jpg, jpeg, tga, gif, g16, svg, svgz.
If uniTFTDesigner is not used, those files can be converted by EAconvert.exe (directory \Simulator_and_Tools) (-> evg,
epg, epa)

Place picture
(Picture Place)

#PPP Obj-ID, <Name>, y, y, Anchor(1), Width(0), Height (0), Angle (0)

Change animation parameters
(Picture change)

#PPA Obj-ID, AnimationType(0), Time, Image-No.

Load and place image via serial
interface
(Picture Interface Place)

#PIP
Obj-ID, Binary data; x(0), y(y-Resolution -1),Anchor(1), Width (0),
Height(0), Angle (0)

Place picture

#PPP Obj-ID, <Name>, y, y, Anchor(1), Width(0), Height (0), Angle (0)

With the command, a image (<Name>) with the given Anchor is placed at position x, y. If Width = 0 and Height = 0,
the original size of the image is adopted. If only one of the two parameters is 0, the image is scaled proportionally to
the other. The further optional parameter Angle specifies the rotation of the image. If an animation is placed, it will be
executed cyclically.

...
#PPP 1,<P:picture/Logo.epg>,20,20,7,300
...

...
#PPP 1,"Logo";20,20,7,300
...

Change animation parameters

#PPA Obj-ID, AnimationType(0), Time, Image-No.

The command changes an existing image animation. The two parameters Time and Image-No. are only considered if
the AnimationType is 7. The animation then runs in the specified time (time in 1 / 100s) up to the picture number.
The time between the pictures is recalculated. The following animation types can be selected:

AnimationType

1 Cyclic

2 Cyclic backward

3 Ping Pong

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

48 / 251

4 Ping Pong backward

5 Single shot

6 Single shot backwards

7 Goto

Load and place image via serial interface (from V1.3)

#PIP Obj-ID, Binary data; x(0), y(y-Resolution -1),Anchor(1), Width (0), Height(0), Angle (0)

The command displays an image. For this purpose, the data is transmitted in binary format via the serial interface in *
.epg or * .evg format and is placed analogously to the #PPP command.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

49 / 251

Touch functions #T

Command group to enable touch functions. Simple buttons and switches can be used, as well as radio buttons,
sliders, bar-graphs and rotary or meter instruments.

Buttons and switches

Place rectangular button
(Touch Button Rectangle) #TBR

Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y,
Anchor (5), Width(ButtonStyle Width), Height(ButtonStyle
Height)

Place rectangular switch
(Touch Switch Rectangle) #TSR

Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y,
Anchor (5), Width(ButtonStyle Width), Height(ButtonStyle
Height)

Place elliptical button
(Touch Button Ellipse) #TBE

Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y,
Anchor (5), Width(ButtonStyle Width), Height(ButtonStyle
Height)

Place elliptical switch
(Touch Switch Ellipse) #TSE

Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y,
Anchor (5), Width(ButtonStyle Width), Height(ButtonStyle
Height)

Place picture button
(Touch Button Picture) #TBP

Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y,
Anchor (5), Width(ButtonStyle Width), Height(ButtonStyle
Height)

Place picture switch
(Touch Switch Picture) #TSP

Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y,
Anchor (5), Breite(ButtonStyle Width), Height(ButtonStyle
Height)

Place label-free icon button
(Touch Button Icon) #TBI

Obj-ID, x, y, Anchor, <Button-name normal>, Width normal (0),
'Button-name down' (no change); Height down (0), "Sound string"

Place label-free icon switch
(Touch Switch Icon) #TSI

Obj-ID, x, y, Anchor, <Button-name normal>, Width normal (0),
'Button-name down' (no change); Height down (0), "Sound string"

Convert object to button
(Touch Button Object)

#TBO Obj-ID, ButtonStyle-No., "Text normal"; "Text down";

Convert object to switch
(Touch Switch Object)

#TSO Obj-ID, ButtonStyle-No., "Text normal"; "Text down";

Settings of buttons and switches

Change labeling of button/switch
(Touch Change Label)

#TCL Obj-ID, "Text normal"; "Text down";

Change state of button/switch
(Touch Change State)

#TCS State, Obj-ID1, ..., Obj-IDn

Query state of button/switch
(Touch Query State)

#TQS Obj-ID1, ..., Obj-IDn

Activate/ deactivate button/switch
(Touch Change Enable)

#TCE Active, Obj-ID1, ..., Obj-IDn

Define feedback from touch events
(Touch Change Response)

#TCR Event, Filter, Obj-ID1, ..., Obj-IDn

Radiogroup

Add button/switch to radio group
(Touch Radiougroup Add)

#TRA Group-ID, Obj-ID1, ..., Obj-IDn

Query state of radio group
(Touch Query Radiougroup)

#TQR Group-ID1, ..., Group-IDn

Special touch functions

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

50 / 251

Internal touch processing
(Touch Id Define)

#TID Mask, Obj-ID1, ..., Obj-IDn

Place free touch area
(Touch Area Free)

#TAF Obj-ID, x, y, Anchor, Width, Height

Setting gesture times
(Touch Configure Gesture)

#TCG DoubleClick Time (30), LongClick Time (100)

Buttons and switches
Buttons and switches can react to different events (Down, Up, Drag, DoubleClick, LongClick). There are two ways to
evaluate the state changes of buttons and switches:

· Changes are placed in the send buffer:
The command #TCR can be used to specify which responses are placed in the send buffer (no DoubleClick and
LongClick)

· A macro is executed when changes are made:
The commands #MDT and #MDG can be used to connect macros to the button / switch. When the status
changes, the associated macro is called.

Place rectangular button/switch

#TBR Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y, Anchor (5), Width(ButtonStyle Width),
Height(ButtonStyle Height) #TSR

The command places a rectangular button / switch with the given Anchor at the position x, y. The parameter "Text
normal" specifies the output in the unpressed state. "Text down" in the pressed state. With the ButtonStyle the
appearance of the button / switch is determined (ButtonStyle No.). This is explained in more detail in the ButtonStyle
subsection. The Width and Height of the button / switch is taken from the ButtonStyle, but can optionally be
overwritten.

...
#TBR 1,1,"Normal";"Pressed";20,20,7
...

Place elliptical button/switch

#TBE Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y, Anchor (5), Width(ButtonStyle Width),
Height(ButtonStyle Height) #TSE

The command places an elliptical button / switch with the given Anchor at the position x, y. The parameter "Text
normal" specifies the output in the unpressed state. "Text down" in the pressed state. With the ButtonStyle the
appearance of the button / switch is determined (ButtonStyle-No.). This is explained in more detail in the ButtonStyle

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

51 / 251

subsection. The Width (Æ X) and Height (Æ Y) of the button / switch are taken from the ButtonStyle, but can
optionally be overwritten.

...
#TBE 1,1,"Normal";"Pressed";20,20,7
...

Place picture button/switch

#TBP Obj-ID, ButtonStyle-No., "Text normal"; "Text down"; x, y, Anchor (5), Width(ButtonStyle Width),
Height(ButtonStyle Height)#TSP

The command places a button / switch as an image with the given Anchor at position x, y. The parameter "Text
normal" specifies the output in the unpressed state. "Text down" in the pressed state. With the ButtonStyle the
appearance of the button / switch is determined (ButtonStyle-No.). This is explained in more detail in the ButtonStyle
subsection. The Width and Height of the button / switch is taken from the ButtonStyle, but can optionally be
overwritten.

...
#TBP 1,2,"Normal";"Pressed";20,20,7
...

Place label-free icon button/switch

#TBI Obj-ID, x, y, Anchor, <Button-name normal>, Width normal (0), 'Button-name down' (keine Änderung);
Height down (0), "Sound string"#TSI

The command places a button / switch as an icon with the given Anchor at position x, y. A ButtonStyle is not
necessary for this. The two parameters <Buttonname normal> and <Buttonname down> specify the images to be
displayed. If no Width (in pixels) or zero is specified, the original size of the image is used. The height is calculated
internally (proportional). The last parameter "Sound string" specifies the notes that are played when touched.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

52 / 251

...
#TBI
1
,20
,20
,
7
,<P:button/Play.epg>
,100,<P:button/Pause.epg>,100
...

...
#TBI 1,20,20,7,"Play";100,"Pause";100
...

Convert object to button/switch

#TBO
Obj-ID, ButtonStyle-No., "Text normal"; "Text down";

#TSO

Any existing object is converted into a button / switch. The ButtonStyle provides additional information (e.g. Sound
name). If the object is a graphic primitive (e.g. polygon) with the same DrawSytle as in the ButtonStyle, the DrawStyle
of the ButtonStyle is automatically adopted for the pressed state.

...
#TBO 1,1,"Normal";"Pressed";
...

Settings of buttons and switches

Change labeling of button/switch

#TCL Obj-ID, "Text normal"; "Text down";

The command changes the labeling of touch objects. If no text is specified for the pressed state ("Text down"), "Text
normal" is used for both.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

53 / 251

...
#TBR 1,...
#TCL 1,"Change";
...

Change state of button/switch

#TCS State, Obj-ID1, ..., Obj-IDn

The command changes the state of the touch objects (Obj-ID1, ..., Obj-IDn):

State

1 unpressed

2 pressed

...
#TBI
1
,20
,20
,
7
,<P:button/Play.epg>
,100,<P:button/Pause.epg>,100
#TCS 2,1
...

Query state of button/switch

TQS Obj-ID1, ..., Obj-IDn

The state of the touch objects (Obj-ID1, ..., Obj-IDn) is placed in the send buffer. The feedback has the following
structure:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

54 / 251

T Q S Obj-ID State
...

$1B $54 $51 $53 16-Bit value 16-Bit value

...
#TBR 1,...
#TQS 1
...

Activate/ deavtivate button/switch

#TCE Active, Obj-ID1, ..., Obj-IDn

The command activates or deactivates touch objects (Obj-ID1, ..., Obj-IDn) (Active):

Active

0 not active

1 active

...
#TBR 1,...
#TCE 0,1
...

Define feedback from touch events

#TCR Event, Filter, Obj-ID1, ..., Obj-IDn

Each touch object can be assigned whether and which feedback is sent to the send buffer. A distinction is made
between three events: up, down and drag. For each of these events it can be set individually whether it triggers a
feedback or not. This can be set with the Event parameter. The event is bit coded according to the following table:

Event

0 1 2 3 4 5 6 7

Up ● ● ● ●

Down ● ● ● ●

Drag ● ● ● ●

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

55 / 251

If you only want to receive feedback for up and down events, set the Event parameter to 3. In addition, the feedback
can also be made dependent on a defined macro for the event (Filter):

Filter

0
only send if no macro is
defined

1 always send

Default settings

Button #TCR 2,0,Obj-ID

Switch #TCR 3,0,Obj-ID

Bargraph/Ins
trument

#TCR 1,0,Obj-ID

Editbox #TCR 1,0,Obj-ID

If no events should be sent, set #TCR 0,0,Obj-ID.

Radiogroup

Add button/switch to radio group

#TRA Group-ID, Obj-ID1, ..., Obj-IDn

One or more switches (Obj-ID, ..., Obj-IDn) are added to an existing or new radio group (Group-ID).

...
#TSP 1,2,"Radio 1";"Radio 1";20,140,7
#TSP 2,2,"Radio 2";"Radio 2";20,80,7
#TSP 3,2,"Radio 3";"Radio 3";20,20,7
#TRA 4,1,2,3
...

Query state of radio group

#TQR Group-ID1, ..., Group-IDn

The active switch of the radio group (Group-ID) is placed in the send buffer. The feedback is structured as follows:

ESC T Q R Obj-ID Group-ID ...

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

56 / 251

$1B $54 $51 $52 16-Bit value 16-Bit value

...
#TRA 4,...
#TQR 4
...

Special touch functions

Internal touch processing

#TID Mask, Obj-ID1, ..., Obj-IDn

A special touch action can be assigned to each object (Obj-ID) or touch input can be enabled. The individual bits of
the Mask can be combined with bit decoding, that multiple touch actions are possible at the same time:

Mask

1
Internal processing (e.g. Bargraphs /
Instruments / EditBoxes)

2
Move (object can be moved by touching
and dragging)

4
Object can be enlarged/reduced
proportionally

8
Object can be rotated around the active
anchor

16 Size change with two fingers

32 Rotate with two fingers

128
Object remains unchanged, touch
macros are executed

Place free touch area (from V1.4)

#TAF Obj-ID, x, y, Anchor, Width, Height

The command places a free touch area with the given Anchor, Width and Height at the position x, y.

Setting gesture times (from V1.4)

#TCG DoubleClick Time, LongClick Time

The command sets the time threshold of gestures. The DoubleClick Time specifies in 1 / 100s the maximum time
that can pass between two down events, so that a valid double click is still recognized. The parameter LongClick
Time determines which time span (in 1 / 100s) must elapse at least for a LongClick to be detected.
The valid range for DoubleClick is 20 (=200 ms) to 100 (=1 sec.), for LongClick it is valid for 30 (=300 ms) to 1000 (=10
sec.).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

57 / 251

Draw / graphic primitives #G

Command group to show graphical simple objects:

Place rectangle
(Graphic Rounded Rectangle) #GRR

Obj-ID, DrawStyle-No, x, y, Anchor, Width, Height(=Width),
Radius (0), FrameThickness(0), Angle(0)

Place regular polygon
(Graphic Geometric Polygon) #GGP

Obj-ID, DrawStyle-No, x, y, Anchor, Radius, Corners,
FrameThickness(0), Angle(0)

Place star
(Graphic Geometric Star) #GGS

Obj-ID, DrawStyle-No, x, y, Anchor, Radius1, Radius2, Tip,
FrameThickness(0), Angle(0)

Place circle/ellipse
(Graphic Ellipse Total) #GET

Obj-ID, DrawStyle-No, x, y, Anchor, RadiusX,
RadiusY(=RadiusX), FrameThickness(0), Angle(0)

Place circular sector/piece of cake
Graphic Ellipse Pie) #GEP

Obj-ID, DrawStyle-No, x, y, Anchor, RadiusX, RadiusY,
StartAngle, EndAngle, Angle(0)

Place circular segment
(Graphic Ellipse Segment) #GES

Obj-ID, DrawStyle-No, x, y, Anchor, RadiusX, RadiusY,
StartAngle, EndAngle, WiAnglekel(0)

Place arc
(Graphic Ellipse Arc) #GEA

Obj-ID, DrawStyle-No, x, y, Anchor, RadiusX, RadiusY,
StartAngle, EndAngle, Border(0), Angle(0)

Place polyline
(Graphic Polygon Line)

#GPL Obj-ID, DrawStyle-No, x1, y1, x2, y2, ... xn, yn

Place irregular polygon
(Graphic Polygon Fill)

#GPF Obj-ID, DrawStyle-No, x1, y1, x2, y2, ... xn4 y4

Add points to polyline
(Graphic Polyline Add)

#GPA Obj-ID, x1, y1, x2, y2, ... xn, yn

Geometrical figures
Place rectangle

#GRR Obj-ID, DrawStyle-No, x, y, Anchor, Width, Height(=Width), Radius (0), FrameThickness(0), Angle(0)

The command places a rectangle with the Anchor and the Width at the position x, y. The appearance of the rectangle
is determined with the DrawStyle (DrawStyle-No.). This is explained in more detail in the DrawStyle subsection. If no
Height is specified, the height is set to the width (square). A Radius can optionally be specified. This rounds off the
corners. It is also possible to determine a FrameThickness. Rotation around the anchor (Angle) can also be set.

...
#GRR 1,1,20,150,7,200,100
#GRR 2,1,20,20,7,200,100,10,30
...

Place regular polygon

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

58 / 251

#GGP Obj-ID, DrawStyle-No, x, y, Anchor, Radius, Corners, FrameThickness(0), Angle(0)

The command places a regular polygon with the Anchor and the given number of Corners at the position x, y. With
the DrawStyle the appearance of the n-corner is determined (DrawStyle-No.). This is explained in more detail in the
DrawStyle subsection. The Radius determines the size of the figure. It is also possible to determine a
FrameThickness. Rotation around the anchor (Angle) can also be set. If anchor = 0, the construction point is used.

...
#GGP 1,1,20,20,7,100,5
...

Place star

#GGS Obj-ID, DrawStyle-No, x, y, Anchor, Radius1, Radius2, Tip, FrameThickness(0), Angle(0)

The command places a star with the Anchor at the position x, y. The appearance of the star is determined with the
DrawStyle (DrawStyle-No.). This is explained in more detail in the DrawStyle subsection. The first tip is set to
Radius1 above the center point. Then the connection to Radius2 is made then back to Radius1 etc. until the number
of Tips is reached. It is also possible to determine a FrameThickness. Rotation around the anchor (Angle) can also
be set. If anchor = 0, the construction point is used.

...
#GGS 1,1,20,20,7,100,50,7
...

Place circle/ellipse

#GET Obj-ID, DrawStyle-No, x, y, Anchor, RadiusX, RadiusY(=RadiusX), FrameThickness(0), Winkel(0)

The command places an ellipse with the Anchor and the RadiusX at the position x, y. The appearance of the circle is
determined with the DrawStyle (DrawStyle-No.). This is explained in more detail in the DrawStyle subsection. If no
RadiusY is specified, it is set to RadiusX (circle). It is also possible to determine a FrameThickness. Rotation around
the anchor (Angle) can also be set.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

59 / 251

...
#GET 1,1,20,20,7,120,80
...

Place circular sector/piece of cake

#GEP Obj-ID, DrawStyle-No, x, y, Anchor, RadiusX, RadiusY, StartAngle, EndAngle, Winkel(0)

The command places a circle sector / piece of cake with the Anchor, the RadiusX and the RadiusY at the position x,
y. Start-/EndAngles indicate the size of the piece. With the DrawStyle the appearance of the circle sector is
determined (DrawStyle-No.). This is explained in more detail in the DrawStyle subsection. If no RadiusY is specified,
it is set to RadiusX (circle). Rotation around the anchor (Angle) can also be set.

...
#GEP 1,1,20,20,7,100,100,20,250
...

Place circular segment

#GES Obj-ID, DrawStyle-No, x, y, Anchor, RadiusX, RadiusY, StartAngle, EndAngle, Winkel(0)

The command places a segment of a circle with the Anchor, the RadiusX and the RadiusY at the position x, y.
Start-/ EndAngles indicate the size of the piece. The appearance of the circle segment is determined with the
DrawStyle (DrawStyle-No.). This is explained in more detail in the DrawStyle subsection. If no RadiusY is specified,
it is set to RadiusX (circle). Rotation around the anchor (Angle) can also be set.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

60 / 251

...
#GES 1,1,20,20,7,100,100,20,250
...

Place arc

#GEA Obj-ID, DrawStyle-No, x, y, Anchor, RadiusX, RadiusY, StartAngle, EndAngle, Border(0), Angle(0)

The command places an arc with the Anchor, the RadiusX and the RadiusY at the position x, y. Start-/ EndAngles
indicate the size of the piece. The appearance of the circular arc is determined with the DrawStyle (DrawStyle-No.).
This is explained in more detail in the DrawStyle subsection. If no RadiusY is specified, it is set to RadiusX (circle). It
is also possible to determine a frame thickness. Rotation around the anchor (Angle) can also be set.

...
#GEA 1,1,20,20,7,100,100,20,250
...

Place polyline

#GPL Obj-ID, DrawStyle-No, x1, y1, x2, y2, ... xn, yn

The command draws a polyline with the coordinates [x1, y1], [x2, y2], ..., [xn, yn]. The appearance of the polyline is
determined with the DrawStyle (DrawStyle-No.). This is explained in more detail in the DrawStyle subsection.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

61 / 251

...
#GPL 1,1,20,20,80,60,100,90,70,100,120,180
...

Place irregular polygon

#GPF Obj-ID, DrawStyle-No, x1, y1, x2, y2, ... x4, y4

The command draws a filled polygon with the coordinates [x1, y1], [x2, y2], ..., [x4, y4]. The appearance of the
polygon is determined with the DrawStyle (DrawStyle-No.). This is explained in more detail in the DrawStyle
subsection. From the last given point the shape is automatically closed. Only 2-4 points are allowed, meaning you can
draw lines, triangle and quadrangle.

...
#GPF 1,1,20,20,100,100,120,180, 40,150,40,100
...

Add points to polyline

#GPA Obj-ID, x1, y1, x2, y2, ... xn, yn

The command adds coordinates [x1, y1], [x2, y2], ..., [xn, yn] at the end of a polyline. In the case of a polygon, the
figure is closed automatically.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

62 / 251

...
#GPL 1,1,20,20,80,60,100,90,70,100,120,180
#GPA 1,200,210
...

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

63 / 251

Bargraph / instruments #I

Command group to show bar graphs, sliders and rotary / pointer instruments

Bargraph

Place rectangular Bargraph
(Instrument Bar Rectangle) #IBR

Obj-ID, DrawStyle-Filling, DrawStyle-Background, x, y, Anchor,
Width, Height, Radius(0), StartValue(0), EndValue(100),
Direction (1), Angle(0)

Place triangular Bargraph
(Instrument Bar Triangle) #IBT

Obj-ID, DrawStyle-Filling, DrawStyle-Background, x, y, Anchor,
Width, Height, Tip(0), StartValue(0), EndValue(100), Direction(1),
Angle(0)

Place curved Bargraph
(Instrument Bar Arc) #IBA

Obj-ID, DrawStyle-Filling, DrawStyle-Background, x, y, Anchor,
Radius, Thickness, StartAngle, EndAngle, StartValue(0),
EndValue(100), Direction (1)

Slider

Define Slider along path
(Instrument Group Slider) #IGS

Group-ID, Path-ID, Controller-ID, Tangential(0), StartValue(0),
EndValue(100)

Rotary / pointer instruments

Define pointer instrument from
objects
(Instrument Group Meter)

#IGM
Group-ID, Indicator-ID, StartAngle, DeltaAngle, StartValue(0),
EndValue(100)

Place a instrument from the eDIP
series
(Instrument Picture Place)

#IPP
Object-ID, 'InstrumentName'; x, y, Anchor, Width(0), Height(0),
StartValue(0), EndValue(100), Angle(0)

Setting Bargraph / instrument

Set value of Bargraph/Instrument
(Instrument Value Set)

#IVS Obj-ID, Value, Time(0), ActionCurve-No.(0)

Change Start-/End-value of a
Bargraph/Instrument
(Instrument Value New)

#IVN Obj-ID, StartValue, EndValue(no change)

Set Bargraph/Instrument value to
calculation value with AutoUpdate
(Instrument Value Autochange)

#IVA Obj-ID, (Calculation), Time(0), ActionCurve-No.(0)

Change Bargraph/Instrument
calculation for AutoUpdate
(Instrument Value Calulation)

#IVC Obj-ID, (Calculation)

Bargraph
Bargraphs can be used for displaying or for entering values. After the definition (#IBR, #IBT, #IBA), the Bargraph can
neither be operated by touch nor does it display a predefined value. To activate it for touch input, you need the
command #TID. Values can be set with the #IVS command. The #IVA function is required if the Bargraph should
change automatically when changing a calculation value (e.g. analog input, register value, ...). In the following
example, a rectangular Bargraph is placed, pre-assigned to the value 30 and activated by touch.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

64 / 251

...
#IBR 1,2,1,20,20,7,150,30,10
#IVS 1,30
#TID 1,1
...

Place rectangular Bargraph

#IBR
Obj-ID, DrawStyle-Filling, DrawStyle-Background, x, y, Anchor, Width, Height, Radius(0), StartValue(0),
EndValue(100), Direction (1), Angle(0)

The command places a rectangular Bargraph with the Anchor, Width and Height at the position x, y. The filling color
is taken from the DrawStyle-Filling. The DrawStyle-Background specifies the background and frame color. The
structure of the DrawStyle sub-chapter is explained in more detail. A Radius can optionally be specified. This rounds
off the corners. The StartValue and EndValue determine the two limits of the Bargraph. The running direction is
determined by Direction:

Direction

0 Right to left

1 Left to right

Rotation around the anchor (Angle) can also be set.

...
#IBR 1,2,1,20,20,7,150,30,10
...

Place triangular Bargraph

#IBT
Obj-ID, DrawStyle-Filling, DrawStyle-Background, x, y, Anchor, Width, Height, Tip(0), StartValue(0),
EndValue(100), Direction(1), Angle(0)

The command places a triangular Bargraph with the Anchor, Width and Height at the position x, y. The filling color is
taken from the DrawStyle-Filling. The DrawStyle-Background specifies the background and frame color. The
structure of the DrawStyle sub-chapter is explained in more detail. The tip is on the left side. The optional parameter
Tip specifies the position of the tip:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

65 / 251

Tip

0 Bottom

1 Top

2 Middle

StartValue and EndValue determine the two limits of the Bargraph. The running direction is determined by Direction:

Direction

0 Towards tip

1 Away from tip

Rotation around the anchor (Angle) can also be set.

...
#IBT 1,2,1,20,20,7,150,30
...

Place curved Bargraph

#IBA
Obj-ID, DrawStyle-Filling, DrawStyle-Background, x, y, Anchor, Radius, Thickness, StartAngle, EndAngle,
StartValue(0), EndValue(100), Direction (1)

The command places a curved Bargraph with the Anchor and given Thickness at the position x, y. The size is
determined by the parameters Radius, StartAngle and EndAngle. The filling color is taken from the DrawStyle-
Filling. The DrawStyle-Background specifies the background and frame color. The structure of the DrawStyle sub-
chapter is explained in more detail. The StartValue and EndValue determine the two limits of the Bargraph. The
running direction is determined by Direction:

Direction

0 Counterclockwise

1 Clockwise

Rotation around the anchor (Angle) can also be set.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

66 / 251

...
#IBA 1,2,1,20,20,7,100,40,0,180
...

Slider
A slider consists of a path (#GPL, #GPP) and a knob (e.g. #GRR, #PPP, ...). Both objects have to be defined in
advance and grouped together (#OGA). The start position of the controller (value 0) coincides with the construction
point of the path. Nevertheless, it makes sense to position the controller in the right place, since the group limitation
(bounding box) does not adapt automatically.
To activate the slider for touch input, you need the command #TID. Values can be set with the #IVS command.

...
#GPL 1,1,20,40,150,40
#GRR 2,2,20,40,4,10,20
#OGA 3,1,2
#IGS 3,1,2
#IVS 3,30
#TID 1,3
...

...
#GPP 1,1,20,40,?E0,100,50,0,200,200
#GRR 2,2,20,40,4,10,20
#OGA 3,1,2
#IGS 3,1,2,1
#IVS 3,60
#TID 1,3
...

Define slider along path

#IGS Group-ID, Path-ID, Controller-ID, Tangential(0), StartValue(0), EndValue(100)

The command converts an existing group Group-ID into a slider. The group must contain at least two existing objects:

· A path (#GPL, #GPP) Path-ID

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

67 / 251

· A controller (z.B. #GRR, #PPP, ...) Regler-ID

The controller moves along the path:

Tangential

0
Controller does not
turn

1
Controller rotates
tangentially to the
path

StartValue and EndValue determine the two limits of the slider.

Rotary / pointer instruments
A rotary / pointer instrument consists of a background (scale) and a pointer. Both objects have to be defined in
advance and grouped together (#OGA). When designing the pointer, make sure that it is positioned in the zero position
of the scale. To activate the instrument for touch inputs, the command #TID is required. Values can be set with the
#IVS command.

...
#PPP
1,<P:picture/Voltmeter.epg>,20,20,7,150,150,0
#PPP
2
,<P:picture/Voltmeter_Needle.epg>
,66,91,5,6,100,70
#OAO 3,20,2
#OAA 0,2
#OGA 3,1,2
#IGM 3,2,160,-140,0,100
#IVS 3,60
#TID 1,3
...

Alternatively, instruments from the eDIP series can also be placed directly (see #IPP)

Define pointer instrument from objects

#IGM Group-ID, Indicator-ID, StartAngle, DeltaAngle, StartValue(0), EndValue(100)

The command converts an existing group Group-ID into a pointer instrument. The parameter Indicator-ID determines
the pointer. The pointer must be positioned in a a90° position (upwards). The StartAngle parameter specifies the start
angle of the scale. The DeltaAngle determines the direction of rotation (positive: counterclockwise; negative:
clockwise) and the total angle of rotation (from the start angle). Optionally, the start and end values (input and output
values) can also be specified.

Place an instrument from the eDIP series

#IPP Object-ID, 'InstrumentName'; x, y, Anchor, Width(0), Height(0), StartValue(0), EndValue(100), Angle(0)

This command is available for compatibility reasons. Finished instruments from the eDIP series, which were created
with the LCDTools, can be displayed directly. The instrument must be converted to the * .epi format beforehand using

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

68 / 251

EAconvert.exe. The size is determined by the parameters Width and Height. If width = 0 and height = 0, the original
size of the instrument is adopted. If only one of the two parameters is 0, the instrument is adjusted proportionally.
Optionally, the start and end values (input and output values) and the rotation around the anchor (Angle) can be
specified.

...
#IPP
1,<P:instrument/instrument.epi>,20,20,7,200
...

...
#IPP 1,"instrument";20,20,7,200
...

Setting Bargraph/Instrument

Set value of Bargraph/Instrument

#IVS Obj-ID, Value, Time(0), ActionCurve-No.(0)

With the command, a bar graph or instrument is set to a new Value. The Time parameter is specified in 1/100s. If the
value is positive, the time period is used for the total deflection, meaning a constant speed. A negative value
determines the time until the new value is reached. The speed is depending on the distance. The ActionCurve-No.
determines the chronological sequence. This is explained in more detail in the subchapter Action Curves and Action
Paths.

Change Start-/End-value of a Bargraph/Instrument

#IVN Obj-ID, StartValue, EndValue(no change)

The command assigns a new start and / or end value to the Bargraph or instrument.

Set Bargraph/Instrument value to a calculation with AutoUpdate

#IVA Obj-ID, (Calculation), Time(0), ActionCurve-No.(0)

The value of a Bargraph or instrument is automatically calculated using the Calculation (e.g. analog input, register,
calculation) and always changed when its value changes. The Time parameter is specified in 1/100s. If the value is
positive, the time period is used for the total deflection, meaning a constant speed. A negative value determines the
time until the new value is reached. The speed is depending on the distance. The ActionCurve-No. determines the
chronological sequence. This is explained in more detail in the subchapter Action Curves and Action Paths.

Change Bargraph/Instrument calculation for AutoUpdate

#IVC Obj-ID, (Calculation)

The command changes the Calculation for the AutoUpdate function. Now the value of the Bargraph / instrument is
updated whenever the new calculation value changes. However, the old calculation (#IVA) is used for display value.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

69 / 251

Keyboard #K

Command group to represent a keyboard for user inputs. The module must be equipped with a touch screen (order
numbers: EA uniTFTxxx-ATC or EA uniTFTxxx-ATP). Normally, the keyboard is connected to an EditBox.

Define layout of keyboard
(Keyboard Define Buttons)

#KDB Obj-ID, Layout-No., "ButtonStringLine1"; ...; "ButtonStringLineN"

Definition of alternative key labels /
styles
(Keyboard Define Styles)

#KDS
Obj-ID, Code, ButtonStyle, "Label"; Code1, ButtonStyle1,
"Label1" ...; CodeN, ButtonStyleN, "LabelN";

Place and display keyboard
(Keyboard Place) #KKP

Obj-ID, ButtonStyleNormal, ButtonStyleSpecial, x, y, Anchor,
KeySpacing, TotalWidth, TotalHeight(0), Appear(0)

...
#KDB 1,1,"ASDF";"\NYXCV";"\O\O ";
#KDS 1,24,3,"Alt";
#KKP 1,1,1,20,20,7,5,300
...

Define layout of keyboard

#KDB Obj-ID, Layout-No., "ButtonStringLine1"; ...; "ButtonStringLineN"

A keyboard can have up to 4 different layouts (Layout-No.). Keys (codes) can be assigned to each layout. Multiple
lines are separated by the end of the string ';' marked
Keys can be passed as a string (e.g. "ASDF") or as ASCII / Unicode (e.g. $41 $53 $44 $56). The following key codes
are available for special keys:

Code
Code

in
string

Description

1 \1 Show keyboard No 1

2 \2 Show keyboard No 2

3 \3 Show keyboard No 3

4 \4 Show keyboard No 4

5 \5
SHIFT (Use keyboard No 2 for one key, then automatically keyboard
no 1 again)

6 \6 CAPSLOCK (Switch between keyboard no 1 and no 2)

7 \7 DELETE

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

70 / 251

8 \8 BACKSPACE

9 \9 Reserved for future use

10 \A Reserved for future use

11 \B INSERT/ OVERWRITE

12 \C CLEAR

13 \D SEND

14 \E Cursor left

15 \F Cursor right

16 \G Reserved for future use

17 \H Reserved for future use

18 \I POS1

19 \J END

20 \K Reserved for future use

21 \L CANCEL

22 \M Cursor On/Off

23 \N Place holder (this code is not drawn, empty gap)

24 - 31 \O - \V 8 Function keys

Definition of alternative key labels / styles

#KDS Obj-ID, Code, ButtonStyle, "Label"; Code1, ButtonStyle1, "Label1" ...; CodeN, ButtonStyleN, "LabelN";

A specific key code (Code) is assigned a special key label ("Label") and ButtonStyle. This setting overrides the style
definition of the #KKP command. The ButtonStyles are not completely adopted: The size information from the
ButtonStyle is ignored, the radius is adopted once. If the radius changes afterwards in the ButtonStyle, these values
are not adopted in the keyboard, but a color change or TextStyle change does.

Place and display keyboard

#KKP
Obj-ID, ButtonStyleNormal, ButtonStyleSpecial, x, y, Anchor, KeySpacing, TotalWidth, TotalHeight(0),
Appear(0)

The keyboard defined with the commands #KDB and #KDS is placed at x, y with the given Anchor. The width of a key
is automatically calculated from the TotalWidth or the TotalHeight and the distances between the keys
(KeySpacing). If the total height or total width = 0, this length is automatically calculated from the resulting key size.
The size values are the desired maximum values. The buttons are split evenly. The ButtonStyleNormal defines the
style for letters and numbers, ButtonStyleSpecial applies to special keys. The last parameter (Appear) indicates
whether the keyboard is displayed immediately or appears according to a defined animation (#AOA / #AOR):

Appear

0 Keyboard is displayed immediately

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

71 / 251

>=1
(Time)

Keyboard appears according to animation in
the defined time (in 1/100s)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

72 / 251

Input element per Touch #E

Commands to create touch input elements like menus, SpinBoxes or ComboBoxes. The functions are available from
firmware V1.2.

Menu

Define styles for menu
(Input Menu Styles) #EMS

Obj-ID, MenuDirection, TextStyle-No., DrawStyle-No.
Background, DrawStyle-No. Selection, DrawStyle-No. Icon, "Note
string"

Define entries for menu
(Input Menu Define)

#EMD Obj-ID, ItemNumber, "Entry"

Assign icon to menu entry
(Input Menu Icons) #EMI

Obj-ID, ItemNumber, <Iconname>, ItemNumber2,
<Iconname2>, ... ItemNumberN, <IconnameN>

Enable/Disable menu entry
(Input Menu Enable)

#EME Obj-ID, Enable, ItemNumber, ItemNumber2, ... ItemNumberN

Check/Uncheck menu entry
(Input Menu Check)

#EMC Obj-ID, Check, ItemNumber, ItemNumber2, ... ItemNumberN

Place and show menu
(Input Menu Place)

#EMP Obj-ID, x, y, Anchor, Radius(0), BorderX(0), BorderY(0), Time(0)

Select menu entry
(Input Menu choOse)

#EMO Obj-ID, ItemNumber

ComboBox

Define styles for ComboBox
(Input Comobox Styles) #ECS

Obj-ID, ComboBoxDirection, TextStyle-No., DrawStyle-No.
Background, DrawStyle-No. Selection, DrawStyle-No. Scrollbar,
"Note string"

Define entries for ComboBox
(Input Comobox Define) #ECD

Obj-ID, "Entries"

Obj-ID, "Formatted string"; StartValue, EndValue

Assign icon to ComboBox entry
(Input Comobox Icons) #ECI

Obj-ID, ItemNumber, <Iconname>, ItemNumber2,
<Iconname2>, ... ItemNumberN, <IconnameN>

Enable/ Disable ComboBox entry
(Input Comobox Enable)

#ECE Obj-ID, Enable, ItemNumber, ItemNumber2, ... ItemNumberN

Place and show ComboBox
(Input Comobox Place) #ECP

Obj-ID, x, y, Anchor, Radius(0), Width(0), VisiableEntries(0),
BorderX(0),BorderY(0), Time(0)

Select ComboBox entry
(Input Comobox choOse)

#ECO Obj-ID, ItemNumber

SpinBox

Define styles for SpinBox
(Input Spinbox Styles) #ESS

Obj-ID, RollingBehaviour, TextStyle-No., DrawStyle-No.
Background, DrawStyle-Nr. Selection, "Note string"

Define entries for SpinBox
(Input Spinbox Define) #ESD

Obj-ID, Box-Nr, "Entries"

Obj-ID, Box-Nr, "Formatted string"; StartValue, EndValue

Assign icon to SpinBox entry
(Input Spinbox Icons) #ESI

Obj-ID, ItemNumber, <Iconname>, ItemNumber2,
<Iconname2>, ... ItemNumberN, <IconnameN>

Enable/Disable SpinBox entry
(Input Spinbox Enable)

#ESE Obj-ID, Enable, ItemNumber, ItemNumber2, ... ItemNumberN

Place and show SpinBox
(Input Spinbox Place) #ESP

Obj-ID, x, y, Anchor, Radius, Width, VisiableEntries, BorderX(0),
Distance(0)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

73 / 251

Select SpinBox entry
(Input Spinbox choOse)

#ESO Obj-ID, ItemNumber

Menu

...
#EMS 1,0,4,1,5,17
#EMD 1,0,"Menu 1||Menu 2||Menu 3";
#EMD 1,1,"Entry 1|Entry 2|Entry 3";
#EMD 1,769,"Subentry 1|Subentry 2";
#EMP 1,0,271,1,5,5,5,10
...

Define styles for menu

#EMS
Obj-ID, MenuDirection, TextStyle-No., DrawStyle-No. Background, DrawStyle-No. Selection, DrawStyle-No.
Icon, "Note string"

The command determines the appearance of the menu. Three DrawStyles are required. The background of the menu
(DrawStyle-No. Background), the appearance of the selected entry (DrawStyle-No. Selection) and the background
of the icon (DrawStyle-No. Icon) are defined. The structure is described in more detail in the subsection DrawStyle.
The appearance of the character string is determined with the TextStyle (TextStyle No.). This is explained in more
detail in the TextStyle subsection. The direction in which the menu is pulled-down is also set (MenuDirection).

MenuDirection

0 1 2 3 4 5 6 7

D
i
r
e
c
t
i
o
n

bottom/right top/right bottom/left top/left bottom/right top/right bottom/left top/left

normal save space

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

74 / 251

Finally, the parameter "Note string" can optionally be set. This specifies the note string to be played, while pressing.

Define entries for menu

#EMD Obj-ID, ItemNumber, "Entry"

Der Befehl fügt dem Elternobjekt Untermenüs hinzu. Das Hauptmenü hat die ItemNummer 0, die Hauptmenüeintrage
$01 - $FF. Die Submenüeinträge werden mit dem nächsten höherwertigen Byte zugeordnet (z.B. $0301 ordnet dem
dritten Eintrag des ersten Menüeintrages weitere Subeinträge zu). Nachfolgend ist dies exemplarisch aufgeführt.

The command adds sub-menus to the parent object. The main menu has the ItemNumber 0, the main menu entries $
01 - $ FF. The submenu entries are assigned with the next higher byte (e.g. $ 0301 assigns further subentries to the
third entry of the first menu entry).

ItemNummer

Main menu 1
$01

Main menu 2
$02

Main menu 3
$03

...

Menu 1
$01 01

Menu 2
$02 01

Menu 3
$03 01

Sub-menu 1
$01 03 01

...
Sub-menu 2
$02 03 01

...

The individual entries are displayed as a string ("Entry") with a pipe '|' handed over separately. A double pipe '||' adds a
hyphen / separator.

Assign icon to menu entry

#EMI Obj-ID, ItemNumber, <Iconname>, ItemNumber2, <Iconname2>, ... ItemNumberN, <IconnameN>

An icon can be assigned to each entry (ItemNumber) <Iconname>. In order for an icon to be assigned, the entry

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

75 / 251

must already exist.

...
#EMI 1,$0301,<P:picture/EA.epg>
...

...
#EMI 1,$0301,"EA";
...

Enable/Disable menu entry

#EME Obj-ID, Enable, ItemNumber, ItemNumber2, ... ItemNumberN

The command activates/deactivates an entry (ItemNummer). If an entry is deactivated, it cannot be selected by
touch. By default, all entries are active.

Enable

0 Disable

1 Enable

2 Toggle

...
#EME 1,0,$0301
...

Check/Uncheck menu entry

#EMC Obj-ID, Check, ItemNumber, ItemNumber2, ... ItemNumberN

The command selects / deselects an entry (ItemNummer). A check mark is displayed visually. No entry is selected
by default.

Check

0 Deselect

1 Select

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

76 / 251

2 Toggle

...
#EMC 1,1,$0301
...

Place and show menu

#EMP Obj-ID, x, y, Anchor, Radius(0), BorderX(0), BorderY(0), Time(0)

The menu defined with the commands #EMS and #EMD is placed with the given Anchor at x, y. The Radius
parameter gives the corner rounding. With the two optional parameters (BorderX and BorderY) the distance of the
text to the edge of the menu is specified. With the parameter Time the opening / closing of the menu can be animated
in 1/100s.

Select menu entry

#EMO Obj-ID, ItemNumber

The command selects an entry (ItemNummer).

ComboBox

...
#ECS 1,0,6,1,5,5
#ECD 1,"Entry %02d";1,6
#ECP 1,0,271,1,5,0,3,5,5,10
#ECO 1,4
...

Define styles for ComboBox

#ECS
Obj-ID, ComboBoxDirection, TextStyle-No., DrawStyle-No. Background, DrawStyle-No. Selection, DrawStyle-
No. Scrollbar, "Note string"

The command defines the appearance of the ComboBox. Three DrawStyles are required. The background of the
ComboBox (DrawStyle-No. Background), the appearance of the selected entry (DrawStyle-No. Selection) and the

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

77 / 251

the scrollbar (DrawStyle No. Scrollbar) are defined. The structure is described in more detail in the subsection
DrawStyle. The appearance of the character string is determined with the TextStyle (TextStyle No.). This is explained
in more detail in the TextStyle subsection. The direction in which the ComboBox is pulled-down is also set
(ComboBoxDirection).

ComboBoxDirection

0 Down

1 Up

Finally, the parameter "Note string" can optionally be set. This specifies the note string to be played, while pressing.

Define entries for ComboBox

#ECD
Obj-ID, "Entries"

Obj-ID, "Formatted string"; StartValue, EndValue

There are two ways to transfer the ComboBox entries:

1. The individual entries are displayed as a string ("Entries") with a pipe '|' passed separately (e.g. "Entry1|
Entry2|Entry3";)

2. The individual entries are transferred as a format string with start and end values (e.g. "Entry %d";1,3)

Assign icon to ComboBox entry

#ECI Obj-ID, ItemNumber, <Iconname>, ItemNumber2, <Iconname2>, ... ItemNumberN, <IconnameN>

An icon can be assigned to each entry (ItemNumber) <Iconname>. The entry must already exist.

...
#ECI 1,3,<P:picture/EA.epg>
...

...
#ECI 1,3,"EA";
...

Enable/ Disable ComboBox entry

#ECE Obj-ID, Enable, ItemNumber, ItemNumber2, ... ItemNumberN

The command activates / deactivates an entry (ItemNumber). If an entry is deactivated, it cannot be selected by
touch. By default, all entries are active.

Enable

0 Disable

1 Enable

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

78 / 251

2 Toggle

...
#ECE 1,0,3
...

Place and show ComboBox

#ECP Obj-ID, x, y, Anchor, Radius(0), Width(0), VisiableEntries(0), BorderX(0),BorderY(0), Time(0)

The ComboBox defined with the commands #ECS and #ECD is placed in with the given Anchor at x, y. The Radius
parameter gives the corner rounding. Width indicates the width of the box in pixels. If width = 0, the width of the box is
automatically determined based on the widest entry. The parameter VisibleEntries defines the number of visible
entries (VisibleEntries = 0: all entries visible). With the two optional parameters (BorderX and BorderY) the distance
of the text to the edge of the menu can be specified. With the parameter Time the opening / closing of the ComboBox
can be animated in 1/100s.

Select ComboBox entry

#ECO Obj-ID, ItemNumber

The command selects an entry (ItemNumber).

SpinBox

...
#ESS 1,0,4,1,5
#ESD 1,1,"Item %02d";1,6
#ESD 1,2,"Item %02d";1,6
#ESP 1,20,20,7,5,0,5,5,10
#ESO 1,$0400
...

Define styles for SpinBox

#ESS Obj-ID, RollingBehaviour, TextStyle-No., DrawStyle-No. Background, DrawStyle-Nr. Selection, "Note string"

The command defines the appearance of the SpinBox. Two DrawStyles are required. The background of the SpinBox

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

79 / 251

(DrawStyle-No. Background) and the appearance of the selected entry (DrawStyle-No. Selection) are defined. The
structure is described in more detail in the DrawStyle subsection. The appearance of the character string is
determined with the TextStyle (TextStyle-No.). This is explained in more detail in the TextStyle subsection. The
RollingBehavior position of the selection frame of the SpinBox is also defined here:

RollingBehaiviour

0 1 2 3

RollingBehai
viour

Endless With stop Endless With stop

Selection
frame

Behind the text Before the text

Finally, the parameter "Note string" can optionally be set. This specifies the note string to be played, while pressing.

Define entries for SpinBox

#ESD
Obj-ID, Box-Nr, "Entries"

Obj-ID, Box-Nr, "Formatted string"; StartValue, EndValue

Eine SpinBox kann bis zu 4 untergeordnete Boxen besitzen. Der Parameter Box-Nr. gibt die aktuelle Box an.
Es gibt zwei Möglichkeiten die Einträge der SpinBox zu übergeben:

A SpinBox can have up to 4 subordinate boxes. The parameter Box-No. indicates the current box.
There are two ways to transfer the entries of the SpinBox:

1. The individual entries are displayed as a string ("Entries") with a pipe '|' passed separately (e.g. "Entry1|
Entry2|Entry3";)

2. The individual entries are transferred as a format string with start and end values (e.g. "Entry %d";1,3)

Assign icon to SpinBox entry

#ESI Obj-ID, ItemNumber, <Iconname>, ItemNumber2, <Iconname2>, ... ItemNumberN, <IconnameN>

An icon can be assigned to each entry <Iconname>. To assign an icon, the entry must already exist.
ItemNumber is composed as follows:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

80 / 251

ItemNummer

Box 1 Box 2 Box 3 Box 4

Item 1 $01 $01 00 $01 00 00
$01 00 00

00

Item 2 $02 $02 00 $02 00 00
$02 00 00

00

Item 3 $03 $03 00 $03 00 00
$03 00 00

00

...

...
#ESI 1,$0200,<P:picture/EA.epg>
...

...
#ESI 1,$0200,"EA";
...

Enable/Disable SpinBox entry

#ESE Obj-ID, Enable, ItemNumber, ItemNumber2, ... ItemNumberN

The command activates / deactivates an entry (ItemNumber). If an entry is deactivated, it cannot be selected by
touch. By default, all entries are active.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

81 / 251

Enable

0 Disable

1 Enable

2 Toggle

...
#ESE 1,0,$0200
...

Place and show SpinBox

#ESP Obj-ID, x, y, Anchor, Radius, Width, VisiableEntries, BorderX(0), Distance(0)

The SpinBox defined with the commands #ESS and #ESD is placed with the given Anchor at x, y. The Radius
parameter gives the corner rounding. Width indicates the width of the box in pixels. If width = 0, the width of the box is
automatically determined based on the widest entry. The parameter VisibleEntries defines the entries to be displayed
above the selection box. BorderX specifies the distance between the entry and the box edge and the icon. Distance
defines the distance of the boxes within the SpinBox group.

Select SpinBox entry

#ESO Obj-ID, ItemNumber

The command selects an entry (ItemNumber).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

82 / 251

Action / Animation #A

Command group to animate objects, e.g. Show, fly away, rotate or fade out.

Define and set animation

Start/end animation definition
(Action Define Condition)

#ADC Start

Define animation absolut
(Action Object Absolut)

#AOA Obj-ID, Action1, ..., ActionN

Define animation relative
(Action Object Relative)

#AOR Obj-ID, Action1, ..., ActionN

Set animation type and time
(Action Object Type)

#AOT Obj-ID, Type, TotalTime(100), Start (0), End(0)

Stop animation
(Action Object Stop)

#AOS Obj-ID, Stop(0), Abort(0)

Delete animation
(Action Object Delete)

#AOD Obj-ID, ..., Obj-IDn

Define action paths and action curves

Define action curve
(Action Curve Define)

#ACD CurveNumber, x1, y1, x2, y2

Define and set animation

Start/end animation definition

#ADC Start

If the animation definition is within a macro, this command is not necessary because a macro is always processed
completely before the screen content is redrawn.

Start

0
End animation definition → start all
new animations

1
Start animation definition → no
animation is executed

Define animation absolut/relative

#AOA
Obj-ID, Animation1, ..., AnimationN

#AOR

The command defines an animation for an object. The Animation parameter specifies the animation. Depending on
the command, absolute #AOA or relative #AOR values are transferred.

Animation

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

83 / 251

Change position

100+ 1..10 x, y

...
#AOA
1,104
,400,136
...

The object moves in a straight line to the specified point (x, y). The course of time is specified
by the action curve (1..10).

Change scale

200+ 1..10 ScaleX, ScaleY

...
#AOA
1,204
,200,200
...

The object size is changed linearly in percentage to the original size. The course of time is
specified by the action curve (1..10).

Change opacity
500+ 1..10 Opacity

...
#AOA
2,504,0
...

The object changes the Opacity. The course of time is specified by the action curve (1..10).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

84 / 251

Change color
channel

600+ 1..10 R, G, B

...
#AOA
2,604,-
27,-1,18
...

Change the color channels Red, Green and Blue. The color channel of the target color is
determined relative to the parameters passed. The parameters (R, G, B) are transferred as
percentage values in the range from -100 to 100.
Example:
Assume that the output color should be changed from RGB (50.0.0) to RGB (200.0.0).
The target color has only changed in the red component. The difference in the red component
is 150. The value has to be converted into a percentage value:

150
100 = 117,65

255

#AOA 1,604,118,0,0

The changing progress is specified by the action curve (1..10).

Set animation type and time

#AOT Obj-ID, Type, TotalTime(100), Start (0), End(0)

The TotalTime (in 1 / 100s) of the animation includes the delay at the Start (in 1 / 100s) and at the End (in 1 / 100s).
The Type specifies the animation type:

Typ

1 Appear

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

85 / 251

2

Disap
pear

Objec
t is
delete
d

3

Objec
t
beco
mes
invisib
le

4
Change
(once)

5 Cyclical

6 PingPong

The animation starts automatically after the command. However, if the #ADC command was called beforehand with
parameter 1, the animation is only executed after #ADC 0.

Stop animation

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

86 / 251

#AOS Obj-ID, Stop(0), Abort(0)

The animation is stopped. The command can only be used for periodic animations (cyclic / ping pong). The Stop
parameter specifies the point of time:

Stop

0 Immediately

1
At the beginning
of animation

2
At the end of
animation

The Abort behavior indicates what to do with the object:

Abort

0
Object keeps
current state

1
Jump (only with
Stop = 1 or = 2)

2 Delete object

3
Make object
invisible

Delete animation

#AOD Obj-ID, ..., Obj-IDn

The command deletes one or more animations. If the object ID 0 is passed, all animations are deleted.

Define action curves

#ACD CurveNumber, x1, y1, x2, y2

The command creates its own action curve, which specifies the time course of the animation. There are 10 predefined
curves that can be overwritten. CurveNumber (1-10) indicates the action curve that is overwritten. The action curve is
a cubic Bézier curve. The control points of the curve are specified with the parameters x1, y1, x2 and y2. The value
range of the parameters is for X 0 ... 100, for Y -200 ... 300.

Predefined action curves
The action curves indicate the time course of the animation. There are 10 predefined curves that can be changed
(#ACD). The curves are cubic Bezier curves with two control points:

Action curve

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

87 / 251

1

L
i
n
e
a
r
#
A
C
D
1
,
1
0
,
1
0
,
9
0
,
9
0

2

A
c
c
e
l
e
r
a
t
i
n
g
→
L
i
n
e
a
r
#
A
C
D
2
,
4
0
,
0
,
6
0
,
4
0

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

88 / 251

3

L
i
n
e
a
r
→
D
e
c
e
l
e
r
a
t
i
o
n
#
A
C
D
3
,
4
0
,
6
0
,
6
0
,
1
0
0

4

A
c
c
e
l
e
r
a
t
i
n
g
→
L
i
n
e
a
r
→

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

89 / 251

D
e
c
e
l
e
r
a
t
i
o
n
#
A
C
D
4
,
4
0
,
0
6
0
,
1
0
0

5

U
n
d
e
r
s
h
o
o
t
®
L
i
n
e
a
r
#
A
C
D
5
,
3
0
,
0
3
0

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

90 / 251

,
-
6
0

6

L
i
n
e
a
r
®
O
v
e
r
s
h
o
o
t
#
A
C
D
6
,
7
0
,
1
6
0
,
7
0
,
1
0
0

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

91 / 251

7

U
n
d
e
r
s
h
o
o
t
®
L
i
n
e
a
r
®
O
v
e
r
s
h
o
o
t
#
A
C
D
7
,
3
0
,
-
6
0
,
7
0
,
1
6
0

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

92 / 251

8

S
w
i
n
g
i
n
g
®
L
i
n
e
a
r
#
A
C
D
8
,
4
0
,
4
0
,
2
0
,
-
1
0
0

9

L
i
n
e
a
r
®
S
w
i
n
g
i
n
g
#
A
C
D
9
,
8
0

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

93 / 251

,
2
0
0
,
6
0
,
6
0

1
0

L
i
n
e
a
r
®
s
w
i
n
g
i
n
g
®
L
i
n
e
a
r
#
A
C
D
1
0
,
6
0
,
2
0
0
4
0
,
-
1
0
0

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

94 / 251

Object management #O

Command group to manage, modify and group objects.

Object manipulation

Delete object
(Object Delete Id)

#ODI Obj-ID, ..., Obj-IDn

Object delete protection
(Object Delete Protection)

#ODP DeleteProtection, Obj-ID, ..., Obj-IDn

Change visibility of object
(Object Visible Id)

#OVI Visibility, Obj-ID, ..., Obj-IDn

Change position absolut
(Object Position Absolut)

#OPA x, y, Obj-ID, ..., Obj-IDn

Change position relative
(Object Position Relative)

#OPR x, y, Obj-ID, ..., Obj-IDn

Change size absolut
(Object Scale Absolut)

#OSA Width, Height, Obj-ID, ..., Obj-IDn

Change size relative
(Object Scale Relative)

#OSR Width, Height, Obj-ID, ..., Obj-IDn

Rotate object absolut
(Object Rotation Absolut)

#ORA Angle, Obj-ID, ..., Obj-IDn

Rotate object relative
(Object Rotation Relative)

#ORR Angle, Obj-ID, ..., Obj-IDn

Change opacity absolut
(Object Opacity Absolut)

#OOA Transparency, Obj-ID, ..., Obj-IDn

Change opacity relative
(Object Opacity Relative)

#OOR Transparency, Obj-ID, ..., Obj-IDn

Change object color
(Object Change Color)

#OCC R,G,B, Obj-ID, ..., Obj-IDn

Change object style
(Object Change Style)

#OCS Style-No, Obj-ID, ..., Obj-IDn

Define frame/background
(Object Frame Place)

#OFP DrawStyleNo, addX, addY, Obj-ID, ..., Obj-IDn

Set anchor
(Object Anchor Active)

#OAA Anchor, Obj-ID, ..., Obj-IDn

Set free anchor absolut
(Object Anchor Screen)

#OAS x, y, Obj-ID, ..., Obj-IDn

Set free anchor relative
(Object Anchor Object)

#OAO x, y, Obj-ID, ..., Obj-IDn

Change draw order (layer) absolut
(Object Layer Absolut)

#OLA Draw order, Obj-ID, ..., Obj-IDn

Change draw order (layer) relative
(Object Layer Realtive)

#OLR Draw order, Obj-ID, ..., Obj-IDn

Set user value (integer)
(Object User Integer)

#OUI Obj-ID, Value, ..., Value n (Obj-ID n)

Set user value (float)
(Object User Float)

#OUF Obj-ID, Value, ..., Value n (Obj-ID n)

Group

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

95 / 251

Add object to group
(Object Group Add)

#OGA Obj-ID Group, Obj-ID, ..., Obj-IDn

Background

Move object to the background
layer
(Object to BackGround)

#OBG RGB, Obj-ID, ..., Obj-IDn

Load image into background layer
(Object Background Picture) #OBP

<Name>, x(0), y(0), Anchor(7),<Gradient>, Time, Direction,
'Endmacro'

Object manipulation

Delete object

#ODI Obj-ID, ..., Obj-IDn

The command deletes single or multiple objects. If the Obj-ID = 0 is transferred, all objects, with Obj-ID = -1 all
objects and the background are deleted (from V1.2).

Object delete protection

#ODP DeleteProtection, Obj-ID, ..., Obj-IDn

Objects with DeleteProtection = 1 cannot be deleted by the #ODI command and remain. They are also not moved to
the background level (from V1.2).

Change visibility of object

#OVI Visibility, Obj-ID, ..., Obj-IDn

The command sets the Visibility of objects. If the Obj-ID = 0 is passed, the command is applied to all objects:

Visibility

0 Invisible

1 Visible

See also objV(id) (from V1.4)

Change position absolut/relative

#OPA
x, y, Obj-ID, ..., Obj-IDn

#OPR

The command moves objects (absolute or relative) to the new position. If the Obj-ID = 0 is passed, all objects are
moved.

See also objX(id), objY(id)

Change size absolut/relative

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

96 / 251

#OSA
Width, Height, Obj-ID, ..., Obj-IDn

#OSR

Change the Width or Height of an object as a percentage of the object size. Obj-ID = 0 Size change for all objects.

See also objW(id), objH(id), objSW(id), objSH(id)

Rotate object absolut/relative

#ORA
Angle, Obj-ID, ..., Obj-IDn

#ORR

The object (Obj-ID) is rotated by the Angle. Obj-ID = 0 rotation of all objects. Only 90° steps are allowed for the angle.

See also objR(id)

Change opacity absolut/relative

#OOA
Transparency, Obj-ID, ..., Obj-IDn

#OOR

Set visibility (Transparency) from 0 (completely transparent) to 100 (completely visible). Apply Obj-ID = 0 to all
objects.

See also objO(id)

Change object color

#OCC R,G,B, Obj-ID, ..., Obj-IDn

Change the color channels Red, Green and Blue. The color channel of the target color is determined relative to the
parameters passed. The parameters (R, G, B) are transferred as percentage values in the range from -100 to 100.
Example:
Assume that the output color should be changed from RGB (50.0.0) to RGB (200.0.0).
The target color has only changed in the red component. The difference in the red component is 150. The value has to
be converted into a percentage value:

1
5
0

100 = 117,65
2
5
5

#OCC 118,0,0,...

Color changes are always related to the initial-color (even with mutliple use). Obj-ID =0 to all objects.

Chance object style

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

97 / 251

#OCS Style-No, Obj-ID, ..., Obj-IDn

A new style is assigned to an object (Obj-ID = 0 all). The style depends on the object. A string e.g.is automatically
assigned a TextStyle. The command can only be used on simple graphic objects (e.g. not on buttons, SpinBox, ...).
Also monochrome pictures can be assigned a style once.

See also objC(id)

Define frame/background

#OFP DrawStyleNo, addX, addY, Obj-ID, ..., Obj-IDn

A background is assigned to an object (Obj-ID = 0 all). The colors are determined via the DrawStyle. The two
parameters addX and addY change the size (in pixels) of the background on the left / right and upper / lower edge
compared to the object.

...
#OFP 1,20,20,1
...

Set anchor

#OAA Anchor, Obj-ID, ..., Obj-IDn

A new Anchor is assigned to an object (Obj-ID = 0 all). The active anchor is e.g. used to rotate the object.

See also objA(id)

Set free anchor absolut/relative

#OAS
x, y, Obj-ID, ..., Obj-IDn

#OAO

Set the anchor 0 of an object (Obj-ID). The command also marks anchor 0 as active.

Change draw order (layer) absolut/relative

#OLA
Draw order, Obj-ID, ..., Obj-IDn

#OLR

This command changes the drawing order of one or more objects. The object (Obj-ID) with the highest Draw order is
drawn as a last resort.
The very first object will be put to "layer 1". Next objects will be drawn on a higher "layer" above. Those may cover up

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

98 / 251

prior drawn objects.

A group will be moved collectively. Its also possible to move objects inside of a group.

Set user value (integer)

#OUI Obj-ID, Value, ..., Value n (Obj-ID n)

An integer Value can be assigned to each object. The value can also be a calculation.

See also objUI(id)

Set user value (float)

#OUF Obj-ID, Value, ..., Value n (Obj-ID n)

A float Value can be assigned to each object. The value can also be a calculation.

See also objUF(id)

Group
Add object to group

#OGA Obj-ID Group, Obj-ID, ..., Obj-IDn

Create a group (Obj-ID Group) or add objects to an existing group.

Background
Move object to the background layer

#OBG RGB, Obj-ID, ..., Obj-IDn

Existing objects are moved to the background. The background color is specified by the parameter RGB. After the
PowerOn reset, the background color is black (RGB = 0). If RGB = -1 is transferred, the previously set color remains
unchanged.

Load image into background layer

#OBP <Name>, x(0), y(0), Anchor(7),<Gradient>, Time, Direction, 'Endmacro'

The command places an image from the FLASH directly to the background. Transformations (like scaling) are

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

99 / 251

impossible. If transformations are necessary, an image object must be created (#PPP) and the transformations applied
before the object is moved to the background with the #OBG command. The parameter <Gradient> specifies a
grayscale image that is used for the transition. The cross-fading is determined by the gray values and the Time in
1/100 s. The transition effect can be shown forward or backward (Direction). After the crossfading the macro
'Endmacro' is called.

Direction

0 Forward

1 Backward

...
#OBP
<P:picture/GrandCanyon.epg>
,0,0,7,<P:picture/Gradient.epg>,200,2
...

...
#OBP "GrandCanyon";0,0,7,"Gradient";200,2
...

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

100 / 251

Styles #C

Command group to create styles. The look of each object is based on a style appropriate to the object type. The
maximum number of styles available for each style is 100.

DrawStyle

Delete filling
(Style Fill Delete)

#CFD DrawStyle-No.

Define filling width color
(Style Fill Color)

#CFC DrawStyle-No., RGB, Opacity(100)

Define filling with linear gradient
(Style Fill Linear)

#CFL DrawStyle-No, ColorRamp-No, Angle(0)

Define filling with radial gradient
(Style Fill Radial)

#CFR DrawStyle-No, ColorRamp-No, FocusX (5000), FocusY (0)

Define filling with conical gradient
(Style Fill Conial) #CFK

DrawStyle-No, ColorRamp-No, FocusX(5000), FocusY(0),
Direction(1)

Define filling with pattern
(Style Fill Pattern)

#CFP DrawStyle-No, <PatternName>, 0, 0, 0, FocusX(5000), FocusY(0)

Change angle of linear gradient
(Style Fill Angle)

#CFA DrawStyle-No, Angle

Change gradient
(Style Fill Garient)

#CFG DrawStyle-No, ColorRamp-No.

Change focus of gradient
(Style Fill Focus)

#CFF DrawStyle-No, FocusX, FocusY, PatternAnchor (no change)

Change pattern
(Style Fill pattern Name)

#CFN DrawStyle-No, <PatternName>

Delete line
(Style Line Delete)

#CLD DrawStyle-No.

Define line color and thickness
(Style Line Style)

#CLS DrawStyle-No, RGB, Opacity(100), Width(1), JoinStyle(0)

Change line color
(Style Line Color)

#CLC DrawStyle-No, RGB, Opacity (no change)

Change line with
(Style Line Width)

#CLW DrawStyle-No, Width

Change join style
(Style Line End)

#CLE DrawStyle-No, JoinStyle

TextStyle

Define TextStyle
(Style Text Font) #CTF

TextStyle-No, <FontName>, 0, Alignment(0), DrawStyle-No.(0), 0,
LineSpace (0), CharacterSpace (0)

Change font
(Style Text Name)

#CTN TextStyle-No, <FontName>

Change alignment
(Style Text Align)

#CTA TextStyle-No, Alignment

Change DrawStyle
(Style Text drawstyle)

#CTC TextStyle, DrawStyle-No

Change spacing
(Style Text Gap)

#CTG TextStyle, LineSpace, CharacterSpace (no change)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

101 / 251

Change space width
(Style Text space Width)

#CTW TextStyle-No, SpaceCode, SpaceWidth(100)

ButtonStyle

Define picture ButtonStyle
(Style Button Picture) #CBP

ButtonStyle-No, <ButtonNameNormal>,
<ButtonNameDown> (=Normal), Width(0), Height(0), scale/pixels(0)

Define ButtonStyle
(Style Button Drawstyle) #CBD

ButtonStyle-No, DrawStyle-Normal, DrawStyle-Down (=Normal),
Width (0), Height (0), Radius(0)

Define Text
(Style Button Textstyle) #CBT

ButtonStyle-No, TextStyleNormal, TextStyleDown (=Normal),
OffsetX(0), OffsetY(0)

Define DownEvent
(Style Button Offset)

#CBO ButtonStyle-No, OffsetX(0), OffsetY (=OffsetX), Size(100), Angle(0)

Define sound for DownEvent
(Style Button Sound)

#CBS ButtonStyle-No, "Sound string"

Define disabled ButtonStyle
(Style Button Greyout)

#CBG R (-30), G (=R), B (=R), Opacity(0)

ColorRamp

Define ColorRamp
(Style Color Ramp) #CCR

ColorRamp-No, Offset1, RGB1, Transparency1, ... Offset10,
RGB10, Transparancy10

Animate ColorRamp
(Style Animate Colorramp)

#CAC ColorRamp-No, Type (1), Time (100)

DrawStyle

Delete filling

#CFD DrawStyle-No.

This command deletes the filling of the DrawStyle (DrawStyle No.).

Define filling width color

#CFC DrawStyle-No., RGB, Opacity(100)

A full-color (RGB) fill is assigned to the DrawStyle (DrawStyle No.). The Opacity can be set as a percentage

...
#CFC 15,$3B7EAE
...

Define filling with linear gradient

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

102 / 251

#CFL DrawStyle-No, ColorRamp-No, Angle(0)

The DrawStyle (DrawStyle No.) is assigned a linear gradient (ColorRamp-No.). The gradient must be defined in
advance with the #CCR command. The orientation can optionally be specified (Angle in degrees). Exceptionally this
command allows single degree steps.

...
#CCR
5,0,$FF0000,100,50,$00FF00,100,100,$0000FF,100
#CFL 15,5,45
...

Define filling with radial gradient

#CFR DrawStyle-No, ColorRamp-No, FocusX (5000), FocusY (0)

The DrawStyle (DrawStyle No.) is assigned a radial gradient (ColorRamp-No). The gradient must be defined in
advance with the #CCR command. The focus determines the starting point of the course as a percentage. With
FocusX = 5000, the anchor to be used as the starting point of the gradient is specified with FocusY.

...
#CCR
5,0,$FF0000,100,50,$00FF00,100,100,$0000FF,100
#CFR 15,5,5000,5
...

Define filling with conical gradient

#CFK DrawStyle-No, ColorRamp-No, FocusX(5000), FocusY(0), Direction(1)

The DrawStyle (DrawStyle No.) is assigned a conical gradient (ColorRamp-No). The gradient must be defined in
advance with the #CCR command. The focus determines the starting point of the course as a percentage. With
FocusX = 5000, the anchor to be used as the starting point of the gradient is specified with FocusY. The optional
parameter Direction specifies the direction of rotation.

Direction

0
Counterclockwis
e

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

103 / 251

1 Clockwise

...
#CCR
5,0,$FF0000,100,50,$00FF00,100,100,$0000FF,100
#CFK 15,5,5000,5,0
...

Define filling with pattern

#CFP DrawStyle-No, <PatternName>, 0, 0, 0, FocusX(5000), FocusY(0), PatternAnchor(1)

A pattern (<PatternName>) is used as a fill for the DrawStyle (DrawStyle No.). The focus determines the percentage
of the starting point of the pattern. With FocusX = 5000, the anchor to be used as the starting point of the pattern is
specified with FocusY. The pattern is set directly to the focus point .

...
#CFP 15,<P:pattern/Brick.epg>,40
...

...
#CFP 15,"Brick";40
...

Change angle of linear gradient

#CFA DrawStyle-No, Angle

The Angle of a linear gradient is changed. Applies only to a linear gradient and redrawing of the object.

Change gradient

#CFG DrawStyle-No, ColorRamp-No.

A new gradient is assigned to the DrawStyle (ColorRamp-No)

Change focus of gradient

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

104 / 251

#CFF DrawStyle-No, FocusX, FocusY, PatternAnchor (no change)

The focus determines the starting point of the course or the pattern as a percentage. With FocusX = 5000, the anchor
to be used as the starting point of the course is specified with FocusY. The last parameter (PatternAnchor) is only
necessary for patterns: The pattern is set directly to the focus point with the PatternAnchor.

Change pattern

#CFN DrawStyle-No, <PatternName>

A new pattern (<PatternName>) will be assigned to the filling.

Delete line

#CLD DrawStyle-No

This command deletes the line of the DrawStyle (DrawStyle No.).

Define line color and thickness

#CLS DrawStyle-No, RGB, Opacity(100), Width(1), JoinStyle(0)

Der Befehl definiert die Linienfarbe (RGB), die Deckkraft (Transparenz in Prozent), sowie die Linien-Dicke in Pixeln.
Der Parameter Verbindung bestimmt die Art des Linienendes bzw, die Verbindung zweier Linien:
The command defines the line color (RGB), the Opacity (in percent) and the line Width in pixels. The JoinStyle
parameter determines the type of line end or the connection of two lines:

JoinStyle

0 Miter

1 Round

Change line color

#CLC DrawStyle-No, RGB, Opacity (no change)

Assign a new color (RGB) to the line.

Change line width

#CLW DrawStyle-No, Width

Change the thickness of the line.

Change join style

#CLE DrawStyle-No, JoinStyle

Change the join style of the line

JoinStyle

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

105 / 251

0 Mitered

1 Rounded

TextStyle
Define TextStyle

#CTF TextStyle-No, <FontName>, 0, Alignment(0), DrawStyle-No.(0), 0, LineSpace (0), CharacterSpace (0)

Definition of a TextStyle with font (<FontName>), and Alignment.

Alignment

0 Left

1 Center

2 Right

The DrawStyle specifies the color. For performance reasons, we recommend simple filling without an outline. The
remaining two parameters specify the LineSpacing and additional CharacterSpacing.

Change font

#CTN TextStyle-No, <FontName>

The command changes the font (<FontName>) of the TextStyle.

Change alignment

#CTA TextStyle-No, Alignment

The command changes the Alignment of the text.

Alignment

0 Left

1 Center

2 Right

Change DrawStyle

#CTC TextStyle, DrawStyle-No

Change color using the DrawStyle (DrawStyle No.).

Change spacing

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

106 / 251

#CTG TextStyle, LineSpace, CharacterSpace (no change)

An additional LineSpacing or CharacterSpacing is defined (in % of the character height). Negative values are also
allowed.

Change space width

#CTW TextStyle-No, SpaceCode, SpaceWidth(100)

The width of the space can be taken from any other code (SpaceCode). The width can also be defined in %:
Standard: 100 (SpaceWidth).

ButtonStyle

Define picture ButtonStyle

#CBP ButtonStyle-No, <ButtonNameNormal>, <ButtonNameDown> (=Normal), Width(0), Height(0), scale/pixels(0)

The command defines a ButtonStyle: Display two images for the unpressed (<ButtonNameNormal>) and pressed
(<ButtonNameDown>) state. The size is determined by Width and Height (= 0 original size). The last parameter
scale/pixel indicates whether the image should be scaled (=0) or whether the pixels are repeated in the middle of the
image (=1 frame magnification)

Define ButtonStyle

#CBD ButtonStyle-No, DrawStyle-Normal, DrawStyle-Down (=Normal), Width (0), Height (0), Radius(0)

The command defines a ButtonStyle: Display of two DrawStyles for the unpressed (DrawStyleNormal) and pressed
(DrawStyleDown) state. The following are further parameters for the Width and Height of the button and the corner
rounding (Radius).

Define text

#CBT ButtonStyle-No, TextStyleNormal, TextStyleDown (=Normal), OffsetX(0), OffsetY(0)

Define the text of the button style. The Offset specifies an additional distance in pixels where the text is positioned on
the button.

Define DownEvent

CBO ButtonStyle-No, OffsetX(0), OffsetY (=OffsetX), Size(100), Angle(0)

The behaviour of the button when pressed is defined. The button is drawn with the Offset (in pixels). The Size changes
proportionally as a percentage. The Angle (in degrees) can also be changed.

Define sound for DownEvent

CBS ButtonStyle-No, "Sound string"

A short tone sequence ("Sound string") is played in the DownEvent of the ButtonStyle. If the parameter "Sound
string" is empty, the jingle is deleted.

Define disabled ButtonStyle

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

107 / 251

#CBG R (-30), G (=R), B (=R), Opacity(0)

The deactivated state of a button is the percentage change in color of the ButtonStyle normal. Each color channel can
be addressed individually. The Opacity can also be changed.

ColorRamp

Define ColorRamp

#CCR ColorRamp-No, Offset1, RGB1, Transparency1, ... Offset10, RGB10, Transparancy10

The command defines a gradient. The base point (Offset) defines the color point in the course in percent, the color is
indicated by RGB and Opacity. A maximum of 10 control points can be specified.

Animate ColorRamp

#CAC ColorRamp-No, Type (1), Time (100)

The position of the vertices of the gradient are changed. The type specifies the animation type. Time in 1/100 s
indicates the duration.

Type

0 Stop animation

1 Cyclic

2 Cyclic backward

3 PingPong

4
PingPong
backward

...
#CCR
5,0,$FF0000,100,50,$00FF00,100,100,$0000FF,100
#CFR 15,5,5000,6
#CAC 5,3
...

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

108 / 251

Macros #M

Single or multiple command sequences can be collected in a so-called macro (*.emc) and stored in internal FLASH
memory. A macro could also contain lots of commands to build up a complete screen - including a command that
deletes all old objects (#ODI0).

Run macros

Run normal macro / Start a screen
(Macro Run Normal)

#MRN <Macroname>

Run normal macro conditionally
(Macro Run Conditionally)

#MRC (Condition), <MacronameTrue>, <MacronameFalse>

Run normal macro delayed
(Macro Run Delayed)

#MRD Delay-No., Time, <Macroname>

Run I/O-Port macro
(Macro Run Port)

#MRP Port

Run I/O-Bit macro
(Macro Run Bit)

#MRB Portpin, Edge

Run analogue macro
(Macro Run Analogue)

#MRA Channel, Type

Run touch macro
(Macro Run Touch)

#MRT Obj-ID, Type, Point-No.(0)

Define macros

Define touch macro
(Macro Define Touch) #MDT

Obj-ID, <MacronameDown>, <MacronameUp>;
<MacronameDrag>

Define macro process
(Macro Process Define) #MPD

Process-No, Time, <Macroname>, StartNumber(no), EndNumber
(StartNumber), Type(1)

Define conditional macro process
(Macro Process Conditionally) #MPC

Process-No, Time, (Condition), <Macroname>, StartNumber(no),
EndNumber (StartNumber), Type(1)

Define automatic macro process
(Macro Process Autochange) #MPA

Process-No, Time, (Calculation), <Macroname>,
StartNumber(no), EndNumber (StartNumber), Type(1)

Change macro process time
(Macro Process Time)

#MPT Process-No, Time

Define action end macro
(Macro Define Actionend)

#MDA Obj-ID, <Macroname>

Define I/O/Port macro
(Macro Hardware Port)

#MHP Port

Define I/O-Bit macro
(Macro Hardware Bit)

#MHB Portpin, Edge, <Macroname>

Define analogue macro
(Macro Hardware Analogue)

#MHA Channel, Type, <Macroname>

Define RS232 receive macro
(Macro Hardware RS232 master)

#MHR BufferSize, <Macroname>

Define second macro (RTC)
(Macro Define Second)

#MDS <Macroname>

Define sound end macro
(Macro Hardware Soundend)

#MHS <Macroname>

Define backlight auto-dimming
macro #MDL <Macroname>

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

109 / 251

(Macro Define Led)

Define gesture macro
(Macro Define touch Gesture)

#MD
G

Obj-ID, <MacronameDoubleClick>, <MacronameLongClick>

Delete macro definition
(Macro Clear Defines)

#MCD Mask

Commands within macros

Skip commands
(Macro File Skip)

#MFS (Condition), Commands(1)

Jump
(Macro File Jump)

#MFJ (Condition), Marker-No(0), Delete(0)

Set jump destination (marker)
(Macro File Marker)

#MFM Marker-No(0)

Jump with call
(Macro File Call)

#MFC (Condition), Marker-No(0), Delete(0)

Jump to call
(Macro File Return)

#MFR (Condition) (true)

Exit macro
(Macro File Exit)

#MFE (Condition) (true), <Macroname>

Delete marker
(Macro File Delete)

#MFD Marker-No.

Run macros
Run normal macro / Show a screen

#MRN <Macroname>

This command executes a macro ().

...
#MRN <P:macro/macro.emc>
...

...
#MRN
"macro";
...

Alternatively this command runs a macro that set-up a full screen.

...
#MRN <P:macro/screen/Screen1.emc>
...

...
#MRN
"screen/S
creen1";
...

Run normal macro conditionally

#MRC (Condition), <MacronameTrue>, <MacronameFalse>

If the Condition is true, <MacronameTrue> is executed, otherwise <MacronameFalse>.

...
#MRC (R0<10),<P:macro/macroTRUE.emc>,<P:macro/macroFALSE.emc>

...
#MRC

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

110 / 251

...

(R0
<10),"mac
roTRUE"
;"macroFA
LSE";
...

Run normal macro delayed

#MRD Delay-No., Time, <Macroname>

The command executes the macro (<MacroName>) with a delay. Up to 10 macros can be started at the same time
with a delay (Delay-No. 1 ... 10). The Time is given in 1/100 s.

...
#MRD 1,100,<P:macro/macro.emc>
...

...
#MRD
1
,100
,"macro";
...

Run I/O-Port macro manually

#MRP Port

The command executes a port macro (Port 0 ... 16).

Run I/O-Bit macro manually

#MRB Portpin, Edge

The command executes a bit macro (Portpin 0 ... 136).

Edge

0 Falling

1 Rising

Run analogue macro manually

#MRA Channel, Type

The command executes an analog macro (Channel 0 ... 3). The parameterization of the analog input (limits,
hysteresis) is set with the command group 'Analog input'.

Type

0 Every change

1 Decrement

2 Increment

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

111 / 251

3 Lower limit 1

4 Upper limit 1

5 Lower limit 2

6 Upper limit 2

7 Leave window

8 Enter window

Run touch macro

#MRT Obj-ID, Type, Point-No.(0)

The command executes a touch macro (object Obj-ID). PointNo. (0 ... 4) indicates the finger: 0 = first, 1 = second
etc. contact point.

Type

1 Normal

2 Pushed

3 Drag

Define macros

Define touch macro

#MDT Obj-ID, <MacronameDown>, <MacronameUp>; <MacronameDrag>

The command defines a touch macro. The macro <MacronameDown> is called when the key is pressed,
<MacronameUp> when released, <MacronameDrag> when dragging (especially useful for bar-graphs and
instruments). With an empty string ("";) the corresponding macro is deleted.
Modules with capacitive touch panels also support multi-finger operation. Up to 5 points are recognized. The first three
macro names then apply to the first point, the next three to the second, etc. If no special macro is defined, the macros
for the first point are always called.

...
#MDT 1,<P:macro/macroDOWN.emc>,<P:macro/macroUP.emc>,<P:macro/macroDRAG.emc>
...

.

.

.
#
M
D
T

1
,
"
m
a
c
r

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

112 / 251

o
D
O
W
N
"
;
"
m
a
c
r
o
U
P
"
;
"
m
a
c
r
o
D
R
A
G
"
;
.
.
.

Define macro process

#MPD Process-No, Time, <Macroname>, StartNumber(no), EndNumber (StartNumber), Type(1)

Macro processes define an automatic chronological sequence of macros. The process (Process-No. 1 ... 10)
automatically calls the next macro (<Macroname>) in (Time in 1/100 s). Several macros can be called
(StartNumber to EndNumber e.g. #MPD 1,100,"MacroProcess";1,50 → MacroProcess1 .. MacroProcess50
are called. The Type specifies the call order:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

113 / 251

Type

1 Cyclic

2 Cyclic backward

3 PingPong

4
PingPong
backward

5 Once

6 Once backward

...
#MPD 1,100,<P:macro/MacroProcess.emc>,1,4
...

.

.

.
#
M
P
D

1
,
1
0
0
,
"
M
a
c
r
o
P
r
o
c
e
s
s
"
;
1
,
4
.
.
.

Define conditional macro process

#MPC Process-No, Time, (Condition), <Macroname>, StartNumber(no), EndNumber (StartNumber), Type(1)

Conditional macro processes define an automatic chronological sequence of macros if a condition is fulfilled (true). The
process (Process-No. 1 ... 10) automatically calls the next macro (<Macroname>) in (Time in 1/100 s). Several
macros can be called (StartNumber to EndNumber e.g. #MPC 1,100,(R1<10),"MacroProcess";1,50 →

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

114 / 251

MacroProcess1 .. MacroProcess50 are called. The type indicates the order of the call:

Type

1 Cyclic

2 Cyclic backward

3 PingPong

4
PingPong
backward

5 Once

6 Once backward

...
#MPC 1,100,(R1<10),<P:macro/MacroProcess.emc>
...

.

.

.
#
M
P
C

1
,
1
0
0
,
(
R
1
<
1
0
)
,
"
M
a
c
r
o
P
r
o
c
e
s
s
"
;
.
.
.

Define automatic macro process

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

115 / 251

#MPA Process-No, Time, (Calculation), <Macroname>, StartNumber(no), EndNumber (StartNumber), Type(1)

Conditional macro processes define an automatic chronological sequence of macros if the value of the calculation has
changed. The process (Process-No. 1 ... 10) automatically calls the next macro (<Macroname>) in (Time in 1/100
s). Several macros can be called (StartNumber to EndNumber e.g.#MPA 1,100,
(R1<10),"MacroProcess";1,50 → MacroProcess1 .. MacroProcess50 are called. The type indicates the order
of the call:

Type

1 Cyclic

2 Cyclic backward

3 PingPong

4
PingPong
backward

5 Once

6 Once backward

...
#MPA 1,100,(R1),<P:macro/MacroProcess.emc>
...

.

.

.
#
M
P
A

1
,
1
0
0
,
(
R
1
)
,
"
M
a
c
r
o
P
r
o
c
e
s
s
"
;

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

116 / 251

.

.

.

Change macro process time

#MPT Process-No, Time

The time (1/100 s) for the macro process (Process-No = 0 all) is changed.

Time

-1
Restart with old
interval

0 Stop

>0 Reset time

Define action end macro

#MDA Obj-ID, <Macroname>

After an object animation (Obj-ID) has ended, the macro (<Macroname>) is called.

...
#MDA 1,
...

...
#MDA
1
,"Macro";
...

Define I/O-Port macro

#MHP Port

The port macro is called when the status of the Port (0 ... 15) changes.

...
#MHP 0,<P:macro/Macro.emc>
...

...
#MHP
0
,"Macro";
...

Define I/O-Bit macro

#MHB Portpin, Edge, <Macroname>

The bit macro is called when an Edge is detected at the Portpin (0 ... 127).

Edge

0 Falling

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

117 / 251

1 Rising

2 Both edges

...
#MHB 16,2,<P:macro/Macro.emc>
...

...
#MHB
16
,
2
,"Macro";
...

Define analogue macro

#MHA Channel, Type, <Macroname>

A macro (<Macroname>) is assigned to an A / D input (Channel 0 ... 3). Type:

Type

0 Every change

1 Decrement

2 Increment

3 Lower limit 1

4 Upper limit 1

5 Lower limit 2

6 Upper limit 2

7 Leave window

8 Enter window

The parametrization of the analogue input (limits, hysteresis) is set with the command group 'Analog input'.

...
#MHA 0,0,<P:macro/Macro.emc>
...

...
#MHA
0
,
0
,"Macro";
...

Define RS232 receive macro

#MHR BufferSize<Macroname>

The macro (<Macroname>) is called when the BufferSize (0 = disable) in the master RS232 receive buffer is
reached.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

118 / 251

...
#MHR 42,<P:macro/Macro.emc>
...

...
#MHR
42
,"Macro";
...

Define second macro (RTC)

#MDS <Macroname>

The macro (<Macroname>) is called every second.

...
#MDS <P:macro/Macro.emc>
...

...
#MDS
"Macro";
...

Define sound end macro

#MHS <Macroname>

The macro (<Macroname>) is called when the sound string has finished playing. The definition must be made before
playing the jingle. The macro is not called for automatically played jingles (e.g. button) (only after #HTN)

...
#MHS <P:macro/Macro.emc>
...

...
#MHS
"Macro";
...

Define backlight auto-dimming macro

#MDL <Macroname>

The automatic dimming function of the backlight calls up the specified macro (<Macroname>) when the state
changes. Please see command #XAL for parameter setting concerning time and brightness.

...
#MDL <P:macro/Macro.emc>
...

...
#MDL
"Macro";
...

Define gesture macro

#MDG Obj-ID, <MacronameDoubleClick>, <MacronameLongClick>

The command defines a gesture macro. The macro <MacronameDoubleClick> is called with a double click, the
macro <MacronameLongClick> with a long click

...
#MDG 1,<P:macro/MacroDoubleClick>,<P:macro/MacroLongClick>
...

...
#MDG
1
,"MacroDo

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

119 / 251

ubleClick
"
;"MacroLo
ngClick";
...

Delete macro definition

#MCD Mask

The command deletes macro definitions by type:

Mask

0
Second macros
(RTC)

2 Process macros

4 Port macros

8 Bit macros

16
Analogue
macros

32
Touch/Gesture
macros

64 Action macros

128 Delayed macros

256 Backlight macro

512
RS232 receive
macro

1024
Sound end
macro

The individual types can be added, e.g. Delete all macros: Mask = $ FFFF

Commands within macros
Skip commands

#MFS (Condition), Commands(1)

If the Condition is true, the command skips the defined number of Commands (blank lines and comments are
ignored) in the macro.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

120 / 251

...
#MFS (R1<10),2
 #??? /**Comman
d 1
 #??? /**Comman
d 2
#??? /**Command 3
...

Jump

#MFJ (Condition), Marker-No(0), Delete(0)

If the Condition is true, the command jumps to the marker (Marker-No. 0..99) in the macro. A marker can appear
multiple times in a macro. The parameter Delete deletes the last marker found and searches for the next marker with
the same ID in the macro.

...
#MFJ (R1<10),1
 #??? /**Comman
d 1
 #??? /**Comman
d 2
#MFM 1
#??? /**Command 3
...

Set jump destination (marker)

#MFM Marker-No(0)

The command sets a jump target (Marker-No. 0..99) in the macro.

Jump with call

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

121 / 251

#MFC (Condition), Marker-No(0), Delete(0)

If the Condition is true, the command jumps to the marker (Marker-No. 0..99) in the macro. A marker can appear
multiple times in a macro. A return (#MFR) is mandatory to return to the call. The parameter Delete deletes the last
marker found and searches for the next marker with the same ID in the macro.

...
#MFC (R1<10),1
#??? /**Command 1
#??? /**Command 2
#MFE

#MFM 1
 #??? /**Comman
d 3
#MFR
...

Jump to call

#MFR (Condition) (true)

If the Condition is true, the command jumps to the call.

Exit macro

#MFE (Condition) (true), <Macroname>

If the Condition is true, the macro is exited. Another macro (<Macroname>) can be called optionally.

Delete marker

#MFD Marker-No.

The command deletes the last marker with the Marker-No..

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

122 / 251

Comparison between C-Code and Macro-Code

if-query one-line

C-Code Makro-Code

if(R1<10)
 //Command
else
 //Command

#MFS (R1>=10),3
 #??? /**Command
#MFS (R1<10),1
 #??? /**Command

if-query multi-line

C-Code Makro-Code

if(R1<10)
{
 //Command 1
 //Command 2
}
else
{
 //Command 1
 //Command 2
}

#MFJ (R1>=10),1
 #??? /**Command 1
 #??? /**Command 2
 #MFJ (1),2
#MFM 1
 #??? /**Command 1
 #??? /**Command 2
#MFM 2

for-loop

C-Code Makro-Code

for(int i=0;i<10;i++)
{
 //Command 1
 //Command 2
}

#VRI 0,0
#MFM 1
 #??? /**Command 1
 #??? /**Command 2
#MFJ (++R0<10),1

do-loop

C-Code Makro-Code

do
{
 //Command 1
 //Command 2
}while(R1<10)

#MFM 1
 #??? /**Command 1
 #??? /**Command 2
#MFJ (R0<10),1

Function call

C-Code Makro-Code

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

123 / 251

...
{
 subfunction();
 //Command 1
 //Command 2
}
void subfunction()
{
 //Function Command 1
 //Function Command 2
}

#MFC 1,1
 #??? /**Command 1
 #??? /**Command 2
#MFE

/**---------------
subfunction--------------
-
#MFM 1
 #??? /**Function
Command 1
 #??? /**Function
Command 1
#MFR

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

124 / 251

Variables / register #V

Command group to execute calculations and logical operations. With the help of the string files, internationalization
(multiple languages) can be realized. There are registers for numbers and strings (can record characters up to 200),
integer registers use signed 32-bit, floating-point registers use 23-bit mantissa, 8-bit exponent, 1-bit signed.

String file / multilingualism

Load string file
(Variable stringFile Load)

#VFL StringfileName>

Delete string file
(Variable stringFile Delete)

#VFD <StringfileName> (all)

Send number of loaded string files
(Variable stringFile Count)

#VFC

String register

Set string register
(Variable Stringregister Set)

#VSS String-ID, "String"; "String" [ID+1]; ...

Set string register from position
(Variable Stringregister Postion)

#VSP String-ID, Offset, "New String";

Replace string register from
position
(Variable Stringregister Replace)

#VSR String-ID, Offset, "New String";

Cut out and replace sub-string from
string register
(Variable Stringregister Truncate)

#VST String-ID, Offset, Number(until end)

Copy sub-string from string register
(Variable Stringregister Copy)

#VSC String-ID Target, String-ID Source, Offset (0), Number(until end)

split string registers in sub-strings
(Variable Stringregister dElimiter) #VSE

String-ID Target Start, String-ID Source, Seperator, Register-ID
(=String-ID Target Start)

Set string register with date/time
(Variable Stringregister Date)

#VSD String-ID, "Dateformat"; date (act. time)

Set formatted string register
(Variable Stringregister Formated)

#VSF String-ID, "Formatted string"; Value, Value2,, ValueN

Read object strings
(Variable Stringregister Object)

#VSO String-ID, Obj-ID, ...

Send string register (ASCII)
(Variable string Send Ascii)

#VSA String-ID, ...

Send string register (Unicode)
(Variable string Send Unicode)

#VSU String-ID, ...

Sort string register
(Variable Quicksort Strings)

#VQS String-ID Start, String-ID End, Number (0), Offset(0)

Sort codes in string register
(Variable Quicksort Codes)

#VQC String-ID, Direction (1), Number (0), Offset (0)

Last error message in string
register
(Variable Stringregister Last error)

#VSL String-ID, Delete(1)

Mix string register
(Variable Mix Strings)

#VMS String-ID Start, String-ID End

Mix codes in string register
(Variable Mix Codes)

#VMC String-ID, Number (0), Offset (0)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

125 / 251

Register

Set register (integer)
(Variable Register Integer)

#VRI Register-ID, Value, Value1 [ID+1], ...

Set register (float)
(Variable Register Float)

#VRF Register-ID, Value, Value1 [ID+1], ...

Convert object string
(Variable Register Object)

#VRO Register-ID, Obj-ID, Obj-ID1[ID+1], ...

Convert string register to register
(Variable Register dElimiter)

#VRE Register-ID Start, String-ID Source, Seperator, Register-ID Name

Write register to RTC-RAM
(Variable Register rtc Write)

#VRW ID, Register-ID, Register-ID1, ...

Read register from RTC-RAM
(Variable Register rtc Read)

#VRR ID, Register-ID, Register-ID1, ...

Convert string register as
calculation to register (integer)
(Variable Calculate Integer)

#VCI Register-ID, String-ID, String-ID1[ID+1], ...

Convert string register as
calculation to register (float)
(Variable Calculate Float)

#VCF Register-ID, String-ID, String-ID1[ID+1], ...

Send register
(Variable Register Send)

#VRG Register-ID, ...

Sort register
(Variable Quicksort Register)

#VQR Register-ID Start, Register-ID End

Mix register
(Variable Mix Register)

#VMR Register-ID Start, Register-ID End

Array

Define array (Integer)
(Variable Array Integer)

#VAI Array-ID, Number, Type(0)

Define array (Float)
(Variable Array Float)

#VAF Array-ID, Number, Type(0)

Delete array (free memory)
((Variable Array Delete)

#VAD Array-ID

Fill array
(Variable Array Set)

#VAS Array-ID, Value(0, all Elements)

Assign values to array elements
(with index)
(Variable Array Value)

#VAV Array-ID, Index, Value, Value[Index+1], ...

Assign values to array elements
(with current write pointer)
(Variable Array Write)

#VAWArray-ID, Value 1, Value 2, ...

Set writing and/or reading pointer
(Variable Array Pointer)

#VAP Array-ID, WritePointer, ReadPointer(-1)

Sort array
(Variable Quicksort Arrays)

#VQA Array-ID, StartIndex, EndIndex(last Index)

Mix array
(Variable Mix Arrays)

#VMA Array-ID, StartIndex, EndIndex(last Index)

String file / multilingualism
"Hello World" is placed in 4 different languages. It must be ensured that the selected font supports all necessary

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

126 / 251

characters. In the following example "Arial Unicode MS" was used. The commands below assume that the string files
(Chinese.txt, English.txt, Cyrillic.txt and German.txt) are already available on FLASH in the project path in the string's
subfolder:

...
#VF
L
<P:
str
ing
/Ge
rma
n.t
xt>

#SS
P
1
,
1
,10
,10
,
7
,!H
ELL
O!;
#VF
D

#VF
L
<P:
str
ing
/En
gli
sh.
txt
>
#SS
P
2
,
1
,10
,50
,
7
,!H
ELL
O!;
#VF
D

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

127 / 251

#VF
L
<P:
str
ing
/Cy
ril
lic
.tx
t>

#SS
P
3
,
1
,10
,90
,
7
,!H
ELL
O!;
#VF
D
#VF
L
<P:
str
ing
/Ch
ine
se.
txt
>
#SS
P
4
,
1
,10
,13
0
,
7
,!H
ELL
O!;
#VF
D
...

Load string file

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

128 / 251

#VFL <StringfileName>

Load a set of strings. A maximum of 1000 strings from 8 different files can be loaded at the same time.

Delete string file

#VFD <StringfileName> (alle)

Delete a set of strings or all. The files are physically retained on FLASH so that they can be reloaded.

Send number of loaded strings

#VFC

Places the number of loaded strings in the send buffer. The feedback is structured as follows:

ESC V F C Number
...

$1B $56 $53 $43 16-Bit value

...
#VFL ...
#VFL ...
#VFL ...
#VFL ...
#VFC
...

String register
Set string register

#VSS String-ID, "String"; "String" [ID+1]; ...

The command saves the String in the register set (String ID [0 ... 499]).

String-ID Value

0 "Hello World"

1 "Test Hello World"

2 "Hello World Test"

...
#VSS 0,"Hello World";"Test "S0;S0" Test";
...

Set string register from position

#VSP String-ID, Offset, "New String";

The string of the location String-ID is deleted from the position offset and the new data ("New String") are added.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

129 / 251

String-ID Value

0 "Hello Test"

1 ...

2 ...

...
#VSS 0,"Hello World";
#VSP 0,6,"Test";
...

Replace string register from position

#VSR String-ID, Offset, "New String";

The string of the location String-ID is replaced with the new data (("New String") from the position offset.

String-ID Value

0 "Hello Test"

1 ...

2 ...

...
#VSS 0,"Hello World";
#VSR 0,6,"Test";
...

Cut out and replace sub-string from string register

#VST String-ID, Offset, Count(until end)

Delete the "left" part of the string register and move the part from offset to offset + count to the front. If count is
negative, count is taken as second offset. It is then an area specification.

String-ID Value

0 "World"

1 ...

2 ...

...
#VSS 0,"Hello World";
#VST 0,6,5
...

...
#VSS 0,"Hello World";
#VST 0,6-10
...

Copy sub-string from string register

#VSC String-ID Target, String-ID Source, Offset (0), Count(until end)

Copy a substring from the string (String-ID Source), starting with the Offset and length Count, and paste it into
another string register (String ID Target).

String-ID Value

0 "Hello World"

1 "World"

2 ...

...
#VSS 0,"Hello World";
#VSC 1,0,6,5
...

...
#VSS 0,"Hello World";
#VSC 1,0,6-10
...

Split string register in sub-strings

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

130 / 251

#VSE String-ID Targer Start, String-ID Source, Seperator, Register-ID (=String-ID Targert Start)

The string (String-ID Source) is split into substrings. The substrings are stored from the String ID Target Start. The
number of substrings is stored in the Register-ID. The Seperator parameter specifies the separator.

String-ID Value

0 "Entry1,Entry2,Entry3"

1 "Entry1"

2 "Entry2"

3 "Entry3"

Register-ID Value

10 3

...
#VSS 0,"Entry1,Entry2,Entry3";
#VSE 1,0,?,,10
...

Set string register with date/time

#VSD String-ID, "Dateformat"; date (act. time)

The time is stored in the string register as a formatted string. The presentation is based on the Dateformat. The
structure is described in more detail in the sub-chapter Date formats.

String-ID Value

0 ...

1 "14:59:30"

2 ...

...
#VSD 1,"%h:%m:%s";
...

Set formatted string register

#VSF String-ID, "Formatted string"; Value, Value2,, ValueN

A formatted string is stored in the string register (String-ID). If the variable set is repeated, the format string is used
again and stored in String-ID + 1

String-ID Value

0 ...

1 "Analog 3420"

2 ...

...
#VSF 1,"Analog %d";(analog(0))
...

Read object strings

#VSO String-ID, Obj-ID, ...

Object strings (Obj-ID) are stored in the string register (String-ID). This function is mainly used for EditBoxes.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

131 / 251

String-ID Value

0 ...

1 "edit me"

2 ...

...
#SED 1,"edit me" /**Default text for
EditBox
#VSO 1,1
...

Send string register (ASCII)

#VSA String-ID, ...

Place the content of the string register (ASCII formatted) in the send buffer. The feedback is structured as follows:

ESC V S A String-ID Length
Char

1
Char

2
...

Char
n

...

$1B $56 $53 $41 16-Bit value 16-Bit value
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

...
#VSS0,"str";
#VSA 0
...

Send string register (Unicode)

#VSU String-ID, ...

Place the content of the string register (Unicode formatted) in the send buffer. The feedback is structured as follows:

V S U String-ID Length Char 1 Char 2 ... Char n
...

$1B $56 $53 $55 16-Bit value 16-Bit value 16-Bit value 16-Bit value 16-Bit value 16-Bit value

...
#VSS0,"str";
#VSU 0
...

Sort string register

VQS String-ID Start, String-ID End, Number (0), Offset(0)

The area of the string register (String-ID Start to String-ID End) is sorted. Number specifies the area that is
considered for the sorting, with number = 0 the entire length is examined. Offset specifies the position in the string
where the sorting begins.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

132 / 251

String-ID Value before Value after

0 "Sort" "Entry"

1 "Test" "Exit"

2 "Entry" "Sort"

3 "Exit" "Test"

...
#VSS 0,"Sort";"Test";"Entry";"Exit";
#VQS 0,3,2,0
...

Sort codes in string register

VQC String-ID, Direction (1), Number (0), Offset (0)

Codes within the string register (String-ID) are sorted. Number specifies the area that is considered for the sorting,
with number = 0 the entire length is examined. Offset specifies the position in the string from which the sorting begins.
The direction can also be specified:

Direction

0 Descending

1 Ascending

String-ID Value

0 ...

1 " HWdellloor"

2 ...

...
#VSS 1,"Hello World"
#VQC 1
...

Last error message in string register

#VSL String-ID, Delete(1)

Save the error messages from the terminal in a string register (String-ID). The parameter Delete specifies the deletion
behavior of the error message:

Delete

0 Do not delete

1 Delete

Mix string register

#VMS String-ID Start, String-ID End

The content of the registers remains, only the String-ID changes. A new assignment of string ID ⇔ content is now
available.

Mix codes in string register

#VMC String-ID, Number (0), Offset (0)

The content of a string register (String-ID) is interchanged randomly.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

133 / 251

Number indicates the number of digits (= 0 complete string), Offset the starting point within the register.

Register
Set register (Integer)

#VRI Register-ID, Value, Value1 [ID+1], ...

The command saves an integer value (32 bits) in the register set (Register-ID [0 ... 499]).

Register-ID Value

0 10

1 42

2 -8

...
#VRI 0,10,42,-8
...

Set register (float)

#VRF Register-ID, Value, Value1 [ID+1], ...

The command saves a float value (32 bit) in the register set (Register-ID [0 ... 499]).

Register-ID Value

0 10.25

1 42.39

2 -8.19

...
#VRF 0,10.25,42.39,-8.19
...

Convert object string

#VRO Register-ID, Obj-ID, Obj-ID1[ID+1], ...

Object strings are stored in registers. The object string is converted into a numerical value (automatically fitting as an
integer or float). This function is mainly used for EditBoxes.

Register-ID Value

0 ...

1 42.5

2 ...

...
#SED 1,"42.5" /**Default text for EditBox
#VRO 1,1
...

Convert string register to register

#VRE Register-ID Start, String-ID Source, Seperator, Register-ID Number

Convert numeric string (String-ID Source) to register (Register-ID Start). Separator specifies the separator between
the values. The number of valid values after the conversion is specified in the optional parameter Register-ID Number

Register-ID Value

0 10

...
#VSS 0,"10,42.39,-8";
#VRE 0,0,?,,10

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

134 / 251

1 42.39

2 -8

10 3

...

Write register to RTC-RAM

#VRW ID, Register-ID, Register-ID1, ...

Buffer a Register-ID in the RAM of the RTC. ID [0 ... 7] indicates the storage space. The value is retained even after
the module is switched off. A RTC needs to be connected (Attention: EA uniTFTs020-ATC and EA uniTFTs028-ATC).

Read register from RTC-RAM

#VRR ID, Register-ID, Register-ID1, ...

Read back a value from the RTC-RAM (ID) and transfer it to the register (Register-ID). A RTC needs to be connected
(Attention: EA uniTFTs020-ATC and EA uniTFTs028-ATC).

Convert string register as calculation to register (integer)

#VCI Register-ID, String-ID, String-ID1[ID+1], ...

Interpret the content of a string register as a calculation string. The result is stored in the register (Register-ID)

Register-ID Vaule

0 -8

1 50

2 42

...
#VSS 0,"R0+R1";
#VCI 2,0
...

Convert string register as calculation to register (float)

#VCF Register-ID, String-ID, String-ID1[ID+1], ...

Interpret the content of a string register as a calculation string. The result is stored in the register (Register-ID)

Register-ID Value

0 -8.21

1 50.89

2 42.68

...
#VSS 0,"R0+R1";
#VCF 2,0
...

Send register

#VRG Register-ID, ...

Place the contents of the register in the send buffer. The feedback is structured as follows:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

135 / 251

ESC V R G Register-ID Type Value
...

$1B $56 $52 $47 16-Bit value 16-Bit value 32-Bit value

...
#VRF 0,...
#VRG 0
...

Sort register (from V1.1)

#VQR Register-ID Start, Register-ID End

The area of the registers (Register-ID Start to Register-ID End) are sorted.

Register-ID Value before Value after

0 2 -5

1 8 2

2 4 4

3 -5 8

...
#VRI 0,2,8,4,-5
#VQR 0,3
...

Mix register (from V1.3)

#VMR Register-ID Start, Register-ID End

The content of the registers remains, only the Register-ID changes. A new assignment of Register-ID ⇔ content is now
available.

Array (from V1.4)
Define array (Integer)

#VAI Array-ID, Number, Type(0)

The command defines an integer array (Array-ID [0 ... 499]) with the given Number of entries. The maximum length of
the array respectively if the array has the desired length, can be checked with the calculation arE(). The Type
specifies the behaviour when writing at the end of the array.

Type

0 Stop at end

1
Wrap around
(ring buffer)

Define array (Float)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

136 / 251

#VAF Array-ID, Number, Type(0)

The command defines a float array (Array-ID [0 ... 499]) with the given Number of entries. The maximum length of the
array respectively if the array has the desired length, can be checked with the calculation arE(). The Type specifies
the behaviour when writing at the end of the array.

Type

0 Stop at end

1
Wrap around
(ring buffer)

Delete array (free memory)

#VAD Array-ID

The command deletes an array (Array-ID [0 ... 499]) and releases the memory.

Fill array

#VAS Array-ID, Value(0, all Elements), element index

The command fills all elements of the array (Array-ID [0 ... 499]) with the given Value. If Value paramter is not sent,
then the whole array is filled with 0. On the other hand the element index can specify which elements get the new
value.

Assign values to array elements (with index)

#VAV Array-ID, Index, Value, Value[Index+1], ...

The command assigns new Values to array elements, starting with the array Index.

Assign values to array elements (with current write pointer)

#VAW Array-ID, Value 1, Value 2, ...

The command assigns new Values to array elements, starting with the current write pointer.

Set write and*or reading pointer

#VAP Array-ID, WritePointer, ReadPointer(-1)

The command sets the Write and / or Read pointer of the array (Array-ID [0 ... 499]). If the pointer should remain
unchanged, the respective parameter must be set to -1.

Sort array

#VQA Array-ID, StartIndex, EndIndex(last Index)

The values of the array (Array-ID [0 ... 499]) are sorted in the specified range (StartIndex to EndIndex).

Shuffle array

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

137 / 251

#VMA Array-ID, StartIndex, EndIndex(last Index)

The command shuffles the values of the array in the specified range (StartIndex to EndIndex). The values remain
unchanged. Only the order (indexes) is adjusted. A new assignment of the array indexes ⇔ values is now available

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

138 / 251

I/O Port #H

The module has 8 I/O port lines, which can be expanded to up to 136. If the port input pins are changed, macros can
be started, see #MHP, and #MHB.

Port-Access (8 I/Os)

Define port (input/output)
(Hardware Port Control)

#HPC Port, I/O, I/O [Port+1], ...

Set port output
(Hardware Port Write)

#HPW Port, State, State [Port+1], ..

Read port inputs
(Hardware Port Read)

#HPR Port (0), Number(1)

Send port information
(Hardware Port Information)

#HPI

Pin-Access

Define port-pin (input/output)
(Hardware Bit Control)

#HBC Portpin, I/O, I/O [Port+1], ...

Set port-pin output
(Hardware Bit Write)

#HBW Portpin, State, State [Port+1], ..

Read port-pin input
(Hardware Bit Read)

#HBR Portpin(0), Number(8)

Port-Access (8 I/Os)
Define port (input/Ausgang)

#HPC Port, I/O, I/O [Port+1], ...

The command defines the direction (I/O) of the individual port pins bit by bit for an entire Port [0 ... 17]:

I/O

0 Output

1 Input

Port 0

0 1 2 3 4 5 6 7

Input ● ● ● ● ●
Output ● ● ●

...
#HPC 0,$E9
...

...
#HPC 0,%11101001
...

Set port output

#HPW Port, State, State [Port+1], .

The command sets the State of the outputs bit by bit for an entire Port.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

139 / 251

State

0 Low

1 High

Port 0

0 1 2 3 4 5 6 7

S
t
a
t
e

...
#HPC 0,0
#HPW 0,$B4
...

...
#HPC 0,0
#HPW 0,%10110100
...

Read port inputs

#HPR Port (0), Number(1)

The command puts the state of one or more (Number) of ports (starting with Port) in the send buffer. The feedback is
structured as follows:

ESC H P R Port
Numb

er
State

1
State

2
...

$1B $48 $50 $52
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

...
#HPR 0,2
...

See also port(a)

Send port information

#HPI

Indicates which of the 16 possible port modules are connected (= 1) and places this information in the send buffer. The
feedback is structured as follows:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

140 / 251

ESC H P I
Returnvalue
(1 bit per

port)

$1B $48 $50 $49 16-Bit value

...
#HPI
...

The internal port is not monitored. The command returns only the port expanders that are connected externally.

Pin-Access
Define port-pin (input/output)

#HBC Portpin, I/O, I/O [Port+1], ...

The command defines the direction (I/O) for the Portpin:

I/O

0 Output

1 Input

Set port-pin output

#HBW Portpin, State, State [Port+1], ..

The command sets the State of the output for the Portpin.

State

0 Low

1 High

2 Invert

Read port-pin input

#HBR Portpin(0), Number(8)

The command puts the state of one or more (Number) of port pins (starting with port pin) in the send buffer. The
feedback is structured as follows:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

141 / 251

ESC H B R
Portpi

n
Numb

er
State

1
State

2
...

$1B $48 $42 $52
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

...
#HBR 0,4
...

See also bit(a)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

142 / 251

Analogue Input #H

Command group to parametrize and read out the analog input of the module. The module has four 12-bit analog inputs.
If the analog input changes, a macro can be started, see #MHA.

Read analogue input
(Hardware Analog Read)

#HAR Channel(0), Number(4)

Set limits/threshold
(Hardware Analog Limit) #HAL

Channel, Limit1, Limit2, Limit1 [Channel+1], Limit2
[Channel+1], ...

Set hyteresis
(Hardware Analog Hyteresis)

#HAH Channel, Hysteresis , Hysteresis [Channel+1], ...

Read analogue input

#HAR Channel(0), Number(4)

The command reads out one or more (Number) of analog channels (starting with Channel [0 ... 4]) and places the
value in the send buffer. The feedback is structured as follows:

ESC H A R
Chan
nel

Numb
er

Value 1 Value 2

...

$1B $48 $41 $52
8-Bit
value

8-Bit
value

16-Bit value 16-Bit value

...
#HAR 0,2
...

See also analog(a)

Set limits/threshold

#HAL Channel, Limit1, Limit2, Limit1 [Channel+1], Limit2 [Channel+1], ...

For each analog input (Channel), 2 threshold values can be set to call macros (#MHA). The Limits are given in ADC
counts.

Set hysteresis

#HAH Channel, Hysteresis , Hysteresis [Channel+1], ...

Set the Hysteresis for the respective Channel in ADC counts. The default value for each channel is 4. Only after the
hysteresis has been exceeded is the respective defined macro is called.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

143 / 251

PWM Output #H

Command group for the PWM output

Set the PWM frequency and duty
cycle
(Hardware PWM Output)

#HFO
Frequency [32-Bit], On Value (no change), Total Value (no
change)

Change PWM duty cycle
(Hardware PWM Dutycycle)

#HFD On Value, Total Value (no change)

Set the PWM frequency and duty cycle

#HFO Frequency [32-Bit], On Value (no change), Total Value (no change)

Setting the PWM Frequency (32-bit value) (2Hz ... 1MHz).

Frequency

0 Permanent low

1 Permanent high

The two optional parameters On Value and Total Value set the duty cycle:

DutyCycle
=

On
Value

Total
Value

...
#HFO 10000,2,3
...

Change PWM duty cycle

#HFD On Value, Total Value (no change)

The command sets the duty cycle with the two parameters On Value and Total Value. The frequency is steady:

DutyCycle
=

On
Value

Total
Value

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

144 / 251

...
#HFD 1,4
...

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

145 / 251

Serial Master-Interface #H

Command group to use the 3 serial interfaces of the module and use them as master. For example to connect
additional peripherals like temperature sensor

Set RS232 baud rate
(Hardware Rs232 Parameter)

#HRP Baudrate [32-Bit]

Set SPI parameters
(Hardware Spi Parameter)

#HSP Frequency, Mode, DataOrder

Set SPI chip select
(Hardware Spi Chipselect)

#HSC ChipSelect

Set I²C parameters
(Hardware I2c Parameter)

#HIP Address, Frequency

Send 8-Bit (ASCII) string
(Hardware RS232/SPI/I2c Ascii)

#HRA

"String";#HSA

#HIA

Send 16-Bit (Unicode) string
(Hardware RS232/SPI/I2c Unicode)

#HRU

"String";#HSU

#HIU

Send 32-Bit signed values
(Hardware RS232/SPI/I2c Integer)

#HRI

Value, Value1...#HSI

#HII

send 32-Bit float values
(Hardware RS232/SPI/I2c floaT)

#HRT

Value, Value1...#HST

#HIT

Send binary data
(Hardware RS232/SPI/I2c Send binary)

#HRS

Number, Data...#HSS

#HIS

Send binary data from register
(Hardware RS232/SPI/I2c send values)

#HRX

Type, Register-ID, Number(1)#HSX

#HIX

Send binary data from array
(Hardware RS232/SPI/I2c send array)

#HRY

Type, Array-ID, StartIndex(0), Number(all elements)#HSY

#HIY

Senden file
(Hardware RS232/SPI/I2c send File)

#HRF

<Filename>#HSF

#HIF

Receive data and place into send
buffer
(Hardware RS232/SPI/I2c Receive to

#HRR Number [32-Bit] (max 1024)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

146 / 251

buffer)
#HSR

#HIR

Receive 8-bit data and write it to a
string register
(Hardware RS232/SPI/I2c Bytes to string)

#HRB

String-ID, Number (max 250)#HSB

#HIB

Receive 16-bit data and write it to a
string register
(Hardware RS232/SPI/I2c Words to
s tring)

#HRW

String-ID, Number (max 250)#HSW

#HIW

Receive binary data and write it to
a register
(Hardware RS232/SPI/I2c Values to
regis ter)

#HRV

Type, Register-ID, Number(1)#HSV

#HIV

Receive binary data and write it to
an array
(Hardware RS232/SPI/I2c Values to
array)

#HRZ

Typ, Array-ID, StartIndex(0), Anzahl(alle Elemente)#HSZ

#HIZ

The respective interface can't be used as slave-interface after one of the above commands. The interface gets master
functionality for controlling external peripherals.

Set RS232 baud rate

#HRP Baudrate

The command sets the Baudrate (32-bit value):

Baudrat
e

Error

9600 +0.04

19200 -0.08

38400 +0.16

57600 -0.08

115200 +0.64

230400 -0.80

460800 +2.08

921600 -3.68

Set SPI parameters

#HSP Frequency, Mode, DataOrder

The command sets the Frequency (15600 ... 1000000 Hz), the SPI Mode (0..3) and the DataOrder of the master

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

147 / 251

SPI interface.

DataOrder

0 MSB first

1 LSB first

Set SPI chip select

#HSC ChipSelect

The command defines the ChipSelect setting:

ChipSelect

0 Low

1 High

2
Automatic (low
active)

Set I²C parameters

#HIP Address, Frequency

The command sets the Address of the bus subscriber to be controlled and the Frequency (3900 ... 1000000 Hz).

Send 8-Bit (ASCII) string

#HR
A

(RS2
32)

"String";
#HS
A

(SPI)

#HI
A

(I²C)

The command sends a String or individual codes as ASCII value(s) (8 bits per character).

Send 16-Bit (Unicode) string

#HR
U

(RS2
32)

"String";
#HS
U

(SPI)

#HI
U

(I²C)

The command sends a String or individual codes as Unicode value(s) (16 bits per character).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

148 / 251

Send 32-Bit signed values

#HR
I

(RS2
32)

Value, Value1...#HS
I

(SPI)

#HII (I²C)

The command sends one or more 32-bit signed integer Value(s) (little endian).

send 32-Bit float values

#HR
T

(RS2
32)

Value, Value1...
#HS
T

(SPI)

#HI
T

(I²C)

The command sends one or more 32-bit float Value(s) (little endian).

Send binary data

#HR
S

(RS2
32)

Number, Data...
#HS
S

(SPI)

#HI
S

(I²C)

The command sends a Number of Data directly via the master interface. The data are taken over and sent directly, no
interpretation, such as calculation interpretation, takes place.

Send binary data from register

#HR
X

(RS2
32)

Type, Register-ID, Number(1)
#HS
X

(SPI)

#HI
X

(I²C)

The command sends a Number of register entries (Register-ID) in binary form via the master interface.

Type

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

149 / 251

7 Signed Byte 1 Byte

little endian

8
Unsigned
Byte

1 Byte

15
Signed
Integer

2 Byte

16
Unsigned
Integer

2 Byte

23
Signed
Integer

3 Byte

24
Unsigned
Integer

3 Byte

31
Signed
Integer

4 Byte

32
Unsigned
Integer

4 Byte

33 Float 4 Byte

115
Signed
Integer

2 Byte

big endian

116
Unsigned
Integer

2 Byte

123
Signed
Integer

3 Byte

124
Unsigned
Integer

3 Byte

131
Signed
Integer

4 Byte

132
Unsigned
Integer

4 Byte

133 Float 4 Byte

Send binary data from array

#HR
Y

(RS2
32)

Type, Array-ID, StartIndex(0), Number(all elements)
#HS
Y

(SPI)

#HI
Y

(I²C)

The command sends a Number of array elements (Array-ID), starting with the start index, in binary form via the
master interface.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

150 / 251

Type

7 Signed Byte 1 Byte

little endian

8
Unsigned
Byte

1 Byte

15
Signed
Integer

2 Byte

16
Unsigned
Integer

2 Byte

23
Signed
Integer

3 Byte

24
Unsigned
Integer

3 Byte

31
Signed
Integer

4 Byte

32
Unsigned
Integer

4 Byte

33 Float 4 Byte

115
Signed
Integer

2 Byte

big endian

116
Unsigned
Integer

2 Byte

123
Signed
Integer

3 Byte

124
Unsigned
Integer

3 Byte

131
Signed
Integer

4 Byte

132
Unsigned
Integer

4 Byte

133 Float 4 Byte

Send file

#HR
F

(RS2
32)

<Filename>
#HS
F

(SPI)

#HI
F

(I²C)

The command sends a file (<Filename>) via the master interface.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

151 / 251

Receive data and place it into
send buffer

#HR
R

(RS2
32)

Number [32-Bit] (max 1024)
#HS
R

(SPI)

#HI
R

(I²C)

The command reads a Number (32-bit value) of data from the master receive buffer and places it in the send buffer.
The feedback is structured as follows:

ESC H R/S/I R Length
Data

1
Data

2
...

Data
n

...

$1B $48 $52/$53/$49 $52 32-Bit value
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

See also mstRA()

Receive 8-Bit data and write it
to a string register

#HR
B

(RS2
32)

String-ID, Number (max 250)
#HS
B

(SPI)

#HI
B

(I²C)

The command reads a Number of data from the master receive buffer and writes them to the specified string register
(String-ID).

See also mstRA()

Receive 16-Bit data and write it to a
string register

#HR
W

(RS2
32)

String-ID, Number (max 250)
#HS
W

(SPI)

#HI
W

(I²C)

The command reads a Number of data from the master receive buffer and writes them to the specified string register
(String-ID).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

152 / 251

See also mstRA()

Receive binary data and write it to a
string register

#HR
V

(RS2
32)

Type, Register-ID, Number(1)
#HS
V

(SPI)

#HI
V

(I²C)

The command reads a Number of data from the master receive buffer and writes them to the specified register
(Register-ID).

Type

7 Signed Byte 1 Byte

little endian

8
Unsigned
Byte

1 Byte

15
Signed
Integer

2 Byte

16
Unsigned
Integer

2 Byte

23
Signed
Integer

3 Byte

24
Unsigned
Integer

3 Byte

31
Signed
Integer

4 Byte

32
Unsigned
Integer

4 Byte

33 Float 4 Byte

115
Signed
Integer

2 Byte

big endian

116
Unsigned
Integer

2 Byte

123
Signed
Integer

3 Byte

124
Unsigned
Integer

3 Byte

131
Signed
Integer

4 Byte

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

153 / 251

132
Unsigned
Integer

4 Byte

133 Float 4 Byte

See also mstRA()

Receive binary data and write it to
an array

#HR
Z

(RS2
32)

Typ, Array-ID, StartIndex(0), Anzahl(alle Elemente)#HS
Z

(SPI)

#HIZ (I²C)

The command reads a Number of data from the master receive buffer and writes them, starting with the start index,
into the specified array (Array-ID). An array must be defined before receiving (see #VAI, #VAF).

Type

7 Signed Byte 1 Byte

little endian

8
Unsigned
Byte

1 Byte

15
Signed
Integer

2 Byte

16
Unsigned
Integer

2 Byte

23
Signed
Integer

3 Byte

24
Unsigned
Integer

3 Byte

31
Signed
Integer

4 Byte

32
Unsigned
Integer

4 Byte

33 Float 4 Byte

115
Signed
Integer

2 Byte

big endian
116

Unsigned
Integer

2 Byte

123
Signed
Integer

3 Byte

124 Unsigned 3 Byte

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

154 / 251

Integer

131
Signed
Integer

4 Byte

132
Unsigned
Integer

4 Byte

133 Float 4 Byte

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

155 / 251

Sound #H

Command group to play jingles.

Play sound
(Hardware Tone Notes)

#HTN "Sound string"

Stop sound
(Hardware Tone Stop)

#HTS

Play sound / jingle

#HTN "Sound string"

The command plays the specified "Sound string". The possibilities of notes can be found on the bottom.

Stop sound

#HTS

The command stops the currently playing sound file.

Notes
The structure of the note string consists of a divider for subsequent notes/pauses, a possible semitone increase for the
next note and the notes themselves:

1..9
Teiler für nachfolgende
Noten/Pausen

#
Halbtonerhöhung für
nächste Note

C,D,E,F,G,
A,B,H

Noten (5. Oktave)

c,d,e,f,g,a,
b,h

Noten (6. Oktave)

P Pause

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

156 / 251

Time #W

Command group to work with the built-in (EA uniTFTs035-ATC / EA uniTFTs043-ATC) and the externally connected
RTC.

Set time
(Watch Time Date set) #WTD

Hour, Minute (act. time), Second (act. time), Day (act. time),
Month (act. time), Year (act. time), Adjust (0)

Define object group as watch
(Watch Group Clock)

#WG
C

Group-ID, HourHand-ID, MinuteHand-ID, SecondHand-ID(none)

Define print format for RTC
(Watch Define Format) #WDF "Dateformat"

Define month names
(Watch Define Month strings)

#WD
M

"JAN";"FEB";"MAR";"APR";"MAI";"JUN";"JUL";"AUG";"SEP";"O
CT";"NOV";"DEC"

Define day of week names
(Watch Define Day strings)

#WD
W

"SUN";"MON";"TUE";"WED";"THU";"FRI";"SAT"

Send time (ASCII)
(Watch Send Ascii)

#WSA "Dateformat"; date (act. time)

Send time (Unicode)
(Watch Send Unicode)

#WSU "Dateformat"; date (act. time)

Send time (Binär)
(Watch Send Binary)

#WSB "Dateformat"; date (act. time)

Define base year for time
calculation
(Watch Define base Year)

#WDY Year

Set time

#WTD Hour, Minute (act. time), Second (act. time), Day (act. time), Month (act. time), Year (act. time), Adjust (0)

The command sets the current time. If the optional parameter Adjust is set to 1, the internal crystal will be calibrated
the next time (Adjust must also be 1).

Define object group as watch

#WGC Group-ID, HourHand-ID, MinuteHand-ID, SecondHand-ID(none)

The command converts an existing group into a clock. HourHand-ID specifies the Obj ID for the hour hand,
MinuteHand-ID the Obj ID for the minute hand, SecondHand-ID the Obj ID for the second hand.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

157 / 251

...
#PPP
1,<P:picture/Clock.epg>,120,120,5,200,200,0
#PPP
2,<P:picture/Needle.epg>,120,156,5,6,100,0
#PPP 3,<P:picture/Needle.epg>,120,146,5,6,80,0

#WGC 4,3,2
...

Define print format for RTC

#WDF "Dateformat"

The command changes the date format.

Define month names

#WDM "JAN";"FEB";"MAR";"APR";"MAI";"JUN";"JUL";"AUG";"SEP";"OCT";"NOV";"DEC"

The command is used to set 12 individual strings for the month names.

Define day of week names

#WDW "SUN";"MON";"TUE";"WED";"THU";"FRI";"SAT"

The command is used to set 7 individual strings for the weekday names (starting with Sunday).

Send time (ASCII)

#WSA "Dateformat"; date (act. time)

The command places the date and time as an ASCII string in the send buffer. The feedback is structured as follows:

ESC W S A
ASCII-String

Endin
g ...

$1B $57 $53 $41 $00

See also year(), month(), day(), weekday(), hour(), minute(), second()

Send time (Unicode)

#WSU "Dateformat"; date (act. time)

The command places the date and time as a Unicode string in the send buffer. The feedback is structured as follows:

ESC W S U
Unicode-

String
Endin

g
...

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

158 / 251

$1B $57 $53 $55 $00

See also year(), month(), day(), weekday(), hour(), minute(), second()

Send time (Binär)

#WSB "Dateformat"; date (act. time)

The command puts the date and time in the send buffer as a signed 32-bit value. The feedback is structured as
follows:

ESC W S B Hour Minute Second Day Month Year Weekday

...
$1B $57 $53 $42

16-Bit
value

16-Bit
value

16-Bit
value

16-Bit
value

16-Bit
value

16-Bit
value

16-Bit
value

See also year(), month(), day(), weekday(), hour(), minute(), second()

Define base year for time calculations (from V1.3)

#WDY Year

The command changes the base year for the time calculation. Possible values are
1970,1980,1990,2000,2010,2020,2030. The range of values is -68 to +67 years. The preset second count starts on
January 1st, 2000 at 0: 0: 0. This is the possible range from 1932 to the end of 2067.

Date formats

Format

%[]h Hour

%[]m Minute

%[]s Second

%[]D Day

%[]M Month

%[]Y Year

%[]W
Day of week
(String)

%[]N Month (String)

Optional []

0 Two digits with leading 0 (Default)

1 Minimum 1 digits without leading

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

159 / 251

character

2 Two digits with leading spaces

4 Four digits (default for year)

Week string and month string:

Optional []

0-9
x chars are shown for the week
string or month string.

Examples

"%h:%m:%s"; 09:25:04

"%D.%M.%Y"; 20.12.2019

"%D %N %Y"; 20 December 2019

"%W, %D.%M.%Y"; Friday, 20.12.2019

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

160 / 251

Files on the internal memory #F

Commands to handle file access.

Folder / Directory

Create folder
(File Directory Create)

#FDC <Path>

Delete folder
(File Directory Delete)

#FDD <Path>, Delete

Set working directory
(File Directory Set)

#FDS <Path>

Send working directory
(File Directory Get)

#FDG

Send all folders and files (directory)
(File Directory Read binary)

#FDR <Pfad> (act. working directory)

Send all folders and files (directory)
(ASCII)
(File Directory read Ascii)

#FDA <Pfad> (act. working directory)

Send all folders (directory)
(File Directory read dironly List)

#FDL <Pfad> (act. working directory)

Files

Open file for writing
(File Write Open)

#FWO <FileName>, Position [32-Bit] (End), Truncate(1), size(4096)

Close file (write operation)
(File Write Close)

#FWC Time, Date

Set write position in file
(File Write Position)

#FWP Position [32-Bit]

Write data to file
(File Write Data binary)

#FWD Number [32-Bit], Binary data

Write ASCII-String to file
(File Write Ascii)

#FWA "String"

Write Unicode-String to file
(File Write Unicode)

#FWU "String"

Write register values to file
(File Write Register)

#FWR Register-ID, ...

Write string register to file
(File Write Stringregister)

#FWS String-ID, ...

Write array to file
(File Write Array)

#FWY Array-ID, ...

Open file for reading
(File Read Open)

#FRO <FileName>, Position [32-Bit] (Start)

Close file (read operation)
(File Read Close)

#FRC

Set read position in file
(File Read Position)

#FRP Position [32-Bit]

Read and send data
(File Read Data binary)

#FRD Number [32-Bit] (whole file)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

161 / 251

Read ASCII string and write into
string register
(File Read Ascii)

#FRA String-ID, ...

Read Unicode string and write into
string register
(File Read Unicode)

#FRU String-ID, ...

Load data into register
(File Read Register)

#FRR Register-ID, ...

Load data into string register
(File Read Stringregister)

#FRS String-ID, ...

Read data (8-bit) and write into
string register
(File Read Bytes to stringregister)

#FRB String-ID, Number, Number [ID+1],...

Read data (16-bit) and write into
string register
(File Read Words to stringregister)

#FRW String-ID, Number, Number [ID+1],...

Read data into array
(File Read Array)

#FRY Array-ID, ...

Delete file
(File File Delete)

#FFD <Filename>

General commands

Send file/folder information
(File File Info)

#FFI <Path> (act. working directory)

Rename file/folder
(File File Rename)

#FFR <Path>, <New Filename>, Replace (0)

Copy file/folder
(File File Copy)

#FFC <Path>, <New Path>, Replace (0)

Move file/folder
(File File Move)

#FFM <Path>, <New Path>, Replace (0)

Change time stamp of file/folder
(File change Timestamp)

#FFT <Path>, Time, Date

Change attributes of file / folder
(File change Attribut)

#FFA <Path>, Attribute

Load file names into string register
(File Names Files to stringregister)

#FNF <Path> (act. working directory), ID (1)

Load subdirectories into string
register
(File Names Directory to stringregister)

#FND <Path> (act. working directory), ID (1)

Folder / Directory
Create folder

#FDC <Path>

The command creates a new folder. The <Path> parameter specifies the name and location.

...
#FDC <Project/NewPath>

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

162 / 251

...

Delete folder

#FDD <Path>, Delete

The command deletes a folder. The <Path> parameter specifies the name and location.

Delete

0
Delete folder
and content

1
Delete content
only

...
#FDD <Project/NewPath>,0
...

Set working directory

#FDS <Path>

The command sets the current working directory. With path </> you reach the root directory.

...
#FDS <Project>
...

Send working directory

#FDG

The command places the current working directory in the send buffer. The feedback is structured as follows:

ESC F D G Path

...
$1B $46 $44 $47

'String'
completed
with $00

Send all folders and files (directory)

#FDR <Pfad> (act. working directory)

The command places all folders and files of the current working directory in the send buffer. The feedback is structured
as follows:

ESC F D R
Path/

Filename
Size

Attrib
ute

Time Date ...
Endin

g

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

163 / 251

$1B $46 $44 $52
'String'

completed
with $00

32-Bit value
8-Bit
value

16-Bit value 16-Bit value $00

Attribute

$01 Read only

$02 Hidden

$04 System

$20 Archive

...
#FDR
...

Send all folders and files (directory) (ASCII)

#FDA <Pfad> (act. working directory)

The command places all folders and files of the current working directory in the send buffer as ASCII strings.

ESC F D A String Ending
...

$1B $46 $44 $41 Size, Attribute, Time, Date, Name CRLF

...
#FDA
...

Send all folders (directory)

#FDL <Pfad> (act. working directory)

The command places all folders of the current working directory in the send buffer. The feedback is structured as
follows:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

164 / 251

ESC F D L
Directory-

name
Endin

g

$1B $46 $44 $4C
'String'

completed
with $00

$00

Files
Attention:
Flash memories have limited erase / write cycles due to their design. The memory module used in the uniTFTs can
typically safely execute 100,000 cycles. In order to write data, a block of memory may have to be erased, typically 30
ms are required for erasing, but it can take up to 400 ms. This must be taken into account in the macro sequence
when write file commands are executed.

Open file for writing

#FWO <FileName>, Position [32-Bit] (End), Truncate(1), size(4096)

The command opens (write only) or creates a file. The Position (32-bit value) indicates the write position in the file.
The filesize needs to be set. Resizing is impossible afterwards.

Truncate

0 Overwrite data

1
Truncate old
data

Close file (write operation)

#FWC Time, Date

The command closes an open file (write operation). The writing process is completed and it is ensured that all data
has been written. If the time and date are specified or the time is set beforehand, the time stamp is set, otherwise
1.1.1980 remains and can be set later.

Set write position in file

#FWP Position [32-Bit]

The command sets the write Position (32-bit value) at the specified position in the file. If the value is <0, the position is
calculated from the end of the file

See also fposW()

Write data to file

#FWD Number [32-Bit], Binary data

The command writes a Number (32-bit value) of Binary data to the opened file. This command is unsuitable for macro
programming. It is used to transfer binary data via the interface.

Write ASCII-String to file

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

165 / 251

#FWA "String"

The command writes an ASCII string (8 bits per character) into the open file.

...
#FWO <Project/File.txt>
#FWA "Hello World"
#FWC
...

Write Unicode-String to file

#FWU "String"

The command writes a Unicode string (16 bits per character) into the open file.

...
#FWO <Project/File.txt>
#FWU "Hello World"
#FWC
...

Write register values to file

#FWR Register-ID, ...

The command writes the register value (Register-ID) to the open file. The value can be read out with the #FRR
command. 5 bytes are required for each register.

Write string register values to file

#FWS String-ID, ...

The command writes the content of the string register (String-ID) to the open file. The string can be read out with the
command #FRS. 2 · (n + 1) bytes (n = number of letters) are required for each register.

Write array to file

#FWY Array-ID, ...

The command writes the content of the array (Array-ID) to the open file. The string can be read out with the command
#FRY. 6+4·n Bytes (n= array length) are required for each array..

Open file for reading

#FRO <FileName>, Position [32-Bit] (Start)

The command opens (read only) a file. The Position (32-bit value) indicates the read position in the file.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

166 / 251

Close file (read operation)

#FRC

The command closes an open file (read operation).

Set read position in file

#FRP Position [32-Bit]

The command sets the read Position (32-bit value) at the specific position in the file. If the value is <0, the position is
calculated from the end of the file

See also fposR()

Read and send data

#FRD Number [32-Bit] (whole file)

The command reads a Number (32-bit value) of bytes from the open file and places the data in the send buffer. The
feedback is structured as follows:

ESC F R D Number
Data

1
Data

2
Data

n
...

$1B $46 $52 $44 32-Bit value
8-Bit
value

8-Bit
value

8-Bit
value

Read ASCII string and write into string register

#FRA String-ID, ...

The command reads an ASCII string (8 bits per character) up to the character "\n" and stores it in a string register
(String-ID).

Read Unicode string and write into string register

#FRU String-ID, ...

The command reads a Unicode string (16 bits per character) up to the character "\n" and stores it in a string register
(String-ID).

Load data into register

#FRR Register-ID, ...

The command reads back a register written with #FRW and saves it in the register (Register-ID).

Load data into string register

#FRS String-ID, ...

The command reads back a string register written with #FRS and saves it in the string register (String-ID).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

167 / 251

Read data (8-Bit) and write into string register

#FRB String-ID, Number, Number [ID+1],...

The command reads a Number (1 ... 250) of bytes and saves it in the string register (String-ID).

Read data (16-Bit) and write into string register

#FRW String-ID, Number, Number [ID+1],...

The command reads a Number (1 ... 250) of Words and saves it in the string register (String-ID).

Read data into array

#FRY Array-ID, ...

The command reads back an array written with #FWY and saves it in the array (Array-ID).

Delete file

#FFD <Filename>

The command deletes a file (<Filename>)

General commands
Send file information

#FFI <Path> (act. working directory)

The command puts all information about the file (such as time stamp, size) in the send buffer. If the file does not exist,
an empty string is returned, the remaining parameters are no longer transferred. The feedback is structured as follows:

ESC F F I File-name Size
Attrib
ute

Time Date

...

$1B $46 $46 $49
'String'

completed
with $00

32-Bit value
8-Bit
value

16-Bit value 16-Bit value

See also fileS(), fileA(), fileT()

Rename file

#FFR <Path>, <New Filename>, Replace (0)

The command changes the specified <Path> to a new name (<New Filename> is only the new name, without path).

Replace

0
Do not rename if folder / file already
exists

1 Delete existing folder / file and rename it

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

168 / 251

Copy file

#FFC <Path>, <New Path>, Replace (0)

The command copies the specified file (<Path>) to a new location (<New Path>).

Replace

0 Do not rename if file already exists

1 Delete existing file and rename it

Move file

#FFM <Path>, <New Path>, Replace (0)

The command moves the specified file (<Path>) to a new location (<New Path>).

Replace

0 Do not rename if file already exists

1 Delete existing file and rename it

Change time stamp of file

#FFT <Path>, Time, Date

The command changes the time stamp of the file (<Path>):

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Time Hour [0...23] Minute [0...59] Second/2
[0...29]

Date Year (from 1.1.1980
0:0:0 Hour) [0...127]

Month
[1...12]

Day [1...31]

Example for calculation:
Time = (Hour<<11) + (Minute<<5) + (Second>>1);
Date = ((Year-1980)<<9) + (Month<<5) + Day;

See also fatT(datetime), fatD(datetime), fattime(Fat-Time, Fat-Date)

Change attributes of file

#FFA <Path>, Attribute

The command sets the Attributes of the file. The attributes can be set simultaneously with bit coding.

Attribute

$01 Read only

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

169 / 251

$02 Hidden

$04 System

$20 Archive

See also fileA()

Load file names into string register

#FNF <Path> (act. working directory), ID (1)

The command saves all file names from the <Path> in the string register (String-ID = ID ... IDn). The number is stored
in the register (Register ID = ID). (You can search with patterns ?/* e.g. * .txt stores all text files)

Load subdirectories into string register

#FND <Path> (act. working directory), ID (1)

The command saves all folder names that are in the <Path> in the string register (String-ID = ID ... IDn). The number
is stored in the register Rregister ID = ID). (You can search with patterns ?/*, e.g. *New* stores all directories in which
the word "New" occurs)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

170 / 251

System commands #X

Settings of the EA uniTFTs-Series.

Interface setting for communication to external control unit (Slave Interface)

Set slave RS232 parameters
(System Configure Rs232 slave)

#XCR Baudrate [32-Bit], RS485 (no change), Flash(0)

Set slave SPI parameters
(System Configure Spi slave)

#XCS Mode, DataOrder (no change), Flash(0)

Set slave I²C parameters
(System Configure I2c slave)

#XCI Address, Flash(0)

Module commands

Set project path
(System Projectpath Set)

#XPS <Path>

Send project path
(System Projectpath Get)

#XPG

Backlight: set brightness
(System Configure backlight Brightness)

#XCB Brightness, Time (no change), Flash(0)

Backlight: set gradation and
frequency
(System Configure backlight Frequency)

#XCF Power, Frequency (no change), Flash(0)

Backlight: state auto-dimming
(System led AutoState)

#XAS State

Backlight: set auto-dimming
(System led Autostate mask)

#XAL Mask, Time1(60), Brightness1(50), Time2(60), Brightness2(10)

Send ASCII-String
(System Send Ascii)

#XSA "String"

Send Unicode-String
(System Send Unicode)

#XSU "String"

Send Hardcopy
(System Hardcopy Send) #XHS

Format(1), x(0), y(0), Anchor(7), Width(Display width),
Height(Display height)

Save hardcopy in file
(System Hardcopy File) #XHF

<Name>, Format(1), x(0), y(0), Anchor(7), Width(Display width),
Height(Display height)

Display hard copy as image object
(System Hardcopy to Object)

#XHO Obj-ID, x,y,Anchor, Width, Height

Display object as new image object
(System Hardcopy Id to object)

#XHI Obj-ID, Obj-ID Source

Set display orientation
(System Configure Orientation)

#XCO Orientation

Firmwareversion senden
(System Info Verion)

#XIV

Send module parameters
(System Info Display)

#XID

Send memory overview
(System Info Storage)

#XII

Send RAM memory overview
(System Info RAM)

#XIR

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

171 / 251

Set Display-Refresh-Rate
(System Configure display Update)

#XCU Option, Flash(0)

Wait command
(System Wait hs)

#XXW Time

Activate/deactivate protocol
(System Configure Protocol)

#XCP Protocol

Reboot
(System Firmaware reset)

#XFB Option(0)

Interface setting for communication to external control unit (Slave
Interface)

Set slave RS232 parameters

#XCR Baudrate [32-Bit], RS485 (no change), Flash(0)

The command sets the Baudrate (32-bit value):

Baudrat
e

Error

9600 +0.04

19200 -0.08

38400 +0.16

57600 -0.08

115200 +0.64

230400 -0.80

460800 +2.08

921600 -3.68

The Flash parameter determines whether the setting should be saved:

Flash

0
Do not save
settings

1 Save settings

Set slave SPI parameters

#XCS Mode, DataOrder (no change), Flash(0)

The command sets the SPI Mode (0..3) and the DataOrder of the slave SPI interface.

DataOrder

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

172 / 251

0 MSB first

1 LSB first

The Flash parameter determines whether the setting should be saved:

Flash

0
Do not save
settings

1 Save settings

Set slave I²C parameters

#XCI Address, Flash(0)

The Address of the slave I²C interface is set with the command. By default, the module can be addressed with the
address $ DE. The Flash parameter determines whether the setting should be saved:

Flash

0
Do not save
settings

1 Save settings

Module commands
Set project path

#XPS <Path>

The command defines the project path. The module automatically searches for file names under this path, e.g.
Macros. Paths are then specified with <P: ...>.

Send project path

#XPG

The command places the current project path in the send buffer. The feedback is structured as follows:

ESC X P G Path

...
$1B $58 $50 $47

'String'
completed
with $00

Backlight: set brightness

#XCB Brightness, Time (no change), Flash(0)

The command specifies the Brightness of the backlight [0 ... 150] in %. The parameter Time (in 1/100 s) indicates

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

173 / 251

how quickly the brightness is reached. In the delivery state, the brightness is 100% and changes within 1 second (time
= 100). If the brightness exceeds 100%, a derating of the life-time must be expected - we recommend using this
setting only for a short time, e.g. in direct sunlight. The Flash parameter determines whether the setting should be
saved:

Flash

0
Do not save
settings

1 Save settings

Backlight: Set gradation and frequency

#XCF Power, Frequency (no change), Flash(0)

The brightness levels of the backlight are determined using a power function. Depending on the area of application, it
makes sense to have more levels in the low range (night vision). For this, the parameter Power must be increased.
The default value is 10. The PWM Frequency [5000 ... 65535] of the backlight can also be changed if there are
indifferences with ambient light. Default: frequency = 5000. The Flash parameter determines whether the setting should
be saved:

Flash

0
Do not save
settings

1 Save settings

Backlight: state auto-dimming

#XAS State

The command sets the State of the automatic backlight dimming. Default dimming is deactivated:

State

0 Off: no dimming

1
On: Auto
dimming active

2 Manual retrigger

Backlight: set auto-dimming

#XAL Mask, Time1(60), Brightness1(50), Time2(120), Brightness2(10)

If automatic dimming is activated (see #XAS), the command uses the Mask parameter to set which events retrigger
the countdown:

Mask

$01 Touch

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

174 / 251

$02 USB

$04 RS232

$08 SPI

$10 I²C

$20 Master RS232

The mask bits can be set simultaneously with bit decoding. TimeX specifies in seconds when the new brightness
(BrightnessX) should be set. The new brightness value is specified relative to the current brightness (0..100).

Send ASCII-String

#XSA "String"

The command places a string or individual codes as ASCII values (8 bits per character) in the send buffer.

Send Unicode-String

#XSU "String"

The command places a string or individual codes as Unicode values (16 bits per character) in the send buffer.

Send Hardcopy

#XHS Format(1), x(0), y(0), Anchor(7), Width(Display width), Height(Display height)

The command takes a screenshot of the position (x, y, Anchor) and places it in the send buffer. Depending on the
format in which the picture was requested, a header and the data are returned.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

175 / 251

Format

1 BMP 24-Bit

2 BMP 16-Bit

3
BMP 8-Bit
greyscale

11 epg 32-Bit

12 epg 16-Bit

13
epg 8-Bit
greyscale

21
epg 32-Bit
compressed

22
epg 16-Bit
compressed

23
epg 8-Bit
greyscale
compressed

The feedback is structured as follows:

ESC X H S Header Data
...

$1B $58 $48 $53

Save hardcopy in file

#XHF <Name>, Format(1), x(0), y(0), Anchor(7), Width(Display width), Height(Display height)

The command takes a screenshot of the position (x, y, Anchor) and writes it to a file (<Name>).

Format

1 BMP 24-Bit

2 BMP 16-Bit

3
BMP 8-Bit
greyscale

11 epg 32-Bit

12 epg 16-Bit

13
epg 8-Bit
greyscale

21
epg 32-Bit
compressed

22 epg 16-Bit

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

176 / 251

compressed

23
epg 8-Bit
greyscale
compressed

Display hardcopy as image object

#XHO Obj-ID, x,y,Anchor, Width, Height

The command creates a screenshot of the position (x, y, Anchor) with the size (Width, Height) and displays it as a
new image object with the Obj-ID.

Display object as new image object

#XHI Obj-ID, Obj-ID Source

The command creates a new image object with the Obj-ID from the source object (Obj-ID Source) and displays it.

Set display orientation

#XCO Orientation

The command defines the orientation (0, 90, 180, 270) of the display. The default is 0° Landscape.

Send firmware version

#XIV

The command places the firmware version and the detected touch panel in the send buffer. The feedback is structured
as follows:

ESC X I V
Version
string

...

$1B $58 $49 $56
'String'

completed
with $00

See also version()

Send module parameters

#XID

The command puts module parameters (including resolution and interface settings) in the send buffer. The feedback is
structured as follows:

ESC X I D Width Height
Color
depth

Touch VideoWidth VideoHeight

...

$1B $58 $49 $44 16-Bit value 16-Bit value 8-Bit 8-Bit 16-Bit value 16-Bit value

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

177 / 251

value value

Touch

$00 No touch

$03 Resistive touch

$07 capacitive touch

$0F Simulator

See also scrW(), scrH(), touchT(), vidW(), vidH()

Memory overview

#XII

The command places the size and free space of the internal FLASH in the send buffer. The feedback is structured as
follows:

ESC X I I Total Free
...

$1B $58 $49 $53 32-Bit value 32-Bit value

See also memST(), memSF()

Send RAM memory overview

#XIR

The command places the size and free space of the object RAM in the send buffer. The feedback is structured as
follows:

ESC X I R Total Free
...

$1B $58 $49 $52 32-Bit value 32-Bit value

See also memRT(), memRF()

Set Display-Refresh-Rate

#XCU Option, Flash(0)

The command sets the display refresh rate. The parameter Option is set to 3 by default.

Option

0 No display update

1 One-time display update

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

178 / 251

2..10
00

Cyclical display update (time in 1 /
100s)

The Flash parameter determines whether the setting should be saved:

Flash

0
Do not save
settings

1 Save settings

Wait command

#XXW Time

The command interrupts the execution of commands for the set Time (in 1/100s). We recommend this command only
for debugging purposes during development.

Activate/deactivate protocol

#XCP Protocol

The command activates or deactivates the small / short Protocol.

Protocol

0 Deactivate

1 Activate

Reboot

#XFB Option(0)

The module can be restarted with the command:

Option

0 Normal reset

1 Testmode

2
Disable
PowerOnMakro

3 Disable Default

4 Boot menu

5 Reserved

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

179 / 251

Answer / Feedback

The module places information in its send buffer after requests or touch events. Below the individual responses from
the send buffer are explained.
The responses are binary encoded unless otherwise stated:
<ESC> = 0x1B, the size (number of bits) of each parameter are given in the explanation of each response.
The module works with little-endian (Intel-format), that means the least significant byte is transferred first.

EditBox

EditBox content <ESC>
SEU

Obj-ID, Content

Touch

State of button/switch <ESC>
TQS

Obj-ID, State

Radiogroup active switch <ESC>
TQR

Obj-ID, Group-ID

Keyboard key <ESC>
TQK

Obj-ID, Code

Bargraph- /Instrument value <ESC>
TQI

Obj-ID, Value

Menu entry <ESC>
TQM

Obj-ID, ItemNumber

ComboBox entry <ESC>
TQC

Obj-ID, ItemNumber

SpinBox entry <ESC>
TQB

Obj-ID, ItemNumber

Variables/Registers

Number of string files loaded <ESC>
VFC

Number

Content from string register (ASCII) <ESC>
VSA

String-ID, Length, Char1, ..., Char n

Content from string register (Unicode) <ESC>
VSU

String-ID, Length, Char1, ..., Char n

Output register value <ESC>
VRG

Register-ID, Type, Value

I/O Port

Number of port blocks <ESC>
HPI

Available

Read port <ESC>
HPR

Port, Number, State 1, State 2, ...

Read port-pin <ESC>
HBR

Portpin, Number, State 1, State 2, ...

Analogue Input

Value of analogue input <ESC> Channel, Number, Value 1, Value 2, ...

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

180 / 251

HAR

Master interfaces

RS232 data <ESC>
HRR

Length, Data 1, Data 2, ..., Data n

SPI data <ESC>
HSR

Length, Data 1, Data 2, ..., Data n

I²C data <ESC>
HIR

Length, Data 1, Data 2, ..., Data n

RTC

Time ASCII output <ESC>
WSA

ASCII-String

Time Unicode output <ESC>
WSU

Unicode-String

Time binary output <ESC>
WSB

Hour, Minute, Second, Day, Month, Year, Weekday

File access

Current working directory <ESC>
FDG

Path

All folders and files from directory
(binary output)

<ESC>
FDR

Directory-/File-name, Size, Attribute, Time, Date, ...

All folders and files from directory
(ASCII output)

<ESC>
FDA

String

All folders from directory (ASCII output)<ESC>
FDL

Name 1, Name 2, ..., Name n

File information <ESC>
FFI

File-name, Size, Attribute, Time, Date

Data from file <ESC>
FRD

Number, Data 1, Data 2, ..., Data n

System commands

Current project path <ESC>
XPG

Path

Version information <ESC>
XIV

Version string

Display information <ESC>
XID

Width, Height, Color depth, Touch, VideoWidth, VideoHeight

RAM memory information <ESC>
XIR

Total, Free

Memory information <ESC>
XII

Total, Free

Hardcopy <ESC>
XHS

Header, Data

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

181 / 251

EditBox content

ESC S E U Obj-ID Content

...
$1B $53 $45 $55 16-Bit value

'String'
completed
with $00

The content of the EditBox (16 bits per character) is transferred. The string ends with a $ 00. The feedback is triggered
by keyboard code 13 ($0D).

State of button/switch

ESC T Q S Obj-ID State
...

$1B $54 $51 $53 16-Bit value 16-Bit value

The state of a button / switch (Obj-ID) is transferred. Which events (down, up, drag) lead to the sending of the
feedback is set with the #TCR command. If no responses are to be transmitted via the serial interface, this is done
with #TCR 0,0,Obj-ID.

State

1 Up (not pressed)

2 Down (pressed)

Radio group active switch

ESC T Q R Obj-ID Group-ID
...

$1B $54 $51 $52 16-Bit value 16-Bit value

The active switch (Obj-ID) of a radio group (Group-ID) is transmitted with every change. If no answers are to be
transmitted via the serial interface, this is done with #TCR 0,0,Obj-ID1,...,Obj-IDn (all object IDs of the
Radiogroup elements).

Keyboard key

ESC T Q K Obj-ID Code
...

$1B $54 $51 $4B 16-Bit value 16-Bit value

The last key pressed (Code) on the keyboard (Obj-ID) is output. The prerequisite is that the keyboard is not
connected to an EditBox. If no responses are to be transmitted via the serial interface, this is done with #TCR
0,0,Obj-ID.

Bargraph- /Instrument value

ESC T Q I Obj-ID Value
...

$1B $54 $51 $49 16-Bit value 16-Bit value

The new value of the BarGraph / instrument (Obj-ID) is output. Which events (down, up, drag) lead to the sending of
the feedback is set with the #TCR command. If no responses are to be transmitted via the serial interface, this is done
with #TCR 0,0,Obj-ID.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

182 / 251

Menu entry

ESC T Q M Obj-ID ItemNumber
...

$1B $54 $51 $4D 16-Bit value 16-Bit value

The selected menu item (ItemNumber) is output. Which events (down, up, drag) lead to the sending of the feedback is
set with the #TCR command. If no responses are to be transmitted via the serial interface, this is done with #TCR
0,0,Obj-ID.

ComboBox entry

ESC T Q C Obj-ID ItemNumber
...

$1B $54 $51 $43 16-Bit value 16-Bit value

The selected SpinBox entry (ItemNumber) is output. Which events (down, up, drag) lead to the sending of the
feedback is set with the #TCR command. If no responses are to be transmitted via the serial interface, this is done
with #TCR 0,0,Obj-ID.

SpinBox entry

ESC T Q C Obj-ID ItemNumber
...

$1B $54 $51 $43 16-Bit value 16-Bit value

The selected SpinBox entry (ItemNumber) is output. Which events (down, up, drag) lead to the sending of the
feedback is set with the #TCR command. If no responses are to be transmitted via the serial interface, this is done
with #TCR 0,0,Obj-ID.

Number of string files loaded

ESC V F C Number
...

$1B $56 $53 $43 16-Bit value

The number of strings used from the string files is output.

Content from string register (ASCII)

ESC V S A String-ID Length
Char

1
Char

2
...

Char
n

...

$1B $56 $53 $41 16-Bit value 16-Bit value
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

The content (8 bits per character) of the string register (String-ID) and the Length are output. The string does not end
with $00.

Content from string register (Unicode)

ESC V S U String-ID Length Char 1 Char 2 ... Char n
...

$1B $56 $53 $55 16-Bit value 16-Bit value 16-Bit value 16-Bit value 16-Bit value 16-Bit value

The content (16 bits per character) of the string register (String-ID) and the Length are output. The string does not
end with $00.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

183 / 251

Output register value

ESC V R G Register-ID Type Value
...

$1B $56 $52 $47 16-Bit value 16-Bit value 32-Bit value

The contents of the register (Register-ID) and the Type are output:

Type

'I' Integer

'F' Float

Number of port blocks

ESC H P I Available

$1B $48 $50 $49 16-Bit value

All available Addresses of the connected port blocks are output. Internally there is a block with the address 0, so that
$01 is returned without external hardware.

read port

ESC H P R Port
Numb

er
State

1
State

2
...

$1B $48 $50 $52
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

The status (State 1) of the port is output. If the Number is> 1, the states following the port module are sent (State 2,
State n).

Read port-pin

ESC H B R
Portpi

n
Numb

er
State

1
State

2
...

$1B $48 $42 $52
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

The state (State 1) of the port pin is output. If the Number is> 1, the states following the port module are sent (State
2, State n).

Value of analogue input

ESC H A R
Chann

el
Numb

er
Value 1 Value 2

...

$1B $48 $41 $52
8-Bit
value

8-Bit
value

16-Bit value 16-Bit value

The value (Value 1) of the analog channel is output. If the Number is> 1, the measured values following the channel
are sent (Value 2).

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

184 / 251

RS232 data

ESC H R R Length
Data

1
Data

2
...

Data
n

...

$1B $48 $52 $52 32-Bit value
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

The data (Data 1, Data 2, ..., Data n) that were received via the master RS232 interface are output. Length indicates
how much data is sent.

SPI data

ESC H S R Length
Data

1
Data

2
...

Data
n

...

$1B $48 $53 $52 32-Bit value
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

The data (Data 1, Data 2, ..., Data n) that were received via the master SPI interface are output. Length indicates
how much data is sent.

I²C data

ESC H I R Length
Data

1
Data

2
...

Data
n

...

$1B $48 $49 $52 32-Bit value
8-Bit
value

8-Bit
value

8-Bit
value

8-Bit
value

The data (Data 1, Data 2, ..., Data n) that were received via the master I²C interface are output. Length indicates how
much data is sent.

Time ASCII output

ESC W S A
ASCII-String

Endin
g ...

$1B $57 $53 $41 $00

The requested time is transmitted in the set format as ASCII. The string ends with a $00.

Time Unicode output

ESC W S U Unicode-
String

Endin
g ...

$1B $57 $53 $55 $00

The requested time is transmitted in the set format as Unicode. The string ends with a $00.

Time binary output

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

185 / 251

ESC W S B Hour Minute Second Day Month Year Weekday

...
$1B $57 $53 $42

16-Bit
value

16-Bit
value

16-Bit
value

16-Bit
value

16-Bit
value

16-Bit
value

16-Bit
value

The requested time is transmitted in binary format in the set format. Day of the week = 0 means Sunday

Current working directory

ESC F D G Path

...
$1B $46 $44 $47

'String'
completed
with $00

The current working directory is output.

All folders and files from directory (binary output)

ESC F D R
Verzeichnis-/
Dateiname

Size
Attrib
ute

Time Date

...

Endin
g

$1B $46 $44 $52
'String'

completed
with $00

32-Bit value
8-Bit
value

16-Bit value 16-Bit value $00

All folders and files in the current working directory are output.

Attribute

$01 Read only

$02 Hidden

$04 System

$20 Archive

The time and date give the time stamp of the last change to the file.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Time Hour [0...23] Minute [0...59] Second/2
[0...29]

Date Year (from 1.1.1980
0:0:0 Hour) [0...127]

Month
[1...12]

Day [1...31]

All folders and files from directory (ASCII output)

ESC F D A String Ending
...

$1B $46 $44 $41 Size, Attribute, Time, Date, Name CRLF

All folders and files in the current working directory are output as ASCII strings.

All folders from directory (ASCII output)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

186 / 251

ESC F D L
Directory-

name
Endin

g

$1B $46 $44 $4C
'String'

completed
with $00

$00

All folder names in the current working directory are output as ASCII strings.

Folder/File information

ESC F F I
Directory-/
File-name

Size
Attrib
ute

Time Date

...

$1B $46 $46 $49
'String'

completed
with $00

32-Bit value
8-Bit
value

16-Bit value 16-Bit value

Folder / file information is output.

Attribute

$01 Read only

$02 Hidden

$04 System

$20 Archive

The time and date give the time stamp of the last change to the file.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Time Hour [0...23] Minute [0...59] Second/2 [0...29]

Date Year (ab 1.1.1980 0:0:0 Uhr) [0...127] Month [1...12] Day [1...31]

Data from file

ESC F R D Number
Data

1
Data

2
Data

n
...

$1B $46 $52 $44 32-Bit value
8-Bit
value

8-Bit
value

8-Bit
value

The data from the file are output. Number indicates the length of the file.

Current project path

ESC X P G Path

...
$1B $58 $50 $47

'String'
completed
with $00

The current project path is output.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

187 / 251

Version information

ESC X I V
Version
string

...

$1B $58 $49 $56
'String'

completed
with $00

The version information of the display is output (e.g. "EA uniTFT V1.4 with capacitive touch")

Display information

ESC X I D Width Height
Color
depth

Touch VideoWidth VideoHeight

...

$1B $58 $49 $44 16-Bit value 16-Bit value
8-Bit
value

8-Bit
value

16-Bit value 16-Bit value

Display information is output.

Touch

$00 No touch

$03 Resistive touch

$07 Capacitive touch

$0F Simulator

RAM memory information

ESC X I R Total Free
...

$1B $58 $49 $52 32-Bit value 32-Bit value

RAM memory information is output.

Memory information

ESC X I I Total Free
...

$1B $58 $49 $53 32-Bit value 32-Bit value

Storage information is output.

Hardcopy

ESC X H S Header Data
...

$1B $58 $48 $53

A hard copy of the display content is output. The Header and Data depend on the selected format.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

188 / 251

Functions an Calculations

The EA uniTFTs-Series can process small mathematical functions internally at runtime. In addition, with logical
operators and options, they offer the possibility to make decisions, similar to an if-statement. In order to be able to
evaluate user inputs or optimize the screen layout, calculation commands are also available that can work with object
properties, such as bar graph value, last touch position or object width and position. Most functions are available as
both integer and floating-point calculations. Care must be taken to stay in the respective number range, or to convert
with the cast operator (float or int).
The module works with little-endian (Intel-format), that means the least significant byte is transferred first.
Attention:
Calculations need to be run inside brackets (...). See command syntax for further details.

signe
d

Integ
er
(32
Bit)

Float
IEEE
754
(32-
Bit)

Mathematical functions

Arithmetical functions +, -, * , /, () ● ●

Absolute value |x| abs(x) ● ●

Sign of x (-1, 0, 1): x<0, x==0, x>0 sign(x) ● ●

Modulo x%y mod(x,y) ● ●

Power x^y pow(x,y) ● ●

Root sqrt(var) ●

Truncate decimal points trunc(var) ●

Round decimal points round(var) ●

Logarithm (log) log(var) ●

Natural logarithm (ln, Basis e) ln(var) ●

Exponential function base e exp(var) ●

Degrees to rad rad(deg) ●

Rad to degrees deg(rad) ●

Sine sin(deg) ●

Cosine cos(deg) ●

Tangent tan(deg) ●

Arcsine asin(var) ●

Arc cosine
acos(var) ●

Arctangent atan(var) ●

Arctangent, right quadrant atan(y,x) ●

Minimum min(a,b,c…) ● ●

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

189 / 251

Maximum max(a,b,c…) ● ●

Average avg(a,b,c…) ● ●

Random value sv <= x <= ev (max 65535) rand(sv,ev) ● ●

Random value 0 <=x <= ev (max 65535) rand(ev) ● ●

Random value 0<= x<=1000 rand() ● ●

Register increment / decrement

pre-/post- increment ++Rx, Rx++ ● ●

pre-/post- decrement --Rx, Rx-- ● ●

Cast Integer « Float

Integer calculation, return Float int(calculation) ●

Float calculation, return Integer float(calculation) ●

Bit Operatoren

Low Byte loB(x) ●

High Byte hiB(x) ●

Low Word loW(x) ●

High Word hiW(x) ●

Low Byte from High Word hwloB(x) ●

High Byte from High Word hwhiB(x) ●

AND & ●

OR | ●

NOT ~ ●

XOR ^ ●

Shift left / right <<, >> ●

Set bit (Bit-Nr. 0..31) bitS(value, Bit-No.) ●

Clear bit(Bit-Nr. 0..31) bitC(value, Bit-No.) ●

Exor bit (Bit-Nr. 0..31) bitX(value, Bit-No.) ●

Test bit (Bit-Nr. 0..31) returns true or false bitT(value, Bit-No.) ●

Logical Operators

AND && ● ●

OR || ● ●

NOT ! ● ●

Equal, not equal ==, != ● ●

Less, less than or equal <, <= ● ●

Greater,Greater than or equal >, >= ● ●

Decision

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

190 / 251

If-Then-Else-function ifte(condition, value true,
value false)

● ●

Object commands, general

Width (without transform) objW(id) ● ●

Height (without transform) objH(id) ● ●

Position X (actual anchor, for groups: relative to
parent object)

objX(id) ● ●

Position Y (actual anchor, for groups: relative to
parent object)

objY(id) ● ●

Screen-Position X (given anchor, also for groups:
Screen coordinates)

objX(id, anchor) ● ●

Screen-Position Y (given anchor, also for groups:
Screen coordinates)

objY(id, anchor) ● ●

Scaled width objSW(id) ● ●

Scaled height objSH(id) ● ●

Shear X objSX(id) ● ●

Shear Y objSY(id) ● ●

Rotation objR(id) ● ●

Opacity objO(id) ● ●

Layer objL(id) ● ●

Read actual used style objC(id) ● ●

Read active anchor objA(id) ● ●

Object exists? objE(id) ● ●

Object visible? objV(id) ● ●

Get Obj-ID from screen-coordinates objXY(x,y) ● ●

Get Obj-ID from screen-coordinates. If onlyrect is
true, then fast calculation is done and only the
object's rectangular size is checked
(transparencies are ignored)

objXY(x,y, onlyrect) ● ●

Object commands menu

Get last valid menu item objML(id) ● ●

Get active shown menu item (0=closed) objMV(id) ● ●

Check state of item (1=checked, 0=unchecked) objMC(id, item) ● ●

Get enable state (1=enabled, 0=disabled) objME(id, item) ● ●

Object commands ComboBox

Get last valid item objCL(id) ● ●

Get active shown item (0=closed, -1=no item
visible))

objCV(id) ● ●

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

191 / 251

Get enable state (1=enabled, 0=disabled) objCE(id, item) ● ●

Object commands SpinBox

Get last valid items objBL(id) ● ●

Get last valid item of box no in spinbox group objBL(id, boxnr) ● ●

Get active shown items objBV(id) ● ●

Get active shown item of box no in spinbox group objBV(id, boxnr) ● ●

Get enable state (1=enabled, 0=disabled) objBE(id, item) ● ●

Object commands StringBox

Visible lines objTV(id) ● ●

Number of paragraphs (= number of lines without
AutoWrap)

objTA(id) ● ●

Number of lines (after AutoWrap) objTN(id) ● ●

Number of strings (after AutoWrap) objTN(id, Absatz nr) ● ●

Visible top line objTL(id) ● ●

String line start (after AutoWrap) objTL(id, Absatz nr) ● ●

Paragraph from line number objTS(id, line nr) ● ●

Object properties

Read user value integer (#OUI) objUI(id) ● ●

Read user value float (#OUI) objUF(id) ● ●

Object properties Bargraph/Instrument

Current value objIV(id) ● ●

Value drawn on the screen (not necessarily the
same for animations as objIV (id))

objID(id) ● ●

EndValue objIE(id) ● ●

StartValue objIS(id) ● ●

Object properties paths

Length pathL(id) ● ●

X-Coordinate of a path with distance pathX(id,distance) ● ●

Y-Coordinate of a path with distance pathY(id,distance) ● ●

Tangent angle of a point on a path pathR(id,distance) ● ●

Touch functions

Touch button/switch state
=1 unpressed
=2 pressed

butS(id) ● ●

Radio-group: Active switch (id) butR(id) ● ●

Last used touch button butI() ● ●

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

192 / 251

Letzter Keyboard code butC() ● ●

Last entered keyboard code) touchA() ● ●

Last touch position X (Down- or Drag-Event) touchX() ● ●

Last touch position Y (Down- or Drag-Event) touchY() ● ●

Touch position X of touch point number no (Down-
or Drag-Event))

touchX(nr) ● ●

Touch position X of touch point number no (Down-
or Drag-Event)

touchY(nr) ● ●

Decomposition of input elements (Menu)

Get root from item menR(item) ● ●

Get menu from item menM(item) ● ●

Get sub-menu from item menS(item) ● ●

Make item from root, menu, sub-menu menRMS(r,m,s) ● ●

Decomposition of input elements (SpinBox)

Entry box 1 (8 Bit value) spin1(item) ● ●

Entry box 2 (8 Bit value) spin2(item) ● ●

Entry box 3 (8 Bit value) spin3(item) ● ●

Entry box 4 (8 Bit value) spin4(item) ● ●

Make item from individual spinbox values
((e4<<24) | (e3<<16) | (e2<<8) | e1)

spinE(e1,e2,e3,e4) ● ●

I/O Ports

Port state (a = port expander 0..15) port(a) ● ●

Port-pin state (a = Pin number 0..127) bit(a) ● ●

Analogue input

Analog value (a=0..3)) analog(a) ● ●

RS232 Master interface

Length of received data bytes mstRA() ●

Timer

Set timer start value (10 ms Timer) timer(startvalue) ●

Read timer (10 ms Timer) timer() ●

Time functions/ RTC
Time and date are calculated by the module internally in seconds with epoch = 1.1.2000 at
00:00:00 o'clock with SINT32 (= datetime-value). Thus, the maximum period used by the
module is from 1932 - 2067. The base date can be changed with the #WDY command. To
calculate time periods, it's always necessary to convert the time/date to seconds first, then
carry out the calculation. The result can then be converted back again to minutes, hours, day,
month and year.

Convert current date into datetime-value date() ●

Convert number of days into seconds date(D) ●

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

193 / 251

Convert day + month + year (1932 - 2067) into
datetime-value

date(D,M,Y) ●

Convert actual time into seconds (starting with
0:00:00)

time() ●

Convert number of hours into seconds (? h·3600) time(h) ●

Convert hours and minutes into seconds (?
h·3600 + m·60)

time(h, m) ●

Hour, minutes and seconds into seconds (?
h·3600 + m·60 + s)+ s)

time(h, m, s) ●

Convert current date and time into datetime-value datetime() ●

Hour+min+sec+day+month+year into datetime-
value

datetime(h,m,s,D,M,Y) ●

Actual year year() ●

Calculate year from datetime-value year(a) ●

Actual month month() ●

Calculate month from datetime-value month(a) ●

Actual day day() ●

Calculate day from datetime-value day(a) ●

Actual week day (0-6=Sunday..Saturday) weekday() ●

Calculate week day from datetime-value weekday(a) ●

Actual hour hour() ●

Calculate hour from datetime-value hour(a) ●

Actual minute minute() ●

Calculate minute from datetime-value minute(a) ●

Actual second second() ●

Calculate seconds from datetime-value second(a) ●

String register functions

Length of string (Register no) strL(nr) ●

ASCII-Code from string position strA(nr, offset) ●

Unicode-Code from string position strU(nr, offset) ●

Convert numerical string to SINT32 or float. strV(nr) ● ●

Comparison of two string registers
=0 both strings are the same
>0 first unequal character in n1 is greater then
the one in n2
<0 first unequal character in n1 is smaller then
the one in n2

strC(n1, n2) ●

Compare the first len characters of two strings strC(n1, n2, len) ●

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

194 / 251

Compare len characters of two strings, starting
with offset

strC(n1, n2, len, offset) ●

Compare len characters of two strings, starting on
different offsets

strC(n1, n2, len, offset1,
offset2)

●

Search for code in string from left
=0 not found
>0 Offset of the first code found

strFL(nr, code) ●

Search for code in string from left starting with
offset

strFL(nr, code, offset) ●

Search for code in string from right strFR(nr, code) ●

Search for code in string from right starting with
offset

strFR(nr, code, offset) ●

Search for string from another register (n2) in
string (n1)

strFS(n1, n2) ●

Search for string from another register (n2) in
string (n1) from offset.

strFS(n1, n2, offset) ●

Check if code is a character isAL(code) ●

Check if code is digit or character ist isAN(code) ●

Check if code is a small letter isLO(code) ●

Check if code is a big letter isUP(code) ●

Check if code is whitespace isWS(code) ●

Check if code is a digit isDD(code) ●

Check if code is a hexadecimal number isDH(code) ●

Check if code is a binary number isDB(code) ●

Array functions

Get max. elements for a new array arE(-1) ● ●

Get array element count (0 = not exist) arE(id) ● ●

Get array value arV(id, index) ● ●

Get next array value from read index and
increment read index

arV(id) ● ●

Get array read index arR(id) ● ●

Get array write index arW(id) ● ●

Color commands

Get red channel from a 24 bit RGB value getR(x) ●

Get green channel from a 24 bit RGB value getG(x) ●

Get blue channel from a 24 bit RGB value getB(x) ●

Combine 3 single color channels to one 24 bit
RGB value

RGB(R, G, B) ●

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

195 / 251

Read 24 bit RGB value from a color ramp rampRGB(nr, offset) ●

Read opacity value from a color ramp rampO(nr,offset) ●

Read 24 bit RGB value from a display-pixel tftRGB(x,y) ●

File and directory commands

File exists? (<Path/filename> in string register no) fileE(nr) ●

File size? (<Path/filename> in string register no)) fileS(nr) ●

File attribute? (<Path/filename> in string register
no)

fileA(nr) ●

Get fat-time of file (<Path/filename> in string
register no))

fileT(nr) ●

Get fat-date of file (<Path/filename> in string
register no)

fileD(nr) ●

Convert datetime-value to fat-time fatT(datetime) ●

Convert datetime-value to fat-date fatD(datetime) ●

Convert fat-time and date to datetime-value fattime(Fat-Time, Fat-
Date)

●

Get actual read-pointer position (#FRO) fposR() ●

Get actual read-pointer position calculated from
file end (=negativ)

fposR(-1) ●

Get actual file size of opened read file fposR(1) ●

Get actual write-pointer position (#FWO) fposW() ●

Get actual write-pointer position calculated from
file end (=negativ)

fposW(-1) ●

Get actual file size of opened write file fposW(1) ●

Get actual maximum file size fposW(2) ●

Get maximum file size of file from string register
no (from V1.4)

fileM(nr) ●

Get storage total size memST() ●

Get storage free size memSF() ●

Get object RAM total size memRT() ●

Get object RAM free size memRF() ●

Get object RaM max block size memRB() ●

Module commands

Firmware version version() ●

Last frame rate (fps) fps() ● ●

Get touch type (=0 no, =1 resistive, =2 PCAP)) touchT() ● ●

Screen width (#XCV) scrW() ● ●

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

196 / 251

Screen height (#XCV) scrH() ● ●

Screen width of hardware, not depending on
(#XCV)

scrW(1) ● ●

Screen height of hardware, not depending on
(#XCV)

scrH(1) ● ●

Video width vidW() ● ●

Video height vidH() ● ●

Number of video objects vidC() ● ●

Get actual backlight brightness ledB() ● ●

Get backlight autostate brightness (state=0..2)) ledB(status) ● ●

Get backlight autostate status ledS() ● ●

Errorstring available? error() ● ●

Errorstring available? copy Errorstring to
Stringregister nr (#VSL)

error(nr) ● ●

Errorstring available? copy Errorstring to Stringreg
nr and clear Errorstring

error(nr,1) ● ●

Priority list of all operators

12 () Parentheses / function call (highest priority))

11 ++ Register increment

- - Register decrement

+ Sign

- Sign

! Logical NOT

~ Bitwise NOT

10 * Multiplication

/ Division

9 + Addition

- Subtraction

8 << Shift left

>> Shift right

7 < Less than

<= Less than or equal

> Greater than

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

197 / 251

>= Greater than or equal

6 == Equal

!= Unequal

5 & Bitwise AND

4 ^ Bitwise XOR

3 | Bitwise OR

2 && Logical AND

1 || Logical OR (lowest priority))

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

198 / 251

HARDWARE
The EA uniTFTs-Series consists of a TFT-Display with LED backlight, driven by an integrated driving circuit, which is
dimmable using software commands. In 24/7 operation the backlight can be dimmed automatically to increase the
LED life-time and save energy.
The module is designed to work with 3.3 VDC. Serial data transfer is possible through RS232, SPI, I²C or direct via
USB protocol.
For simple control tasks, the module has 8 freely usable I/Os (expandable up to 136), 4 analogue inputs, one PWM
output and 3 serial interfaces (RS232, SPI and I²C).
The moudles do have an integrated capacitive touch panel. By touching the display you can enter data and make
adjustments via menu or bar graph. The labelling, size and shape of the "keys" is flexible and can also be changed
during runtime (different languages, icons). The drawing of the individual "keys", as well as the labelling is completely
taken over by the built-in software. The capacitive touchpanel has an robust glass surface that can also be operated
with thin gloves.

Front view (example EA uniTFTs043-ATC)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

199 / 251

Rear view (example EA uniTFTs043-ATC)

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

200 / 251

Pin assignment

Pin assignment for ZIF connector. It's an FPC connector with 40 positions and 0.5 mm pitch. Bottom contact.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

201 / 251

Pin Symbol I/O Description

1 GND Ground 0 V

2 VDD Power Supply 3.3 V Power supply or 3.3V output at USB operation (max. 20mA)

3 RES I Reset internal Pull-Up: (10..75 kW)

4 CS I SPI: Chip Select internal Pull-Up: (1 MW)

5 MOSI I SPI: MOSI

6 MISO O SPI: MISO

7 CLK I SPI: CLK internal Pull-Up: (1 MW)

8 RxD I RS232: Receive Data internal Pull-Up: (1 MW)

9 TxD O RS232: Transmit Data

10 DE O RS485: Transmit Enable

11 SDA I/O I²C: Serial Data internal Pull-Up: (10 kW); Pull-Up resistors can be changed for proper I²C connection

12 SCL I I²C: Serial Clock internal Pull-Up: (10 kW´

13 SBUF
TESTMODE

I Low: Data available in send buffer
PowerOn Low: Test mode

internal Pull-Up: (10 kW)

14 DPROT I High: Small-/Shortprotokoll active
Low: deactivated

internal Pull-Up: (10 kW)

15 A/D 0 I Analog Input 0

internal Pull-Down: (1 MW)
16 A/D 1 I Analog Input 1

17 A/D 2 I Analog Input 2

18 A/D 3 I Analog Input 3

19 I/O 0.0 I/O I/O 0.0 (Bit 0)

internal Pull-Up: (1 MW), Reset-state: Tri-State, default: input

20 I/O 0.1 I/O I/O 0.1 (Bit 1)

21 I/O 0.2 I/O I/O 0.2 (Bit 2)

22 I/O 0.3 I/O I/O 0.3 (Bit 3)

23 I/O 0.4 I/O I/O 0.4 (Bit 4)

24 I/O 0.5 I/O I/O 0.5 (Bit 5)

25 I/O 0.6 I/O I/O 0.6 (Bit 6)

26 I/O 0.7 I/O I/O 0.7 (Bit 7)

27 PWM O PWM-Output

28 DNC --- Do not connect

Reserved for future use

29 DNC --- Do not connect

30 DNC --- Do not connect

31 DNC --- Do not connect

32 DNC --- Do not connect

33 DNC --- Do not connect

34 BUZZER O Sound PWM output for external speaker

35 IO SDA I/O I²C data to portexpander / RTC Portexpander MCP23017-E can be connected here. For EA uniTFTs020-ATC and EA uniTFTs028-ATC RTC MCP7940N - SN can be connected, too

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

202 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

203 / 251

Power supply

The modules can be powered in three different ways:

Ziff-Connector Solderpadas USB

Spannung 3.3 V 3.3 V 5 V (Power over USB)

USB Lötrbücke open open closed

Attention:
In order to avoid fault currents, the "USB Power Enable" solder bridge must be set correctly. The solder bridge is
closed by default. The internal voltage regulator is now active and generates 3.3 V from the connected USB supply. If
an additional 3.3 V is now supplied externally, fault currents occur.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

204 / 251

Serial interfaces

The module provides 4 serial interfaces, including RS232, SPI, I²C and USB. In addition to the USB interface, the other
interfaces can change your behaviour:
They can either be used to connect to an external host, i.e. to a higher-level controller, or used as a master interface.
By default, all interfaces are parameterized as slaves and accept the commands.
Parameterized as a master interface, it enables the control of external sensors and actuators. The display module
behaves here as a master.
As already described, the interfaces behave as slave interfaces by default and accept commands. However, as soon
as a master interface command (#H ...)is executed, the interface gets master functions.

RS232
RS232 is a standard for a serial interface.

The EA uniTFT provides one RS232 interface, that can be operated as slave (default) or as master: As slave interface
it is used to communicate with the display. All data sent to the display are interpreted as a command (with and w./o.
Small-/Short-Protocol). If you would like to send and receive any data via RS232 to other devices then you have to use
it as master. Those are handled via #H commands.

The transmission is serially asynchronous. Thus the data is converted into a bit stream and transmitted. There is no
clock signal, so transmitter and receiver need to work with the same data rate (so-called baud rate). RS232 is a
voltage interface, such that data is transmitted using changing voltage levels. In the PC world and industrial controls,
levels of + 12V and - 12V are defined as standard. With boards or micro-controllers levels of 0V and VDD (in the case
of EA uniTFTs-Series 3.3 V) are common. To adjust the signal levels, there are some possibilities in the form of level
shifters (e.g., ICL232, MAX202). RS232 consists of "listening" and "talking" lines that are crossed between the two
parties.
In the EA uniTFTs-Series, the data format is fixed to 8-N-1:

The EA uniTFTs-Series works with the following baud rates:

Baud Error Baud Error

9600 +0.04 115200 +0.64

19200 -0.08 230400 -0-80

38400 +0.16 460800 +2.08

57600 -0.08 921600 -3.68

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

205 / 251

The parameters (baud rate) are set using command #XCR (higher-level control unit), and the master interface is set
with the command #HRP. Those definition can be done in start.emc e.g.

Application notes

RS232 V24 - Interface to a PC (EA uniTFTs)

RS485 / RS422 interface

With this simple external IC a communication to any RS-485 and RS-422 can be done.

RS485 - Interface to a PLC (EA uniTFT)

SPI
The Serial Peripheral Interface is a bus system for serial synchronous data transfer.

The EA uniTFT provides a SPI interface: AS default the interface has Slave functionality and is used to communicate
with the display. All data sent to the display are interpreted as a command (with and w./o. Small-/Short-Protocol).
Would you like to send and receive any data via SPI to other devices like temperature sensor, then you have to use
the Master interface. Those are handled via #H commands.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

206 / 251

The SPI is working with 4 lines:

· MOSI (Master Out ® Slave In) or SDO (Serial Data Out) or DO

· MISO (Master In ¬ Slave Out) or SDI (Serial Data In) or DI

· SCK (Serial Clock) - Shift clock

· SS (Slave Select ® Addressing) or CS (Chip Select)

SPI works with a bidirectional transmission principle, meaning that data is exchanged between the connected devices
at the same time. The communication is controlled by the master using the SCK line.
The protocol for data transfer is not defined in SPI, therefore there are different configuration possibilities, which are
defined by the parameters Clock Polarity, Clock Phase and Data Order. The default setting is SPI mode 3 with DORD
= 0. The commands #XCS and #HSP (master interface)) set the mode 0..3. Alternatively the command can be stored
directly into the boot file <start.emc>.

Mode CPOL CPHA DORD (0) - MSB First DORD (1) - LSB First

0 0 0

1 0 1

2 1 0

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

207 / 251

3 1 1

The maximum clock frequency is 1 MHz. The module needs some time to prepare data for transfer. That means a wait
cycle (no activity on the SCK-line) of at least 50 ms is required before reading data.

I²C
I²C stands for Inter-Integrated Circuit and is a serial data-bus developed by Phillips.

The EA uniTFT provides one I²C interface: As default the interface is parametrized as Slave and used to communicate
with the display. All data sent to the display are interpreted as a command (with and w./o. Small-/Short-Protocol).
Would you like to send and receive any data via I²C to any other device like temperature sensor, then you have to use
the Master functionality (pins 43 and 44). Those are handled via #H commands.

The bus is a Master-Slave implementation and needs 2 signal lines:

· SCL (Serial Clock Line)

· SDA (Serial Data Line)

The electrical specification defines that both lines are terminated with a pull-up resistor at VDD, because all devices
connected to the bus have open collector outputs. The bus clock is always given by the master, which controls the
entire communication:

After the start condition, the slave address follows. In this case, bit 0 is the so-called R/W bit and determines whether
the slave should be read (1) or data is transmitted (0). The data exchange takes place until the master executes the
stop condition. More detailed information can be found in the I²C specification. The default I²C bus address is 0xDE (as
8-Bit address, including R/W bit, as 7-Bit address without R/W bit it's 0x6F) when writing to the slave unit.

The command #XCI and #HIP (master interface) can change the I²C write address to any other address. Alternatively
the command can be written directly into the boot file <start.emc>.
The maximum frequency in slave mode is 400 kHz, the master interface is capable up to 1 MHz.The module needs
some time to prepare data for transfer. That means a wait cycle (no activity on the SCL-line) of at least 50 ms is
required before reading data.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

208 / 251

USB
The Universal Serial Bus is a serial bus system for interfacing a PC with other peripherals. It's based on differential
data transfer. The bus topology is a strict master-slave communication (Exception: On the Go devices). In the case of
EA uniTFTs-Series the PC/Master needs to coordinate the communication. The module has a CDC (Communications
Device Class) and is found by Windows PC's as a virtual COM-Port:

Description Value

Device Class 2

USB Vendor ID 0x2DA9

USB Product ID 0x2454

Device description EA uniTFT

To program the module, adjust settings or to perform initial tests, we recommend using the USB interface. It's easy to
connect, the transfer rate is fast and no interface parameters need to be specified. The driver for Windows can be
downloaded on our web-page: http://www.lcd-module.de/fileadmin/downloads/EA_CDCdriver_V5_2.zip

Attention:
A protocol has to be used in USB CDC mode. It's impossible to use the USB interface without a protocol, which
means pin 22 (primary connector) must not be set to GND. The high-speed connection of USB leads to buffer
overflow, which are prevented by the protocol.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

209 / 251

Touch-panel

The modules all do have a optically bonded capcitive touchpanels, which is used for mounting, too. By touching the
display you can enter data and adjust settings via menus or bar graphs. The labelling of the "keys" is flexible and can
also be changed during runtime (different languages, icons). The drawing of the individual "keys" as well as the
labelling is completely handled by the built-in software.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

210 / 251

I/O - digital in- and outputs

The module has 8 digital I/Os (CMOS level, non-
floating). The input range is 0... 3.3 V. All 8 I/Os have a
weak pull-up at 1 MW and are set as inputs after reset.
Remark: The logic is not designed for time-critical
operations; i.e. it is not a real-time operating system

By using one or more external (max. 8) MCP23017-E
(16 I/Os per IC), the total number of I/Os can be
expanded up to 136. Therefore the port-expanders are
connected to pins 35-37 (see application example).

The maximum power of the MCP23017-E is 700 mW in total. The maximum current load for a single pin is 25 mA,
which makes it possible to directly operate a low current LED. If a higher load is required, the I/O current must be
amplified with suitable circuitry, e.g. through an external transistor. For more details see Electrical characteristics

The overview of the software commands for the I/Os can be found under the chapter 'I/O Port'.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

211 / 251

Analogue input

The module uses 4 analogue inputs with a resolution of
12 bit and an input range of 0 V...VDD. The input range
can be arbitrarily expanded with the help of external
voltage dividers or amplifiers. Every single input is
referenced to GND and has an input resistance of about
1 MW. The absolute accuracy is 11 bits, as reference
VDD/2 is used.
This enables the display to measure analogue voltages,
e.g. to display or save the values for further processing.
The exceeding or undershooting of a threshold can also
be used to trigger an alarm.

The overview of the software commands for the analogue
inputs can be found under the chapter 'Analogue Input'

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

212 / 251

PWM output

The module has the option of controlling external
components via a PWM signal (pulse width modulation).
At constant frequency (adjustable from 2 Hz to 1 MHz
#HFO), the duty cycle of a rectangular pulse is
changed. Modulation changes the ratio between the on-
and off-time and thus the characteristics of the output
signal. In this way, electromechanical components such
as motors can be driven or even a quasi-analogue
voltage can be generated. The variation of the duty
cycles supports a low engine speed/voltage with a short
start-up time or a high motor speed/voltage with a long
start-up time. The output levels are at 0V and VDD.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

213 / 251

Time / RTC

EA uniTFTs035-ATC and EA uniTFTs043-ATC has a
built-in RTC clock. It provides a time-stamp for log files
and the time and date can be displayed on the screen
directly. On delivery, the time is set to Central European
Time (CET / MEZ). Depending on the location it may be
necessary to set the device to local time (#WTD). In the
event of a voltage drop, or when the module is switched
off, the clock is powered by a button cell (D377), so that
the correct time is retained.
Due to component tolerances and temperature
fluctuations, deviations of up to 0.02% are possible. The
deviation can be reduced by repeatedly adjusting the
time (#WTD).

For the smaller displays EA uniTFTs020 and
uniTFTs028 an external RTC can be connected. We
suggest the MCP7940N:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

214 / 251

M emory

The module has a built-in flash memory. The size is 31 MByte.
This memory is used to store all data, whether generated at runtime, e.g. log files, or pre-loaded as project data, such
as macro files, pictures, animations and icons.

Attention:
Flash memories have limited erase / write cycles due to their design. The memory module used in the uniTFTs can
typically safely execute 100,000 cycles. In order to write data, a block of memory may have to be erased, typically 30
ms are required for erasing, but it can take up to 400 ms. This must be taken into account in the macro sequence
when write file commands are executed.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

215 / 251

Elektrische Spezifikation EA uniTFTs020-ATC

Value Condition min. typ. max. Unit

Supply current 3.3 V

Backlight 0% 113 mA

Backlight 100% 222 mA

Backlight 150% 284 mA

Supply current USB (5 V)

Backlight 0% 82 mA

Backlight 100% 158 mA

Backlight 150% 201 mA

Brightness (100%) with PCAP 700 850 cd/m²

Elektrische Spezifikation EA uniTFTs028-ATC

Value Condition min. typ. max. Unit

Supply current 3.3 V

Backlight 0% 113 mA

Backlight 100% 236 mA

Backlight 150% 309 mA

Supply current USB (5 V)

Backlight 0% 84 mA

Backlight 100% 169 mA

Backlight 150% 219 mA

Brightness (100%) with PCAP 700 780 cd/m²

Elektrische Spezifikation EA uniTFTs035-ATC

Value Condition min. typ. max. Unit

Supply current 3.3 V

Backlight 0% 115 mA

Backlight 100% 269 mA

Backlight 150% 368 mA

Supply current USB (5 V)

Backlight 0% 84 mA

Backlight 100% 192 mA

Backlight 150% 260 mA

Brightness (100%) with PCAP 480 600 cd/m²

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

216 / 251

Elektrische Spezifikation EA uniTFTs043-ATC

Value Condition min. typ. max. Unit

Supply current 3.3 V

Backlight 0% 131 mA

Backlight 100% 362 mA

Backlight 150% 562 mA

Supply current USB (5 V)

Backlight 0% 89 mA

Backlight 100% 252 mA

Backlight 150% 382 mA

Brightness (100%) with PCAP 750 820 cd/m²

Elektrische Spezifikation Allgemein

Value Condition min. typ. max. Unit

Operating temperature -20 70 °C

Storage temperature -30 80 °C

Storage humidity @ 60°C 90 % RH

Operating voltage 3.1 3.3 3.5 V

Input low voltage (except USB,I/O) -0,3 0 0.3*VDD V

Input high voltage (except USB,I/O) VDD*0.7 VDD+0.3 V

Output low voltage (except USB,I/O) - - 0,4 V

Output high voltage (except USB, I/O) VDD-0.5 - - V

Output current I/O

single - - 2 mA

all - - 16
mA
(total)

I²C-bus pull-up 10 kΩ

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

217 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

218 / 251

Dimension EA uniTFTs020-ATC

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

219 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

220 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

221 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

222 / 251

Dimension EA uniTFTs028-ATC

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

223 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

224 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

225 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

226 / 251

Dimension EA uniTFTs035-ATC

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

227 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

228 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

229 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

230 / 251

Dimension EA uniTFTs043-ATC

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

231 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

232 / 251

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

233 / 251

uniTFTDESIGNER - DESIGNSOFTWARE
The Windows design software uniTFTDesigner (WYSIWYG) makes it
easy to create complete screen layouts. With the help of the macro
editor, functional sequences can be defined. The properties of all
objects (position, size, angle) are easily adjustable.
The touch functionality is also supported by uniTFTDesigner, so you
can create radio groups, sliders, bar-graphs and simple touch-buttons.
Touching a button may switch to a new screen or start a macro.
An integrated simulator shows immediately the real screen including
functionality. Also the digital and analogue inputs and outputs will be
simulated.
A comprehensive debug-function and the integrated help function round
off this package.

The surface

Help engine and explanations

The menu item "Help" shows information about the version status (about dialogue), as well as this help file (or press
"F1").
In the Macro Editor, you can access the specific help for the respective command by pressing the key combination
F1.
A large selection of example projects can be found on the home/welcome-screen.

Processing order: Macros, screen

The processing of macros and screens follows the following chart:

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

234 / 251

Note: uniTFTDesigner always deletes all definitions and objects (#ODI 0) and starts a new screen afterwards - except
this is disabled by "Delete behaviour" in the screen properties or limited to delete objects only.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

235 / 251

Short cuts

Short cuts

For faster use of uniTFT Designer there are some short cuts:

Global short cuts

Open Help F1

Open command help F1

Close Ctrl + Q / Alt + F4

New project Ctrl + N

Open project Ctrl + O

Close project Ctrl + F4

Save project Ctrl + S

Save project as Ctrl + Shift + S

Create backup zip-file Ctrl + Shift + Z

Load backup zip-file Ctrl + Shift + B

Load Recovery-Point Ctrl + Shift + R

Copy (objects, screens, styles usw.) Ctrl + C

Paste Ctrl + V

Select all Ctrl + A

Zoom in (Screen) Ctrl + +

Zoom out (Screen) Ctrl + -

Undo Ctrl + Z

Re-do Ctrl + Y

Edit F2

Deploy to hardware (EA uniTFTs-Series) F5

Deploy to simulator F6

Interface setting hardware / Simulator path Ctrl + Alt + P

Open terminal / console Alt + T

Default View (reset to default view Ctrl + 0

Start uniEXPLORER Ctrl + Alt + E

Start Hardcopytool Ctrl + Alt + H

Start Debugger Ctrl + Alt + D

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

236 / 251

WYSIWYG - Graphic short cuts

select / deselect multiple items Shift + left mouse button

select / deselect stacked items Ctrl + left mouse button

select / deselect object within group Alt + left mouse button

Layer: one up Ctrl + arrow up

Layer: one down Ctrl + arrow down

Layer: to top Ctrl + Shift + arrow up

Layer: to bottom Ctrl + Shift + arrow down

Group Ctrl + G

Un-group Ctrl + U

Move object by 1 pixel Arrow keys

Move object by grid size Shift + Arrow keys

Alignment: Item(s) Top Ctrl + Alt + T

Alignment: Item(s) Bottom Ctrl + Alt + B

Alignment: Item(s) Left Ctrl + Alt + L

Alignment: Item(s) Right Ctrl + Alt + R

Alignment: Item(s) Vertical Ctrl + Alt + V

Alignment: Item(s) Horizontal Ctrl + Alt + H

Alignment: Item anchors horizontal Ctrl + Alt + 1

Alignment: Item anchors vertical Ctrl + Alt + 2

Space: Vertical Shift + Alt + V

Space: Horizontal Shift + Alt + H

Space: to Grid vertical Shift + Alt + 1

Space: to Grid horizontal Shift + Alt + 2

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

237 / 251

Language Editor

The uniTFTDesigner supports multi-language of the EA uniTFTs-Series.
In the language editor (Project -> Language Editor) multiple
languages and KeyNames can be defined together with the
corresponding translation. The file (Language.csv) containing the data
can be found in the data folder of the project. You can use the file to hire
a translation agency.

1. To use multiple languages together with objects (e.g. Text, Button,
SpinBox, …) the property "Language" need to be activated in the
object editor.

2. Now the KeyName can be selected and is translated during runtime
to the set language.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

238 / 251

Register Editor

In the Register Editor (View -> Workspace Panels -> Register and name definitions) beautified names can be
assigned to registers and string registers . Default values can be set, too. Additionally numeric and string defines can
be set. Use it like defines during compile time. Beautified names can be used in the macro editor instead of
ObjectID's.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

239 / 251

Macro Editor

In the Macro Editor (View -> Workspace Panels -> Macros) command sequences are written in function groups the
so called macros. It makes sense to edit and define all objects that need to be calculated and to use macros for all
non-graphic commands.
An advantage is the syntax highlighting to see commands and parameters clearly structured. Also commends
(starting with /**) can be inserted.

Vorteilhaft sind das Syntaxhighlighting um Befehle und Parameter klar strukturiert zu erkennen. Auch Kommentare
(beginnend mit /**) können eingefügt werden.
All object, macro and register names available in the project and also the built-in calculations are suggested to match
the parameter (Ctrl + space).
The short command help in the status bar is useful as a short information. With the shortcut F1 the help for the
respective command is automatically displayed.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

240 / 251

TOOLS FOR WINDOWS
Besides the design-software uniSKETCH there are a number of other Windows-Tools. Among them is the tool EA
uniTRANSFER which can transfer projects to the EA uniTFTs-Series. For documentation purposes, it is often very
helpful to take a screen capture to illustrate different situations. Here the tool EA Hardcopy can be of help. The most
powerful tool is the EA uniTFT simulator, which simulates the real hardware on the PC.

EA uniTRANSFER

After the port settings have been
selected correctly, uniTRANSFER
can copy any files to internal
FLASH. To download projects, it's
sufficient to drag the project folder to
the window by drag'n'drop. A
progress bar in the program provides
information about the status of the
transmission. On the display itself
further information is visible.
The checkbox "Smart Deploy" can
be activated to transfer files and
projects as fast as possible. It
compares creation time and file size
between module and data source. If
these are different, the file is
replaced otherwise it remains and
will not be copied. This saves a lot of
time on large files, such as fonts or
pictures.
EA uniTRANSFER creates a *.eup
file. This file contains all
transmission data as well as
commands for programming the
FLASH memory. You can also
transfer the created upload file *.eup
under any other system to the EA
uniTFT. For this you transfer the
content of the *.eup file 1:1 (with
protocol in packets), no further
commands are necessary.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

241 / 251

EA Hardcopy

T
h
e
h
a
r
d
c
o
p
y
t
o
o
l
i
s
s
u
i
t
a
b
l
e
f
o
r
c
r
e
a
t
i
n
g
a
m
e
a
n
i
n
g
f
u
l
d
o
c
u
m
e
n
t

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

242 / 251

a
t
i
o
n
o
f
t
h
e
a
p
p
l
i
c
a
t
i
o
n
.

EA uniTFT simulator

T
h
e
s
i
m
u
l
a
t
o
r
c
a
n
b
e
c
a
l
l
e
d
d
i
r
e
c
t
l
y
f
r

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

243 / 251

o
m
u
n
i
T
F
T
D
e
s
i
g
n
e
r
(
F
6
)
a
n
d
s
i
m
u
l
a
t
e
s
b
e
h
a
v
i
o
r
o
f
t
h
e
p
r
o
j
e
c
t
h
a
r
d
w
a

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

244 / 251

r
e
.
I
n
a
d
d
i
t
i
o
n
t
o
i
n
p
u
t
o
p
t
i
o
n
s
s
u
c
h
a
s
p
o
r
t
s
a
n
d
a
n
a
l
o
g
i
n
p
u
t
s
,
e
.
g
.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

245 / 251

t
h
e
c
o
m
p
u
t
e
r
'
s
o
w
n
R
S
2
3
2
i
n
t
e
r
f
a
c
e
c
a
n
b
e
u
s
e
d
a
s
m
a
s
t
e
r
s
R
S
2
3
2
o
r
s
l
a

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

246 / 251

v
e
R
S
2
3
2
i
n
t
e
r
f
a
c
e
.
A
d
e
b
u
g
f
u
n
c
t
i
o
n
a
n
d
o
n
l
i
n
e
d
i
s
p
l
a
y
o
f
t
h
e
r
e
g
i
s
t

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

247 / 251

e
r
s
f
a
c
i
l
i
t
a
t
e
s
t
h
e
d
e
v
e
l
o
p
m
e
n
t
o
f
m
a
c
r
o
f
i
l
e
s
.
Y
o
u
c
a
n
a
l
s
o
s
e
t
b
r
e
a

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

248 / 251

k
p
o
i
n
t
s
a
n
d
s
t
e
p
t
h
r
o
u
g
h
s
i
n
g
l
e
l
i
n
e
s
.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

249 / 251

EA uniEXPLORER

T
h
e
u
n
i
E
X
P
L
O
R
E
R
i
s
a
c
o
m
f
o
r
t
a
b
l
e
t
o
o
l
t
o
s
e
e
a
l
l
f
i
l
e
s
o
n
t
h
e
m
o
d
u
l

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

250 / 251

e
.

EA uniTFTs series

Printing and typographical errors reserved.
ELECTRONIC ASSEMBLY reserves the right to change specification without prior note.

251 / 251

REVISION HISTORY

EA uniTFTs-Series Firmware

Date Version Info

1.0 First release

uniTFTs-Simulator

Date Version Info

1.0 First release

uniTFTDesigner - Windowstool

Date Version Info

1.0 First release

Helpfile

Date Version Info

1.0 First release

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92
	Folie 93
	Folie 94
	Folie 95
	Folie 96
	Folie 97
	Folie 98
	Folie 99
	Folie 100
	Folie 101
	Folie 102
	Folie 103
	Folie 104
	Folie 105
	Folie 106
	Folie 107
	Folie 108
	Folie 109
	Folie 110
	Folie 111
	Folie 112
	Folie 113
	Folie 114
	Folie 115
	Folie 116
	Folie 117
	Folie 118
	Folie 119
	Folie 120
	Folie 121
	Folie 122
	Folie 123
	Folie 124
	Folie 125
	Folie 126
	Folie 127
	Folie 128
	Folie 129
	Folie 130
	Folie 131
	Folie 132
	Folie 133
	Folie 134
	Folie 135
	Folie 136
	Folie 137
	Folie 138
	Folie 139
	Folie 140
	Folie 141
	Folie 142
	Folie 143
	Folie 144
	Folie 145
	Folie 146
	Folie 147
	Folie 148
	Folie 149
	Folie 150
	Folie 151
	Folie 152
	Folie 153
	Folie 154
	Folie 155
	Folie 156
	Folie 157
	Folie 158
	Folie 159
	Folie 160
	Folie 161
	Folie 162
	Folie 163
	Folie 164
	Folie 165
	Folie 166
	Folie 167
	Folie 168
	Folie 169
	Folie 170
	Folie 171
	Folie 172
	Folie 173
	Folie 174
	Folie 175
	Folie 176
	Folie 177
	Folie 178
	Folie 179
	Folie 180
	Folie 181
	Folie 182
	Folie 183
	Folie 184
	Folie 185
	Folie 186
	Folie 187
	Folie 188
	Folie 189
	Folie 190
	Folie 191
	Folie 192
	Folie 193
	Folie 194
	Folie 195
	Folie 196
	Folie 197
	Folie 198
	Folie 199
	Folie 200
	Folie 201
	Folie 202
	Folie 203
	Folie 204
	Folie 205
	Folie 206
	Folie 207
	Folie 208
	Folie 209
	Folie 210
	Folie 211
	Folie 212
	Folie 213
	Folie 214
	Folie 215
	Folie 216
	Folie 217
	Folie 218
	Folie 219
	Folie 220
	Folie 221
	Folie 222
	Folie 223
	Folie 224
	Folie 225
	Folie 226
	Folie 227
	Folie 228
	Folie 229
	Folie 230
	Folie 231
	Folie 232
	Folie 233
	Folie 234
	Folie 235
	Folie 236
	Folie 237
	Folie 238
	Folie 239
	Folie 240
	Folie 241
	Folie 242
	Folie 243
	Folie 244
	Folie 245
	Folie 246
	Folie 247
	Folie 248
	Folie 249
	Folie 250
	Folie 251

