

1A, 200V-1000V High Efficient Surface Mount Rectifiers

FEATURES

- Glass passivated junction chip
- Ideal for automated placement
- Low power loss, high efficiency
- · Fast switching for high efficiency
- Low profile package
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

APPLICATIONS

- Freewheeling application
- Switching mode converters and inverters, computer and telecommunication.

MECHANICAL	DATA
-------------------	-------------

- Case: Thin SMA
- Molding compound meets UL 94V-0 flammability rating
- Moisture sensitivity level: level 1, per J-STD-020
- Terminal: Pure tin plated leads, solderable per J-STD-002
- Meet JESD 201 class 2 whisker test
- Polarity: As marked
- Weight: 0.029 g (approximately)

KEY PARAMETERS			
PARAMETER	VALUE	UNIT	
I _{F(AV)}	1	Α	
V_{RRM}	200-1000	V	
I _{FSM}	35	Α	
T _{J MAX}	150	°C	
Package	Thin SMA		
Configuration	Single Die		

Thin SMA

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)							
PARAMETER	SYMBOL	HS1DAL	HS1GAL	HS1JAL	HS1KAL	HS1MAL	UNIT
Marking code on the device		HS1DAL	HS1GAL	HS1JAL	HS1KAL	HS1MAL	
Repetitive peak reverse voltage	V_{RRM}	200	400	600	800	1000	V
Reverse voltage, total rms value	$V_{R(RMS)}$	140	280	420	560	700	V
Forward current	$I_{F(AV)}$			1			Α
Surge peak forward current, single half sine-wave				35			А
superimposed on rated load per diode 1.0ms at $T_A = 25 ^{\circ}\text{C}$	I _{FSM}			90			Α
Junction temperature	TJ	-55 to +150		°C			
Storage temperature	T _{STG}	-55 to +150			°C		

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	TYP	UNIT	
Junction-to-lead thermal resistance	R _{OJL}	29	°C/W	
Junction-to-ambient thermal resistance	R _{OJA}	51	°C/W	
Junction-to-case thermal resistance	R _{eJC}	22	°C/W	

Thermal Performance Note: Units mounted on PCB (5mm x 5mm Cu pad test board)

PARAMETER		CONDITIONS	SYMBOL	TYP	MAX	UNIT
	HS1DAL	I _F = 0.5A, T _J = 25°C		0.80	-	V
		I _F = 1A, T _J = 25°C		0.85	1.00	V
		I _F = 0.5A, T _J = 125°C		0.65	-	V
		I _F = 1A, T _J = 125°C		0.71	0.80	V
		I _F = 0.5A, T _J = 25°C		0.84	-	V
	LICACAL	I _F = 1A, T _J = 25°C		0.91	1.30	V
	HS1GAL	I _F = 0.5A, T _J = 125°C		0.68	-	V
		I _F = 1A, T _J = 125°C		0.76	0.86	V
Forward voltage per diode ⁽¹⁾		I _F = 0.5A, T _J = 25°C	V _F	0.92	-	V
	1104 141	I _F = 1A, T _J = 25°C		1.02	1.70	V
	HS1JAL	I _F = 0.5A, T _J = 125°C		0.73	-	V
		I _F = 1A, T _J = 125°C		0.83	1.02	V
	HS1KAL HS1MAL	I _F = 0.5A, T _J = 25°C		1.32	-	V
		I _F = 1A, T _J = 25°C		1.49	1.70	V
		I _F = 0.5A, T _J = 125°C		0.98	-	V
		I _F = 1A, T _J = 125°C		1.16	1.39	V
Reverse current @ rated V _R per diode ⁽²⁾		T _J = 25°C	I _R	-	1	μA
		T _J = 125°C		-	35	μA
	HS1DAL HS1GAL	1 0 5 1 1 0 1	t _{rr}	-	50	ns
Reverse recovery time	HS1JAL HS1KAL HS1MAL	I _F =0.5A,I _R =1.0A, Irr=0.25A		-	75	ns
	HS1DAL		CJ	20	-	pF
	HS1GAL			17	-	pF
Junction capacitance per diode	HS1JAL	1 MHz, V _R =4.0V		13	-	pF
	HS1KAL HS1MAL			8	-	pF

2

Notes:

- (1) Pulse test with PW=0.3 ms
- (2) Pulse test with PW=30 ms

Taiwan Semiconductor

ORDERING INFORMATION				
ORDERING CODE(1)	PACKAGE	PACKING		
HS1xAL M3G	Thin SMA	3,500 / 7" reel		
HS1xAL M2G	Thin SMA	14,000 / 13" reel		

Notes:

(1) "x" defines voltage from 200V(HS1DAL) to 1000V(HS1MAL)

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Fig.1 Forward Current Derating Curve

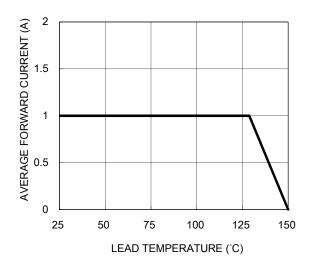


Fig.3 Typical Reverse Characteristics

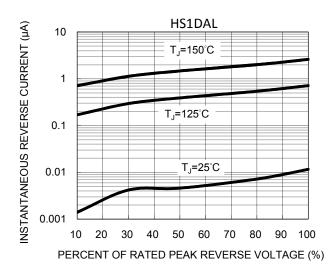


Fig.5 Typical Reverse Characteristics

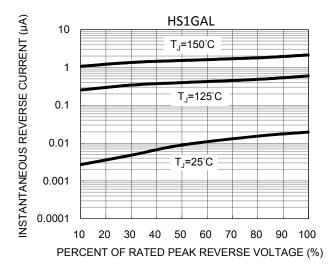


Fig.2 Typical Junction Capacitance

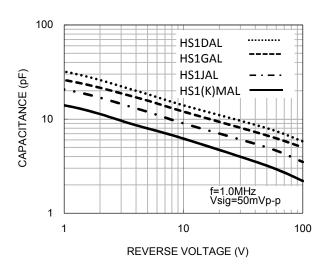
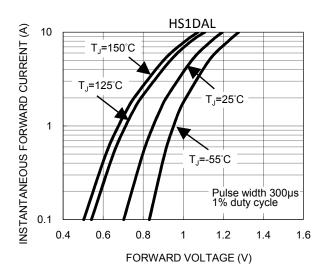



Fig.4 Typical Forward Characteristics

Fig.6 Typical Forward Characteristics

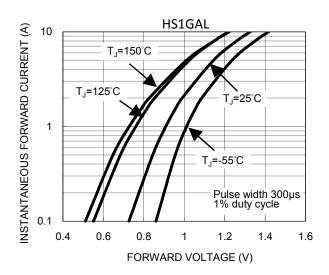


Fig.7 Typical Reverse Characteristics

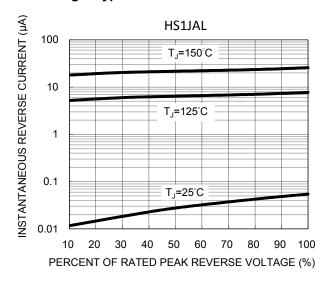


Fig.9 Typical Reverse Characteristics

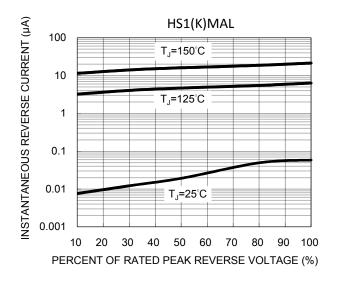


Fig.8 Typical Forward Characteristics

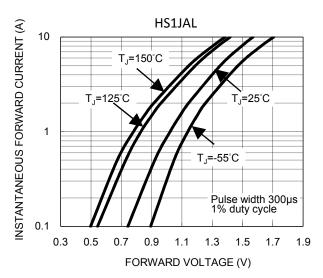


Fig.10 Typical Forward Characteristics

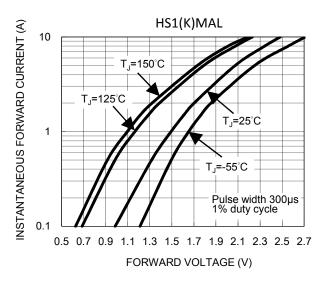
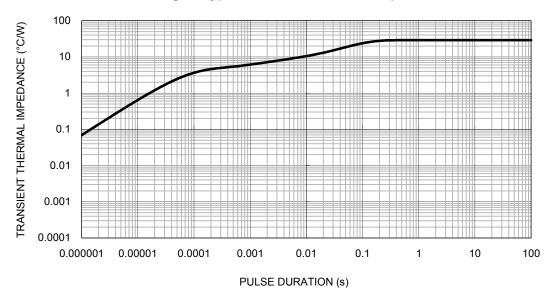
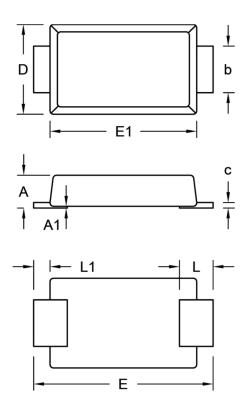
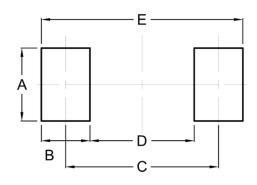



Fig.11 Typical Transient Thermal Impedance



5


PACKAGE OUTLINE DIMENSIONS

Thin SMA

DIM.	Unit (mm)		Unit ((inch)
Dilvi.	Min.	Max.	Min.	Max.
Α	0.90	1.00	0.035	0.039
A1	0.00	0.10	0.000	0.004
b	1.25	1.45	0.049	0.057
С	0.10	0.22	0.004	0.009
D	2.50	2.70	0.098	0.106
E	5.05	5.35	0.199	0.211
E1	4.15	4.35	0.163	0.171
L	0.75	1.20	0.030	0.047
L1	0.30	0.60	0.012	0.024

SUGGESTED PAD LAYOUT

Symbol	Unit (mm)	Unit (inch)
Α	2.10	0.083
В	1.40	0.055
С	4.40	0.173
D	3.00	0.118
E	5.80	0.228

MARKING DIAGRAM

= Marking Code P/N ΥW = Date Code F = Factory Code

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.