

KBU601G THRU KBU607G

Single Phase 6.0 AMPS. Glass Passivated Bridge Rectifiers

Voltage Range 50 to 1000 Volts Current 6.0 Amperes

KBU

Features

- ♦ UL Recognized File # E-96005
- ♦ Glass passivated junction
- ♦ Ideal for printed circuit board
- ♦ Reliable low cost construction
- Plastic material has Underwriters Laboratory Flammability Classification 94V-0
- Surge overload rating to 175 amperes peak
- High temperature soldering guaranteed: 250°C / 10 seconds / .375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension
- ♦ Weight: 0. 3 ounce, 8.0 grams
- ♦ Mounting torque: 5 in. lb. max.

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load, derate current by 20%

KBU 601G	KBU 602G	KBU 603G	KBU 604G	KBU 605G	KBU 606G	KBU 607G	Units
50	100	200	400	600	800	1000	V
35	70	140	280	420	560	700	V
50	100	200	400	600	800	1000	V
6.0						Α	
175						Α	
1.0						V	
5.0						uA	
500						uA	
8.6						.C\M	
3.1							
-55 to +150						${\mathbb C}$	
-55 to + 150						${\mathbb C}$	
	601G 50 35	601G 602G 50 100 35 70	601G 602G 603G 50 100 200 35 70 140 50 100 200 -5	601G 602G 603G 604G 50 100 200 400 35 70 140 280 50 100 200 400 6.0 175 5.0 500 8.6 3.1 -55 to +1	601G 602G 603G 604G 605G 50 100 200 400 600 35 70 140 280 420 50 100 200 400 600 1.75 1.0 5.0 500 8.6 3.1 -55 to +150	601G 602G 603G 604G 605G 606G 50 100 200 400 600 800 35 70 140 280 420 560 50 100 200 400 600 800 1.75 1.0 5.0 500 500 8.6 3.1 -55 to +150	601G 602G 603G 604G 605G 606G 607G 50 100 200 400 600 800 1000 35 70 140 280 420 560 700 50 100 200 400 600 800 1000 1.75 1.0 5.0 500 8.6 3.1 -55 to +150

Note: 1. Thermal resistance from Junction to Ambient with units in Free Air, P.C.B. Mounted on 0.5 x 0.5" (12 x 12mm) Copper Pads, 0.375" (9.5mm) Lead Length.

2. Thermal Resistance from Junction to Case with units Mounted on 2.6 x 1.4 x 0.06" Thick (6.5 x 3.5 x 15cm) Al. Plate.

RATINGS AND CHARACTERISTIC CURVES (KBU601G THRU KBU607G)

FIG.1- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT PER BRIDGE ELEMENT

FIG.3- TYPICAL INSTANTANEOUS FORWARD

