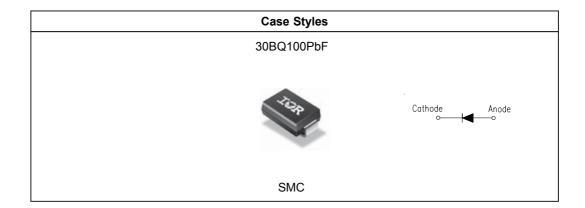
International **ICR** Rectifier

SCHOTTKY RECTIFIER

30BQ100PbF

3 Amp

```
I<sub>F(AV)</sub> = 3.0Amp
V<sub>R</sub> = 100V
```


Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	3.0	A
V _{RRM}	100	V
I _{FSM} @t _p =5μs sine	2100	А
V _F @3.0 Apk, T _J = 125°C	0.62	V
T _J range	- 55 to 175	°C

Description/ Features

The 30BQ100PbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

30BQ100PbF

Bulletin PD-20409 07/04

Voltage Ratings

Part number	30BQ100PbF
V _R Max. DC Reverse Voltage (V)	100
V _{RWM} Max. Working Peak Reverse Voltage (V)	

Absolute Maximum Ratings

	Parameters	30BQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	A	50% duty cycle @ T_L = 148 °C, rectangular wave form	
		4.0		50% duty cycle @ T_L = 138 °C,	rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	800	А	5µs Sine or 3µs Rect. pulse	Following any rated load condition and
	Surge Current	70		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	3.0	mJ	$T_J = 25 \text{ °C}, I_{AS} = 1.0A, L = 6mH$	
I _{AR}	Repetitive Avalanche Current	0.5	A	Current decaying linearly to zer Frequency limited by T_{J} max. V	

Electrical Specifications

	Parameters	30BQ	Units	Conditions	
V _{EM}	Max. Forward Voltage Drop (1)	0.79	V	@ 3A	T _J = 25 °C
		0.90	V	@ 6A	
		0.62	V	@ 3A	T _J = 125 °C
		0.70	V	@ 6A	
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	V_R = rated V_R
		5.0	mA	T _J = 125 °C	
CT	Max. Junction Capacitance	115	pF	$V_{R} = 5V_{DC}$ (te	st signal range 100KHz to 1Mhz) 25°C
Ls	Typical Series Inductance	3.0	nH	Measured lea	ad to lead 5mm from package body
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V_R)	

(1) Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

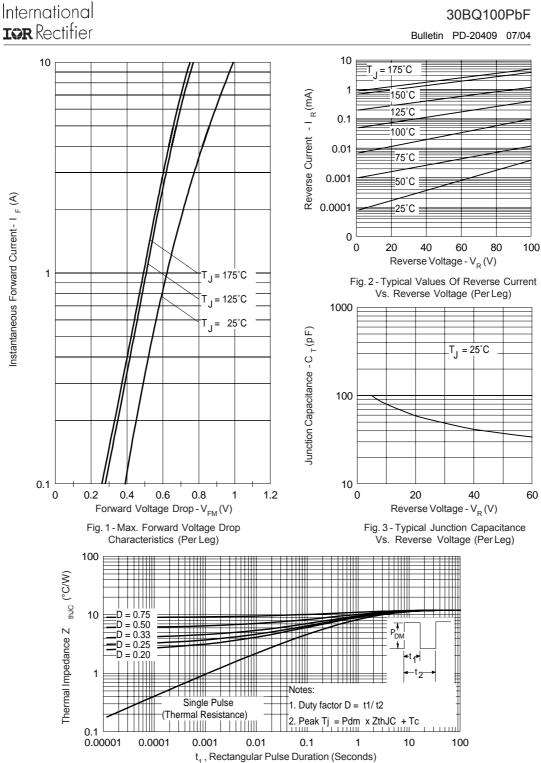
	Parameters	30BQ	Units	Conditions
TJ	Max. Junction Temperature Range (*)	- 55 to 175	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 175	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	46	°C/W	DC operation
wt	Approximate Weight	0.24 (0.008)	g (oz.)	
	Case Style	SMC	;	Similar to DO-214AB
	Device Marking	IR3J		

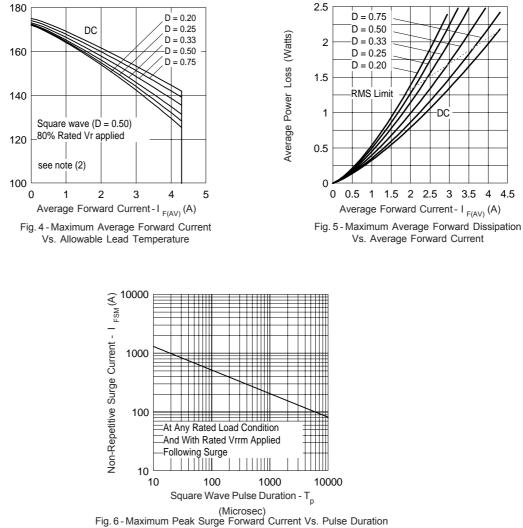
 $\frac{(*)}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

(**) Mounted 1 inch square PCB

International

IOR Rectifier



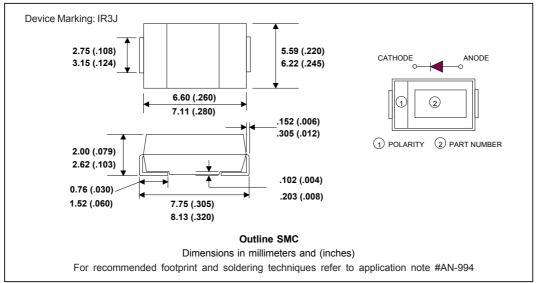

Fig. 4 - Max. Thermal Impedance Z $_{\rm thJC}$ Characteristics (Per Leg)

30BQ100PbF

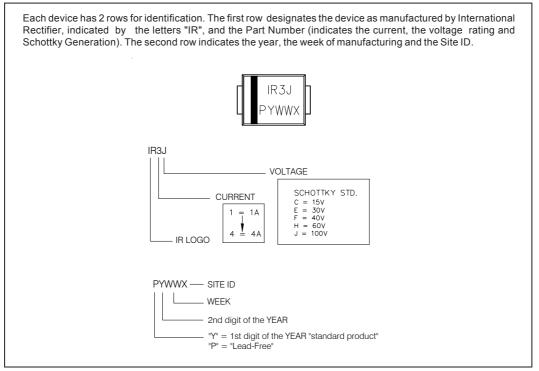
Allowable Lead Temperature (°C)

Bulletin PD-20409 07/04

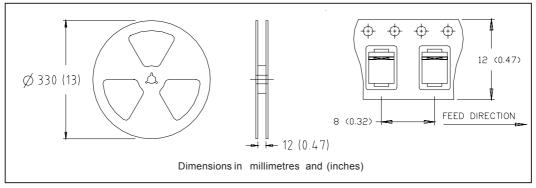
International **IOR** Rectifier


(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} x V_{FM} @ (I_{F(AV)} / D) (see Fig. 6);$ Pd_{REV} = Inverse Power Loss = $V_{R1} \times I_R (1 - D)$; $I_R @ V_{R1}$ = 80% rated V_R

International


30BQ100PbF

Bulletin PD-20409 07/04


Outline Table

Marking & Identification

Tape & Reel Information

Ordering Information Table

Device Code	30 B Q 100 TR PbF
	1 2 3 4 5 6
	 Current Rating B = Single Lead Diode Q = Schottky Q Series
	4 - Voltage Rating (100 = 100V)
	 5 - • none = Box (1000 pieces) • TR = Tape & Reel (3000 pieces)
	 6 - • none = Standard Production • PbF = Lead-Free

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 07/04